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Abstract Toll-like receptor 4 (TLR4) is required for recogni-
tion of lipopolysaccharide (LPS) of Gram-negative bacteria
and induction of the innate immune response to them. Neverthe-
less, the involvement of some crucial pathways in TLR4 signal-
ling is poorly understood. Here, we report that LPS-induced
TLR4 signalling triggers cross talk of HIF-1a and ASK1 in
THP-1 human myeloid monocytic leukaemia cells. Both path-
ways are activated via redox-dependent mechanism associated
with tyrosine kinase/phospholipase C-1c-mediated activation of
protein kinase C a/b, which are known to activate NADPH oxi-
dase and the production of reactive oxygen species that activate
both HIF-1a and ASK1. ASK1 contributes to the stabilisation of
HIF-1a, most likely via activation of p38 MAP kinase.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Human inflammatory/innate immune reactions are initiated

via recognition of pathogen-associated molecular patterns by

specific receptors. Toll-like receptors (TLRs) are the key pat-

tern recognition receptors that allow cells to specifically detect

pathogens by recognising structural components shared by

many bacteria, viruses and fungi [1]. TLRs lie at the core of

resistance to disease, initiating most of the phenomena that oc-

cur in the course of infection [2–4]. TLR4 is one of the most

physiologically important TLRs initially identified as the lipo-

polysaccharide (LPS) recognising receptor required for detec-

tion of Gram-negative bacteria, which have LPS as an

integral part of outer cell membrane. TLR4 is expressed in dif-

ferent cell types including myeloid cells, which are the key

effectors of innate immune responses [5]. It has recently been

reported that hypoxia-inducible factor 1a (HIF-1a) an induc-

ible subunit of heterodimeric HIF-1 transcription complex

consisting of two subunits (HIF-1a and HIF-1b) [6] is accumu-

lated in response to LPS [7,8]. HIF-1a is rapidly accumulated

in cells exposed to hypoxia [9] or some non-hypoxic stimuli like

inflammatory mediators, cytokines, reactive oxygen (ROS)

and nitrogen (RNS) species (reviewed in [9,10]). Other vice

HIF-1a protein undergoes rapid ubiquitination followed by

proteasomal degradation [9]. HIF-1a plays pivotal role in
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mediating angiogenesis, glycolysis and cell adhesion [9], which

are critical for inflammation. However, it is still unclear

whether LPS-dependent HIF-1a accumulating effect is

achieved via TLR4. Basic biochemical mechanisms involved

in LPS-dependent HIF-1a accumulation are not clear as well.

One of possible mechanisms is the cross-talk of HIF-1a and

apoptosis signal-regulating kinase 1 (ASK1) associated with

generation of ROS/RNS. The most recent data suggest a cru-

cial role of ASK1 (active form of the kinase interacts with tu-

mour necrosis factor receptor associated factor 6 (TRAF6)

forming catalytically active complex) and its downstream path-

way in transduction of signals from TLR4 [11,12] including

secretion of pro-inflammatory cytokines. ASK1 is selectively

required for TLR4-dependent activation of p38 MAP kinase

[11]. In normal cells ASK1 is directly inhibited by thioredoxin

(Trx), a 12-kDa protein ubiquitously expressed in all living

cells. Upon modification (for example oxidation) of Trx reac-

tive thiol groups ASK1 dissociates and undergoes activation

[14]. Despite it is known that ROS are involved in TLR4-med-

iated activation of ASK1 [11], there are no data concerning ba-

sic molecular mechanisms of ASK1 activation by active TLR4.

Furthermore, p38 activated by ASK1 is known to phosphory-

late and therefore support ischemic accumulation of HIF-1a
protein [15]. There is, however, no evidence concerning

involvement of ASK1-p38 cascade in LPS-dependent accumu-

lation of HIF-1a protein. In addition, TLR4 signalling is

known to stimulate enzymatic production of RNS, which are

known to activate both ASK1 and HIF-1a [13]. However,

there is no evidence concerning participation of RNS in

LPS-dependent activation of ASK1 and HIF-1a.

