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The Succinate Dehydrogenase (SDH) heterotetrameric complex catalyzes the oxidation of succinate to fumarate
in the tricarboxylic acid (TCA) cycle and in the aerobic respiratory chains of eukaryotes and bacteria. Essential in
this catalysis is the covalently-linked cofactor flavin adenine dinucleotide (FAD) in subunit1 (Sdh1) of the SDH
enzyme complex. The mechanism of FAD insertion and covalent attachment to Sdh1 is unknown. Our working
concept of this flavinylation process has relied mostly on foundational works from the 1990s and by applying
the principles learned from other enzymes containing a similarly linked FAD. The discovery of the flavinylation
factor Sdh5, however, has provided new insight into the possiblemechanism associated with Sdh1 flavinylation.
This review focuses on encapsulating prior and recent advances towards understanding the mechanism associ-
atedwithflavinylation of Sdh1 and how this flavinylation process affects the overall assembly of SDH. This article
is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Succinate dehydrogenase (SDH) is a hetero-tetrameric enzyme com-
plex that catalyzes the oxidation of succinate to fumarate with the con-
comitant reduction of ubiquinone to ubiquinol. Formally, the enzyme
is succinate:ubiquinone oxidoreductase, and the classic oxidation–
reduction reaction it catalyzes is dependent on a flavin adenine dinucle-
otide (FAD) cofactor in subunit 1 (designated Sdh1 in yeast, SdhA in
bacteria and SDHA in humans) (Fig. 1). The second subunit of SDH
(Sdh2 or SDHB) contains additional cofactors; three distinct iron–sulfur
clusters whose function is to transfer the two electrons in one electron
increments resulting from the dehydrogenation of succinate at the
active-site FAD. Ultimately, the electrons reduce the quinone that is
bound at the interface of Sdh2 and the membrane-spanning subunits
(Sdh3 or SDHC and Sdh4 or SDHD), possibly with the involvement of a
heme bound between the membrane subunits [1–4].

The cofactors of succinate dehydrogenase were first noted nearly
60 years ago, which included the discovery of an unusually tightly-
bound form of FAD [5]. This observation is now considered to be the
first identification of a covalently-bound flavin to a polypeptide struc-
ture [6]. The FAD is buried deeply in Sdh1 and the carbon–nitrogen cova-
lent bond occurs via the side chain of a histidyl residue (Fig. 1B). The
catalytic chemistry of succinate oxidation yielding fumarate is absolutely
dependent on this covalent bond [7,8]. Substitution of the His to a Ser
residue in yeast Sdh1 yields an assembled, but catalytically defective
ory complex II: Role in cellular
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SDH complex in the direction of succinate oxidation [8]. The reverse
reaction of fumarate reduction can proceed, albeit at a very slow rate, il-
lustrating the partiality of the covalent bond towards succinate oxidation.

In another histidyl-linked covalent flavoprotein, nicotine oxidase,
replacement of the His to a Cys to block covalent flavinylation leads
to a substantial amount of activity being retained as long as FAD is
present for the reaction [9]. This suggests that at least in this enzyme,
covalent attachment is not an absolute requirement for activity,
which raises the question why the covalent attachment in Sdh1 is ex-
ceptional in its function relative to other covalent flavoproteins.

For most flavoproteins, the mode of flavin association is through
non-covalent interactions with the peptide backbone that prevents
diffusion of the cofactor [10,11]. The covalent linkage places SDH in the
minority 5–10% of characterized flavoproteins. The overall mechanism
of this covalent flavin attachment is unknown, but has been generally ac-
cepted that the attachment occurs autocatalytically (or self catalytically)
as a result of in-vitro studies with several bacterial proteins. This notion,
however, is nowmade more complex and intriguing with the discovery
of Sdh5 in yeast (SdhE in bacteria and SDHAF2 in humans) [12] that is
considered to be the first factor that is absolutely required for covalent
flavinylation in vivo. Sdh5 is conserved from bacteria [13] to humans
[12], and also in the Arabidopsis plant [14], and co-expressed with the
subunits of SDH. It is clear that Sdh5 and its bacterial and plant homologs
are functionally important in flavinylation mechanism; however, the
exact nature of this function is not yet understood.