Here we report that LPS induces both HIF-1a accumulation/

DNA-binding activity and activity of ASK1 in THP-1 human

myeloid monocytic leukaemia cells in dose- and time-depen-

dent manner. Pre-treatment of THP-1 cells with anti-TLR4

antibody followed by stimulation with LPS attenuated both

HIF-1a accumulation and activation of ASK1. Pre-treatment

of cells with tyrosine kinase inhibitor genistein, PI-specific

phospholipase C inhibitor U73122, PKCa/b inhibitor Gö6983

and NADPH oxidase inhibitor diphenyleniodonium chloride

(DPI) attenuated LPS-induced NADPH oxidase (Nox)-depen-

dent ROS production and both HIF-1a accumulation/ASK1

activation when stimulated during with LPS. The same effect

was observed when the cells were exposed to antioxidant N-ace-

tylcysteine (NAC). Nitric oxide synthase inhibitor N-mono-

methyl arginine (NMMA) blocked LPS-induced RNS

production but did not impact HIF-1a accumulation/ASK1

activity when the cells were exposed during 4 h to LPS. Trans-

fection of THP-1 cells with dominant-negative isoform of
blished by Elsevier B.V. All rights reserved.
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ASK1 attenuated LPS-induced HIF-1a accumulation. The

same effect was observed when the cells were pre-treated with

p38 MAP kinase inhibitor SB203580 before 4 h of exposure

to LPS. This effect was probably due to the inhibition of p38-

dependent HIF-1a phosphorylation, which we have observed

as well. We therefore suggest that TLR4 signalling leads to

accumulation of HIF-1a protein via Nox-generated ROS fol-

lowed by phosphorylation by ASK1-activated p38.
2. Materials and methods

2.1. Materials
Medium, fetal calf serum and supplements, caspase 3 colorimetric

assay kit, DOTAP transfection reagent, GenElute� palsmid purifica-
tion kit, enhanced avian HS RT-PCR kit, GenElute� mammalian to-
tal RNA miniprep kit, nitric oxide synthase inhibitor N-monomethyl
arginine (NMMA), genistein (tyrosine kinase inhibitor), PI-specific
PLC inhibitor U73122, PKCa/b inhibitor Gö6983, NADPH oxidase
inhibitor diphenyleniodonium chloride (DPI) were purchased from
Sigma (Suffolk, UK). p38 MAP kinase specific inhibitor SB203580
was bought from Alexis (Nottingham, UK). Maxisorp� microtitre
plates were obtained from Nunc (Roskilde, Denmark). Mouse mono-
clonal antibody to HIF-1a, mouse monoclonal antibody to TLR4,
rabbit monoclonal antibody to ASK1, mouse monoclonal antibody
to b-actin as well as rabbit polyclonal HRP-labeled antibody to mouse
IgG and goat polyclonal HRP-labeled antibody to rabbit IgG were
from Abcam (Cambridge, UK). All other chemicals were of the highest
grade of purity and commercially available.

2.2. Cell culture and preparation of the whole cell extracts
THP-1 human leukemia monocytic macrophages were purchased

from European collection of Cell Cultures (Salisbury, UK). Cells were
grown in RPMI 1640 media supplemented with 10% fetal calf serum,
penicillin (50 IU/ml) and streptomycin sulfate (50 lg/ml).
2.3. Plasmids
Plasmid encoding constitutively active human TLR4 (murine CD4

fused to human TLR4) [16] was generously provided by Professor
Medzhitov (Yale University, New Haven, USA). Plasmid encoding
hemagglutinin (HA)-tagged wild-type human ASK1 and ASK1 with
kinase-dead domain (dominant-negative form), ASK1-KM was a kind
gift of Professor Ichijo (University of Tokyo, Tokyo, Japan). Plasmids
were amplified in Escherichia coli XL10 Gold� (Stratagene Europe,
Amsterdam, The Netherlands) and purified using GenElute� plasmid
purification kit according to the manufacturers protocol. Purified plas-
mids were transfected into THP-1 cells using DOTAP transfection re-
agent according to the manufacturer�s protocol.
2.4. Detection of HIF-1a protein
HIF-1a was determined by Western blot analysis, as previously de-

scribed [17]. Briefly, cells were incubated for the times indicated,
washed two times with ice-cold phosphate-buffered saline (PBS) and
lysed in 200 ll of lysis buffer (50 mM Tris–HCl, 5 mM EDTA,
150 mM NaCl, 0.5% Nonidet-40, 1 mM PMSF, pH 8.0). After centri-
fugation (17000 · g, 15 min) the protein content in the supernatants
was analysed (the same procedures applied to Western blot analysis
of other proteins). Finally, 100 lg of protein was added to the same
volume of 2· sample buffer (125 mM Tris–HCl, 2% sodium dodecyl
sulfate (SDS), 10% glycerine, 1 mM dithiothreitol (DTT), 0.002%
bromphenol blue, pH 6.9) and boiled for 5 min. Proteins were resolved
on 7.5% SDS–polyacrylamide gels and blotted to nitrocellulose mem-
brane. Molecular weights were calibrated in proportion to the running
distance of rainbow markers. Transblots were washed twice with TBS
(50 mM Tris–HCl, 140 mM NaCl, pH 7.3) containing 0.1% Tween 20
before blocking unspecific binding with TBS plus 5% skim milk for 1 h.
The HIF-1a (1:1000 in TBS plus 5% milk) antibody was added and
incubated for 60 min at room temperature. Afterwards, nitrocellulose
membranes were washed five times for 15 min with TBS containing
0.1% Tween 20. For protein detection, blots were incubated with goat
secondary antibodies conjugated with horse radish peroxidase (1:1000
in TBS plus 5% milk) for 60 min, followed by ECL detection. Blots
were stripped and re-probed with a rabbit monoclonal antibody
against b-actin to confirm equal protein loading. Briefly, membranes
were washed five times with TBS (50 mM Tris–HCl, 140 mM NaCl,
pH 7.3) containing 0.1% Tween 20 then incubated for 1 h at room tem-
perature with monoclonal antibody directed against b-actin followed
by ECL detection.
2.5. Determination of HIF-1 DNA-binding activity
HIF-1 DNA-binding activity was measured by the method similar to

the one described recently with our modifications [8]. 96-well maxi-
sorp� microtitre plate was coated with streptavidin and blocked with
BSA as described before [18]. 2 pmol/well-biotinylated 2HRE-contain-
ing oligonucleotide were immobilised by 1 h incubation at room tem-
perature. Plate was then washed five times with TBST buffer (10 mM
Tris–HCl, pH 8.0, 150 mM NaCl, 0.05% Tween-20) followed by 1 h
incubation with 20 ll/well of cell lysate at room temperature. Plate
was again washed five times with TBST buffer and mouse anti-HIF-
1a antibody (1:1000 in TBS plus 2% BSA) was added. After 1 h of
incubation at room temperature plate was washed five times with
TBST buffer and incubated with 1:1000 HRP-labelled rabbit anti-
mouse IgG in TBST buffer and after extensive washing with TBST,
the bound secondary antibody was detected by the peroxidase reaction
(ortho-phenylenediamine/H2O2, Kem-En-Tek Diagnostics, Copenha-
gen, Denmark). The reactions were quenched after 10 min with an
equal volume of 1 M H2SO4 and the colour development was mea-
sured in a microplate reader as the absorbance at 492 nm. DNA-bind-
ing activity of HIF-1 was calculated as a percentage of the value
obtained when analysing lysates of non-treated cells (control).
2.6. Detection of ASK1 protein
ASK1 was measured by Western blot [19,20]. Cell lysate protein