The discovery of Sdh5 has furthered the interest in elucidating the
flavinylation mechanism of Sdh1. In addition, the overall assembly of
SDH has been brought into the forefront, as flavinylation and SDH as-
sembly are intricately linked processes. SDH is an ideal model system
to study such phenomena of cofactor maturation linked to overall
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complex assembly. The system is relatively simple comprising of just
four subunits, which can be further compartmentalized to soluble and
membrane domains.

This review surveys the literature that have been focused on Sdh1
flavinylation and SDH assembly, coveringwhatwe have learned and dis-
covered in the years proceeding the discovery of thefirst “tightly-bound”
FAD by Singer, Kearney and Zastrow more than 60 years ago [5]. We
begin with a general discussion of SDH, discuss where and how FAD is
synthesized and transported to Sdh1, discuss the protein(s) and effectors
required for flavinylation, andhowSDH assembly proceeds in relation to
Sdh1 flavinylation.

2. FAD as a cofactor in complex II

2.1. Overview of succinate dehydrogenase

The succinate dehydrogenase complex is also known as complex II in
eukaryotes, which designates it as an integral component of the aerobic
respiratory chain alongwith complex I (NADHdehydrogenase), complex
III (cytochrome c reductase), and complex IV (cytochrome c oxidase). A
distinguishing feature of complex II, from that of the other complexes,
is that it also serves as part of the chain of eight enzymes forming the tri-
carboxylic acid (TCA) cycle. SDH catalyzes a classic oxidation–reduction,
coupling the two-electronoxidation of succinate to fumaratewith the re-
duction of ubiquinone to ubiquinol (succinate:ubiquinone oxidoreduc-
tase). The product fumarate is utilized in the next TCA cycle reaction
catalyzed by fumarase; the co-product ubiquinol is oxidized by complex
III in the electron transfer chain (ETC).

The SDH enzyme is a hetero-tetrameric complex consisting of a
hydrophilic catalytic domain and a membrane-spanning, ubiquinone-
binding domain. The FAD-containing Sdh1 together with Sdh2 comprise
the top portion ofwhat has been aptly described as an overall “q-shaped”
or “mushroom-shaped” complex [15,16]. The two membrane-spanning
Hi
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Fig. 1. The covalently-linked FAD cofactor in subunit 1 of the succinate dehydrogenase (SDH) c
the distribution of cofactors. Subunit 1 (tan) contains FAD (stick: yellow; carbon: blue; nitrogen
iron). Subunits 3 and 4 (light orange and purple) contain heme b (stick: orange; carbon: blue
covalently-linking His residue (green stick) along the Sdh1 peptide backbone. (C) Chemical st
components as shown. The red carbon of the isoalloxazine ring indicates the sight of covalent
domains, Sdh3 and Sdh4, comprise the lower portion of the “q” as a
heterodimer that act to tether Sdh1, via Sdh2, to the inner membrane.
Approximately 40% of the surface area of Sdh2 is involved in interaction
between Sdh1 and the membrane domain. Thus, the overall stability of
the SDH complex is dependent to a large extent on this tethering subunit
[17].

The Sdh2 subunit contains the Fe/S cofactors of SDH. The two
electrons abstracted from the dehydrogenation of succinate at the
active-site FAD are channeled sequentially through 3 distinct [2Fe–2S],
[4Fe–4S], and [3Fe–4S] iron–sulfur clusters in Sdh2. Ultimately, the elec-
trons reduce ubiquinone, located in a cavity near thematrix–lipid inter-
face comprised of Sdh2, Sdh3 and Sdh4 [16,17]. These cofactors form a
long-range, near-linear electron conduit extending over 40 Å from the
soluble catalytic domain of SDH to the membrane-spanning domain of
the enzyme [16] for the exact purpose of driving electrons into the respi-
ratory chain.