(100 lg) were added to the same volume of 2· sample buffer
(125 mM Tris–HCl, 2% SDS, 10% glycerin, 1 mM DTT, 0.002% brom-
phenol blue, pH 6.9) and boiled for 5 min. Proteins were resolved on
7.5% SDS–polyacrylamide gels and blotted to nitrocellulose mem-
brane. Molecular weights were calibrated in proportion to the running
distance of rainbow markers. Transblots were washed twice with TBS
(50 mM Tris–HCl, 140 mM NaCl, pH 7.3) containing 0.1% Tween 20
before blocking unspecific binding with TBS plus 5% skim milk for 1 h.
The ASK1 (1:1000 in TBS plus 5% milk) monoclonal antibody was
added and incubated for 60 min at room temperature. Afterwards,
nitrocellulose membranes were washed five times for 15 min with
TBS containing 0.1% Tween 20. For protein detection, blots were incu-
bated with goat secondary antibodies conjugated with horse radish
peroxidase (1:1000 in TBS plus 5% milk) for 60 min, followed by
ECL detection.
2.7. Measurement of ASK1 kinase activity
The kinase activity of ASK1 was assayed by the method based on its

immunoprecipitation followed by analysis of phosphorylation of exo-
genous substrate – myeline basic protein (MBP) and estimated in nmol
of the phosphate transferred per 1 min onto the MBP per 1 mg protein
as described previously [14,19–21].
2.8. Analysis of p38-dependent HIF-1a phosphorylation
p38-dependent HIF-1a phosphorylation was monitored using the

following approach. 96-well maxisorp� microtitre plate was coated
with 2 lg/well anti-HIF-1a antibody and blocked with BSA as de-
scribed before [18]. Plate was then washed five times with TBST buffer
followed by 1 h incubation with 20 ll/well (room temperature) of
lysates of THP-1 cells treated with for 4 h with LPS (to remove
HIF-1a protein from the lysate) or 4 h with 100 lM cobalt chloride
(well-known stimulator of HIF-1a accumulation [7]) after 30 min
pre-treatment with p38 MAP kinase inhibitor 10 lM SB203580 (these
lysates contain HIF-1a protein which is not phosphorylated by p38).
Content of HIF-1a protein in each lysate was detected by Western blot
as described above. After extensive washing with TBST buffer cell
lysate lacking HIF-1a and containing active p38 (withdrawn from
the wells containing lysates of LPS-treated cells) was transferred into



Fig. 1. LPS induces accumulation of HIF-1a protein and ASK1 activation. (A) THP-1 cells were stimulated during 6 h with 0.01, 0.1, 1 and 10 lg/ml
LPS and accumulation (Western blot)/DNA-binding activity (ELISA) of HIF-1a protein as well as ASK1 protein stability (Western blot)/kinase
activity (immunoprecipitation associated with MBP phosphorylation assay) were analysed as outlined in Section 2 (B) THP-1 cells were treated with
1 lg/ml LPS during 15, 30, 45 and 60 min and accumulation of HIF-1a protein, ASK1 protein stability/kinase activity were detected. (C) THP-1 cells
were treated with 1 lg/ml LPS during 1, 2, 4, 8, 16, 32 and 64 h and accumulation/DNA-binding activity of HIF-1a protein, ASK1 protein stability/
kinase activity and caspase 3 activity (colorimetric assay) were detected as described in Materials and methods. TLR4 level was also monitored
(Western blot) and actin staining was used as a protein loading control in all experiments. Digital data are mean values ± S.D. of at least four
individual experiments. *P < 0.01 vs. control (*P < 0.01 between two specific experiments). All Western-blot data are from one experiment
representative of three that gave similar results.
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the wells treated with lysates of SB203580/cobalt chloride treated cells.
To some of the wells we added 10 lM SB203580 to block p38 activity.
The incubation was performed during 1 h at room temperature and
after extensive washing with TBST the amount of phosphate groups
in isolated HIF-1a protein was quantified [22].

To confirm the role of p38 in HIF-1a phosphorylation we have stim-
ulated THP-1 cells with 1 lg/ml LPS for 4 h and isolated p38 MAP ki-
nase from them. For this purpose 96-well maxisorp� microtitre plate
was coated with 2 lg/well anti-p38 capture antibody and blocked with
BSA as described before [18]. Plate was then washed five times with
TBST buffer followed by 1 h incubation with 100 ll/well (room tem-
perature) of lysates of THP-1 cells treated with for 4 h with 1 lg/ml
LPS. To prepare isolated active HIF-1a protein we have treated
THP-1 cells with 100 lM cobalt chloride in combination with 10 lM
SB203580 to block p38 activity (cobalt chloride-dependent accumula-
tion of HIF-1a protein does not require p38-dependent phosphoryla-
tion; as a control we used the cells which were not stimulated with
cobalt chloride). 96-well maxisorp� microtitre plate was coated with
streptavidin and blocked with BSA as described before [18]. 2 pmol/
well-biotinylated 2HRE-containing oligonucleotide were immobilised
by 1 h incubation at room temperature. Plate was then washed five
times with TBST buffer (10 mM Tris–HCl, pH 8.0, 150 mM NaCl,
0.05% Tween-20) followed by 1 h incubation with 100 ll/well of cell ly-
sate at room temperature. Immobilised HIF-1a protein was eluted by
glycine buffer (pH 2.5) and the pH was adjusted back to 7.3 by TBST
buffer. Eluted HIF-1a protein was transferred to the wells containing
immobilised p38 and incubated for 1 h with 10 lM ATP followed by
detection of phosphate groups in it [17,19–21].

2.9. Detection of TLR4
TLR4 was assayed by Western blot analysis. Briefly, 100 lg of cell

lysate protein were added to the same volume of 2· sample buffer
(125 mM Tris–HCl, 2% SDS, 10% glycerin, 1 mM DTT, 0.002% brom-
phenol blue, pH 6.9) and boiled for 5 min. Proteins were resolved on
7.5% SDS–polyacrylamide gels and blotted to nitrocellulose mem-
brane. Molecular weights were calibrated in proportion to the running
distance of rainbow markers. Transblots were washed twice with TBS
(50 mM Tris–HCl, 140 mM NaCl, pH 7.3) containing 0.1% Tween 20
before blocking unspecific binding with TBS plus 5% skim milk for 1 h.
The TLR4 (1:1000 in TBS plus 5% milk) monoclonal antibody was
added and incubated for 60 min at room temperature. Afterwards,
nitrocellulose membranes were washed five times for 15 min with
TBS containing 0.1% Tween 20. For protein detection, blots were incu-
bated with goat secondary antibodies conjugated with horse radish
peroxidase (1:1000 in TBS plus 5% milk) for 60 min, followed by
ECL detection.

2.10. Measurement of caspase 3 activity
The activity of caspase 3 was assayed by colorimetric method based

on the hydrolysis of the peptide substrate acetyl-Asp-Glu-Val-Asp-p-
nitroanilide (Ac-DEVD-pNA) according to the manufacture�s proto-
col.
2.11. Detection of Nox-dependent ROS generation and RNS production
Nox-dependent ROS generation was analysed as described before

[8]. RNS production was analysed by Griess assay [23].
Fig. 2. TLR4 signalling leads to the accumulation of HIF-1a and
activation of ASK1. We have transiently transfected THP-1 cells with
constitutively active TLR4 (murine CD4 fused to human TLR4) and
analysed accumulation (Western blot)/DNA-binding activity (ELISA)
of HIF-1a protein as well as ASK1 protein stability (Western blot)/
2.12. Measurement of HIF-1a mRNA by RT-PCR
Total RNA was isolated using GenElute� mammalian total RNA

miniprep kit, followed by HIF-1a mRNA reverse transcriptase-poly-
merase chain reaction (RT-PCR). Primer selection was as follows:
HIF-1a, 5 0-CTCAAAGTCGGACAGCCTCA-30, 5 0-CCCTGCAGT-
AGGTTTCTGCT-30; actin, 5 0-TGACGGGGTCACCCACA-CTGT-
GCCCATCTA-3 0, 5 0-CTAGAAGCATT-TGCGGTCGACGATGG-
AGGG-3 0. Amplification program was as follows: 95 �C, 30 s; 56 �C,
30 s; 72 �C, 1 min; 20 cycles; 72 �C, 10 min. Products were separated
on 2% agarose gels and visualized with ethidium bromide.
kinase activity (immunoprecipitation associated with MBP phosphor-
ylation assay) as outlined in Section 2. TLR4 level was also monitored
(Western blot). Actin staining was used as a protein loading control.
LPS-induced effects were analysed as a positive control. Digital data
are mean values ± S.D. of at least four individual experiments.
*P < 0.01 vs. control. All Western-blot data are from one experiment
representative of three that gave similar results.
2.13. Statistical analysis
Each experiment was performed at least three times and statistical