Complex II, through evolution and time, has managed to retain
four – and only four – essential “core subunits” that are found in the
bacterial counterpart succinate quinone reductase (SQR). This is in
stark contrast to complexes III and IV, where their departures from
the bacterial complexes have evolved to recruit several additional
subunits. Thus, complex II has a very low number of subunits relative
to its cofactors compared to mitochondrial complexes I, III, and IV,
which provide a relatively simplified model system in studying the
very complex, intricate and relatively unknown processes of cofactor
insertion and respiratory complex maturation. For further details on
SDH structure and function, we refer readers to the following reviews
[18–21].

2.2. FAD and its link to Sdh1

The 70-kDa Sdh1 subunit structure consists of a Rossmann fold
[17,22] with the FAD bound by its isoalloxazine ring to a histidyl residue
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: red; oxygen). Subunit 2 (green) contains 3 Fe–S centers (spheres: yellow; sulfur: orange;
; nitrogen: red; oxygen: red sphere; iron). (B) Close up of the FAD cofactor showing the
ructure of FAD molecule covalently-linked to Sdh1 that is composed of different chemical
attachment forming the N3-histidyl-8α FAD bond.
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(His90 in yeast). This covalent linkage is via a secondary amide bond be-
tween theN3 atomof the histidyl imidazole and the 8α-methyl group of
the isoalloxazine ring (a N3-histidyl-8α-FAD linkage) (Fig. 1C). The
mechanism of covalent attachment of FAD is unknown. In general, the
formation of covalent bonds requires free energy [23], and in the case
of the covalent FAD linkage in Sdh1, energy-requiring activation of
either the N3 atom of the imidazole side chain of histidine or the hy-
droxylation of the 8α-methyl group of the isoalloxazine ring is likely
necessary [24]. It is unknownwhether Sdh5 could facilitate such a reac-
tion (see Section 5.3).

Covalent flavinylation involving non-enzymatic mechanisms with
no energy expenditure, however, has also been proposed [23,24]. Per-
haps the most notable model involves an autocatalytic process facili-
tated by the apo-protein itself where the nucleophilic imidazole side
chain attacks a quinone methide form of the of the isoalloxazine ring.
The highly reactive electrophilic quinone methide intermediate could
be generated from a proton abstraction from a base (e.g. Arg residues)
nearby the isoalloxazine ring. Consistent with the involvement of this
nucleophilic attack by a residue side chain, the only amino acids
known to form the covalent linkage are nucleophiles (His, Tyr and
Cys) [10,26].

Perhaps the best supporting evidence for an autocatalyticflavinylation
mechanism comes from vanillyl-alcohol oxidase (VAO), a fungal en-
zyme that contains, like Sdh1, a N3-histidyl-8α-FAD linkage. An apo-
formof VAO, produced in a riboflavin auxotrophic Escherichia coli strain,
can be reconstitutedwith FAD in vitro resulting in full covalent incorpo-
ration and full recovery of oxidase activity [27]. FAD was found to bind
to a preorganized binding site in a folded apo VAOwith an overall struc-
ture very similar to holo-VAO [28]. The reaction involves a reduced FAD
intermediate that can be captured by anaerobic mixing of apo VAO and
oxidized. Molecular oxygen reoxidizes the FAD with the formation of
the covalent bond and hydrogen peroxide.

This process is slow (in the time scale of minutes) to achieve
full flavinylation, which could be an indication of less than optimal
in-vitro reaction condition. This demonstration cannot rule out that
other factors are involved in vivo, perhaps alternative electron accep-
tors or helper proteins. Interestingly, anaerobically grown E. coli cells
expressing VAO produce fully covalently flavinylated form of the en-
zyme, suggesting that an alternative electron acceptor to molecular
oxygen is involved [27].
2.3. Advantages of the covalent link in Sdh1

2.3.1. Increase in redox potential
A compiled survey of redox potentials of flavoproteins containing

either a noncovalent or a covalent bond shows a clear trend indicating
that the covalent nature of the bond increases the redox potential
significantly [10], thus increasing the oxidative power of the enzyme.
Identification of flavoproteins containing two covalent linkages
(a N1-histidyl-C6-cystinyl-8α-FAD linkage) further support the overall
trend with additional increases in potential with the extra covalent
bond [29]. Similar observations can be seen using synthetic model com-
pounds where the modified forms of riboflavin have higher midpoint
potentials compared to the free forms [30].

In cases where the mutant form of the flavoprotein has the
covalent bond impaired, the redox potential is dramatically reduced
[10]. Replacing the linking His residue in VAO disrupts the covalent
bond and decreases the FAD redox potential by approximately
120 mV [31]. The resulting enzyme, with a tightly but noncovalently
bound FAD, shows poor activity with an order of magnitude decrease
in the turnover number kcat. In Sdh1, the disruption of the covalent
bond by substitution of the linking His residue to a Ser residue yields
a catalytically nonfunctioning SDH enzyme in succinate oxidation [8];
which, like VAO, reveals that the covalent bond has a functional cata-
lytic significance.
The anaerobic analog of SDH in bacteria, fumarate reductase
(FRD), has the same N3-histidyl-8α-FAD linkage in its FrdA subunit
(Sdh1 equivalent). Fumarate reductase can catalyze succinate oxida-
tion at about 30–40% of the rate of fumarate reduction. In this enzyme
system, mutation of the linking His residue to a Ser has a similar effect
as found in SDH: loss of succinate oxidation while maintaining to a
large extent fumarate reduction [7]. Thus, the covalent attachment
likely increases the FAD redox potential by about 60 mV to permit
both succinate oxidation and fumarate reduction.

2.3.2. Stability of the SDH complex
Mutation of the covalently linking His90 to a Ser residue in Sdh1 of

yeast prevents the formation of the FAD covalent linkage [8,32]. However,
the authors concluded that Sdh1 still folds, forming a preorganized site
that can still bind FADnoncovalently, similar to the previouslymentioned
FAD binding to a preorganized binding site in VAO [27,28] (Section 2.2).
This incorporation of FAD has been demonstrated experimentally using
radiolabeled FAD that comigrates with the holo-SDH complex on a blue
native gel electrophoresis (BN-PAGE) [8,32]. A similar effect is observed
when the FAD covalent linkage is disrupted by deletion of SDH5. Sdh1 as-
sembles into amature complex presumablywith a noncovalently-bound
FAD [32]. Thus, the covalent bond is not needed to induce proper folding
of Sdh1 and subsequent assembly of the SDH complex.

The absence of the covalent bond in Sdh1 does, however, compro-
mise the overall stability of the mature SDH complex. The steady-state
levels of the mature SDH complex are lower when the covalent bond
is disrupted either by mutation of the His90 residue or by deletion of
Sdh5. This is probably not caused by an impaired import or processing
of Sdh1 [8]; rather, the possibilities include an increase in protease sen-
sitivity [33] or an inherently less stable holo-complex in vivo that is
prone to disassembly [32].

In some flavoenzymes, removal of the covalent linkage results in in-
correctly folded protein. In alditol oxidase for example, approximately
half of the protein becomes insoluble when the covalently-linking His
residue is mutated [34]. In contrast, mutant forms of VAO, with the
covalently-linking His residue disrupted, can still fold properly similar
to Sdh1. The role of the covalent bond in terms of protein folding there-
fore appears enzyme specific. Sdh1 falls into the category with VAO
where a certain amount of folding robustness is present even in the
absence of the covalent linkage.