analysis was done using the two-tailed Student�s t-test. The statistical
probability (P) expressed as *P < 0.01. The normal distribution of data
was checked.
3. Results and discussion

3.1. LPS induces accumulation of HIF-1a protein and ASK1

activation

We have first of all analysed dose-dependent LPS-mediated

accumulation and DNA-binding activity of HIF-1a protein. It

was found that stimulation of THP-1 cells with 0.1, 1 and

10 lg/ml LPS-induced accumulation of HIF-1a protein in con-

centration-dependent manner. As a consequence of the in-

crease in HIF-1a protein levels, the increase (max �2.5-fold)

in HIF-1 DNA-binding activity was observed. ASK1 was acti-

vated by the same concentrations of LPS, however, the highest

kinase activity was observed when the cells were exposed to

1 lg/ml LPS. TLR4 amount remained similar in all cases

(Fig. 1A).

Further analysis was performed using 1 lg/ml concentration

of LPS. We have found that HIF-1a protein starts accumulat-

ing and displays DNA-binding activity after 45 min of stimu-

lation with LPS. Both accumulation/DNA-binding activity of

HIF-1a protein are peaking after 4 h of stimulation with

LPS. Then the amount of protein and its DNA-binding activ-

ity go down. However, HIF-1a protein remains stable and ac-

tive upon even 64 h of stimulation with LPS (Fig. 1B and C).
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ASK1 gets stabilised in response to stimulation with LPS but

the highest kinase activity was observed when the cells were

stimulated during 45 min. Then ASK1 kinase activity went

down but was again increased upon exposure of the cells to

LPS during 32 and 64 h. This correlated with increase in cas-

pase 3 activity suggesting induction of apoptotic cell death.

No changes in the amount of TLR4 were observed in all cases

(Fig. 1B and C).

3.2. TLR 4 signalling leads to the accumulation of HIF-1a and

activation of ASK1

Most likely that the observed HIF-1a accumulating/ASK1

activating effects of LPS are achieved via activation of TLR4

and are part of TLR4 signalling. To confirm this we have tran-

siently transfected THP-1 cells with constitutively active TLR4

(murine CD4 fused to human TLR4) [16] and analysed stabil-

isation/DNA-binding activity of HIF-1a and kinase activity/

accumulation of ASK1. The results were similar to those ob-

served upon stimulation of cells with LPS – HIF-1a accumula-

tion/DNA-binding activity as well as ASK1 stability and

kinase activity were increased (Fig. 2).
Fig. 3. NADPH oxidase derived ROS and ASK1 but not RNS are critical f
were pre-stimulated with respective inhibitors during 1 h (concentrations are o
Accumulation of HIF-1a protein (Western blot), ASK1 protein stability (We
phosphorylation assay), Nox-dependent and ROS production (luminometric a
was used as a protein loading control in all experiments. Digital data are me
control. All Western-blot data are from one experiment representative of th
3.3. NADPH oxidase derived ROS and ASK1 but not RNS are