3. The biosynthesis and trafficking of FAD to Sdh

The formation of flavinylated Sdh1 is dependent on the availability
of FAD in the same subcellular compartment as apo-Sdh1. Therefore,
the synthesis and maintenance of proper FAD concentration in the
mitochondrial matrix are critical for Sdh1 maturation. In yeast, this in-
volves the activities of riboflavin kinase, FAD synthetase, and a putative
mitochondrial FAD transporter, Flx1 (FLavin eXchange) protein. Of par-
ticular relevance to Sdh1 flavinylation is the latter protein Flx1, primar-
ily due to the curious finding that the deletion of flx1 results in the loss
of covalent flavinylation in Sdh1 [12,32]. Thus, this protein raises many
questions regarding its role in Sdh1 flavinylation. A key in deciphering
how this effect is mediated is knowing the cellular compartment
where FAD is synthesized, and how (and in which direction) it is
transported in eukaryotes. These topics are discussed in Sections 3.1
and 3.2. Flx1 is discussed in detail in Sections 3.3 and 3.4.

3.1. Biosynthesis of FAD

Flavins are derived from riboflavin (vitamin B2) by the addition of
either a phosphate group or an ADP moiety to the vitamin's ribityl side
chain (Fig. 1C). The conversion of riboflavin to FAD occurs through the
sequential actions of two ATP-dependent enzymes. The genes encoding
these enzymes were identified in Saccharomyces cerevisiae as FMN1
(riboflavin kinase) [35] and FAD1 (FAD synthetase) [36]. The kinase
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phosphorylates the redox-active tricyclic isoalloxazine ring yielding
flavin mononucleotide (FMN; riboflavin-5′-phosphate). Although sev-
eral flavo-enzymes use FMN as a cofactor, the majority of the FMN is
adenylated by FAD synthetase to yield FAD [11].

Recently, the crystal structure of yeast Fad1 in complex with FAD
was determined [37] revealing a strong interaction between the
phosphoribityl group of FAD and a pair of nearby arginine residues.
Known as an “arginine grip,” the pair is highly conserved and appears
to be a di-phosphate binding motif stabilizing either the substrates
(ATP and FMN) and/or the product FAD, preventing the latter's release.
In fact, recombinant human FAD synthase is purified with a stoichio-
metric amount of FAD that is tightly, but non-covalently bound [38].
Furthermore, release of FAD from this recombinant protein required ex-
tensive urea denaturation. These observations suggest that the release
of newly synthesized FAD could require conformational alterations
that disrupt the arginine grip, perhaps mediated by protein–protein in-
teraction with an FAD acceptor protein.

3.2. Where is FAD synthesized?

In bacteria, FAD is synthesized in the cytosol from a single, but a dual
functioning enzyme possessing the activities of riboflavin kinase and
FAD synthetase [39]. In yeast, the riboflavin kinase has been found in
both the cytosol and in mitochondria [40]; however, the location of
the FAD synthetase is not so clear due to conflicting results from two
laboratories. Initial reports of FAD synthetase activity and location
were from Alexander Tzagoloff's laboratory which found that the syn-
thetase activity was present only in the cytosol [40]. This implies that
FAD used in the mitochondrial matrix for flavinylation of Sdh1 must
be transported in from the cytosol involving a carrier protein (proposed
to be Flx1; see Section 3.3).

Since the initial report of Fad1 activity in yeast from the Tzagoloff
laboratory, the laboratory of Maria Barile has reported FAD synthetase
activity to be present in the mitochondria of S. cerevisiae [41,42]. Addi-
tionally FAD synthetase has been found in the mitochondria of rat
liver [43,44] and of the tobacco plant [45]. In humans, the ortholog of
yeast FAD1 gene is FLAD1, which encode two transcript variants leading
to two isoforms of the FAD synthetase. The two isoforms differ by an
additional 97 amino acids at the amino terminus, containing a mito-
chondrial targeting sequence. This extra sequence is present only in iso-
form 1, and its mitochondrial localization has been demonstrated using
antibodies specific for this isoform [46]. Isoform2 of FLAD1was demon-
strated to localize to the cytosol. Thus, the possibility of a dual localized
Fad1 in S. cerevisiae is notwithout precedent in other organisms. Results
from both laboratories are discussed further below.