critical for LPS-dependent TLR4-mediated HIF-1a
accumulation

To further verify that LPS-dependent HIF-1a/ASK1 activa-

tion are TLR4-dependent we pre-treated the cells with 2 lg/ml

TLR4 neutralising antibody during 2 h followed by 4 h of

treatment with 1 lg/ml LPS [24]. In both cases both accumula-

tion of HIF-1a and activation of ASK1 were attenuated sug-

gesting that LPS-induced effects are TLR4-dependent

(Fig. 3). One hour pre-treatment of cells with 100 lM NMMA

followed by 4 h of stimulation with 1 lg/ml LPS blocked RNS

production (from 180 ± 12% control to 89 ± 7% control as

measured by Griess assay; the amount of RNS produced by

non-stimulated THP-1 cells was considered as 100%) but did

not impact HIF-1a accumulation or ASK1 activation. We

hypothesised that NADPH oxidase (Nox) derived ROS are

responsible to stabilise both HIF-1a and ASK1. During

TLR4 signalling Nox is activated in the following way. Src

tyrosine kinase activates of Bruton�s tyrosine kinase (Btk) as

well as other tyrosine kinases that interact with TIR-domain

of TLR4 and stimulates recruitment of MyD88 and TIRAP
or LPS-dependent TLR4-mediated HIF-1a accumulation. THP-1 cells
utlined in the figure) and then stimulated during 4 h with 1 lg/ml LPS.
stern blot)/kinase activity (immunoprecipitation associated with MBP
ssay) were analysed. TLR4 level was also monitored and actin staining
an values ± S.D. of at least four individual experiments. *P < 0.01 vs.

ree that gave similar results.
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(Mal) adaptor proteins required for TLR4 downstream signal-

ling [25,26]. In addition, Btk and other tyrosine kinases acti-

vate PI-specific PLC-1c known to release diacylglycerols

(DAG) and PI that increases intracellular Ca2+ concentration

[25–27]. Both DAG and Ca2+ activate PKCa/b known to phos-

phorylate p47phox subunit of Nox [27,28] leading to the enzyme

activation followed by ROS production. To investigate

involvement of this pathway in HIF-1a accumulation and

ASK1 activation we have pre-treated the cells with 30 lM gen-

istein (tyrosine kinase inhibitor), 30 lM U73122 (PI-specific

PLC-1c inhibitor), 70 nM Gö6983 (PKCa/b inhibitor) or

30 lM DPI (Nox inhibitor) followed by 4 h of stimulation with

1 lg/ml LPS. All listed inhibitors nullified both HIF-1a accu-

mulation and ASK1 stabilisation/activation (Fig. 3). Results

obtained confirm participation of Nox and Nox-activating

pathway in both HIF-1a accumulation and activation of
Fig. 4. ASK1 and p38 MAP kinase are critical for LPS-dependent LPS-de
transiently transfected with ASK1-KM and stimulated for 4 h with LPS. Accu
were analysed. TLR4 level was also monitored. Actin staining was used as a
dependent HIF-1a phosphorylation was studied as outlined in Materials and
16 h of stimulation with 1 lg/ml LPS. mRNA of HIF-1a and actin were d
values ± S.D. of at least four individual experiments. *P < 0.01 vs. control (*

PCR data are from one experiment representative of three that gave similar
ASK1. No one of the inhibitors used changed the level of

TLR4 produced in THP-1 cells (Fig. 3).

One hour pre-treatment of THP-1 cells with p38 MAP ki-

nase inhibitor SB203580 completely attenuated LPS-depen-

dent HIF-1a stabilisation when exposed 4 h to 1 lg/ml LPS

(Fig. 3). Tenfold reduction of the concentrations of genistein,

U73122, Gö6983, DPI and SB203580 decreased the inhibition

of LPS-induced HIF-1a accumulating/ASK1 activating effect

(Fig. 3). This treatment did not impact TLR4 level in THP-1

cells. Recently, it was found that p38-dependent HIF-1a phos-

phorylation is essential for protein stabilisation [15]. However,

longer exposure to LPS by some reason reduces the critical role

of p38 in HIF-1a accumulation. One could speculate that due

to the increase HIF-1a in protein expression its post-transla-

tional stabilisation does not need to be enhanced by p38. To

investigate critical role of ASK1 in LPS-dependent HIF-1a
pendent TLR4-mediated HIF-1a accumulation. (A) THP-1 cells were
mulation of HIF-1a protein, and ASK1 protein stability/kinase activity
protein loading control (see Figs. 1–3 for the type of assay). (B,C) p38-
methods. (D) THP-1 cells were transfected with ASK1-KM followed by
etected by RT-PCR as outlined in Section 2. Digital data are mean
P < 0.01 between two specific experiments). All Western-blot and RT-
results.
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accumulation we transfected THP-1 cells with 2.5 lg/ml dom-

inant-negative form of ASK1 (ASK1-KM) and exposed the

cells to 1 lg/ml LPS during 4 h. The increase in amount of

ASK1 protein was rather significant and decreased its kinase

activity (Fig. 4A). The decrease in HIF-1a accumulation was

clear in the cells transfected with ASK1-KM and then stimu-

lated with LPS (Fig. 4A). TLR4 amount in THP-1 cells was

not affected by treatments. These data suggest critical role of

ASK1 in accumulation of HIF-1a protein in TLR4 signalling.

The contribution of ASK1 is most likely in activation of p38,

which is important for HIF-1a protein accumulation at some

stages. To confirm LPS-dependent p38-mediated HIF-1a pro-

tein phosphorylation we have monitored this process as out-

lined in Section 2. It was clear that in LPS-stimulated cells

HIF-1a phosphorylating activity of p38 was quite strong

(Fig. 4B).

Furthermore we have isolated p38 from THP-1 cells stimu-

lated with 1 lg/ml LPS and detected that it could phosphory-

late HIF-1a protein isolated from THP-1 cells treated with

100 lM cobalt chloride (see Section 2.8 for experimental de-

tails, Fig. 3). Finally, we have found that in the amount of

HIF-1a mRNA produced in THP-1 cells was increased in

the cells exposed to 1 lg/ml LPS. However, when the cells were
Fig. 5. ROS contribute to LPS-dependent activation of HIF-1a/ASK1
and RNS down-regulate ASK1 kinase activity by direct S-nitrosation
of the enzyme. THP-1 cells were pre-treated during 1 h with 1 mM
NAC and then stimulated during 4 h or 64 h with 1 lg/ml LPS.
Accumulation of HIF-1a protein, ASK1 protein stability/kinase
activity, Nox-dependent ROS and production were analysed as
described in Section 2 (see also Figs. 1–3 for the type of assay).
Digital data are mean values ± S.D. of at least four individual
experiments. *P < 0.01 vs. control. All Western-blot data are from
one experiment representative of three that gave similar results.
transfected with ASK1-KM and stimulated with 1 lg/ml LPS,

the level of HIF-1a mRNA was lower than the one produced

in non-transfected cells stimulated with 1 lg/ml LPS (Fig. 4 D)

but no significant reduction was observed. Therefore, ASK1

downstream pathway is most likely important to stabilise

HIF-1a protein at the translational/post-translational level.

Overall, these data suggest a strong contribution of ASK1 to

LPS-dependent accumulation of HIF-1a protein as well as

its participation in HIF-1a gene expression.

To verify critical role of ROS in HIF-1a protein accumula-

tion and activation of ASK1 we pre-treated the cells with

1 mM NAC followed by 4 h of stimulation with 1 lg/ml

LPS. NAC decreased ROS production and attenuated HIF-

1a accumulation/activation of ASK1 but not the amount of

TLR4 produced by THP-1 cells (Fig. 5). These data suggest

crucial role of Nox-derived ROS for both HIF-1a protein

accumulation and activation of ASK1.

Based on the data obtained one could suggest that LPS

induces both HIF-1a accumulation and expression as a part

of TLR4 signalling. TLR4 associated tyrosine kinases activate

PI-specific PLC-1c which leads to the release of DAG/Ca2+

that activate PKCa/b, known to induce Nox activity. Nox

generates ROS that contribute to stabilisation but not expres-

sion of HIF-1a protein and activate ASK1. ASK1 indirectly

activates p38, which also contributes to HIF-1a accumulation.

In addition to our conclusions, one could speculate that

HIF-1a protein could bring certain contribution to down-

regulation of ASK1 as the gene of ASK1 inactivating

protein phosphatase 5 has hypoxia responsive elements

and is up-regulated by HIF-1 transcription complex [29]. How-

ever, this speculation is still a subject for experimental confir-

mation.
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