3.3. Flx1 — an innie or an outie?

The Flx1 (FLavin eXchange) protein belongs to the superfamily of
mitochondrial carriers. Proteins in this family are located in the inner
mitochondrialmembrane and exchange substrates between the cytosol
and the matrix [47]. The family is exclusive to eukaryotes, and the sub-
strates that have been confirmed to be transported include nucleotides,
amino acids, inorganic anions and intermediates of the TCA cycle such
as succinate, oxaloacetate and malate [47]. Utilizing multiple sequence
alignment analysis, Flx1 has been found to be homologous to the solute
carrier proteins in mammals that transport ATP/ADP in the mitochon-
drial innermembrane [48]. Flx1 also bears homology to a carrier of vita-
min B9 or folate [47]. A structural model of Flx1 based on homology to
these carrier proteins suggest the presence of six transmembrane heli-
ces that together form a pore for substrate translocation [47,49,50]
(Fig. 2A).

The gene encoding Flx1 was first identified based on its ability to
complement a respiratory defective mutant of S. cerevisiae character-
ized by a low ratio of mitochondrial FAD/FMN, restoring the two flavin
levels to that found inWT cells [40]. Yeast cells with a FLX1 deletion are
also characterized with a low mitochondrial FAD/FMN ratio and with
decreased SDH and lipoamide dehydrogenase activities— two proteins
that are FAD dependent (Fig. 2C). Another matrix FAD-containing en-
zyme, Coq6 (a monooxygenase that is essential in coenzyme ubiqui-
none biosynthesis), is also negatively affected in a flx1 yeast mutant,
resulting in a respiratory defect from the absence of ubiquinone (Q6)
[51]. This Coq6 defect can be reversed by overexpression of Fad1 that
restores Q6 levels. This strongly suggests that Fad1 can complement
the matrix FAD deficiency in a flx1Δ mutant. Thus, the notion of Flx1
as an inner membrane importer of cytoplasmically produced FAD is
consistent with the observed phenotypes associated with lower mito-
chondrial FAD levels in a flx1mutant.

Further support for an import role came from two additional ob-
servations: (1) FAD synthetase activity was found only in the cytosol-
ic fraction [36], and (2) prepared spherical submitochondrial particles
(inside–out inner mitochondrial membrane with entrapped FAD)
showed FAD efflux activity across the mitochondrial membranes in
WT particles [40]. This FAD efflux rate was 2–3 times less in a flx1
mutant.

An alternative model for Flx1, put forth by the Barile laboratory,
places the carrier protein as an exporter of mitochondrially-produced
FAD to the cytosol. A necessary element to this idea is that FAD synthe-
sis must occur in the mitochondria, either solely or in conjunction with
cytosolic FAD synthesis. Indeed, the authorswere able to show FAD syn-
thesis activities in both the cytosol and inmitochondria of yeast [42], al-
though the latter activity accounted a small fraction compared to that
found in the cytosol. Furthermore, flx1Δ cells did not decrease mito-
chondrial FAD levels, but did inhibit export of FAD from the
mitochondria.

The observed conflicting data on yeast flx1Δ cells may arise from
inherent strain differences. The deletion in strain W303 results in
limited matrix FAD levels implying an alternative route to matrix
FAD. This route may arise from the presence of an alternative
FAD carrier or limited levels of Fad1. The EBY157A flx1Δ cells may
have an augmented level of an alternative FAD carrier or a greater
fraction of Fad1 in an eclipsed localization within the matrix. Further
studies are needed to resolve the role of Flx1 in matrix FAD
metabolism.

3.4. Flx1 and its effect on flavinylation of Sdh1

A direct link between the proteins Flx1 and Sdh1 (such as protein–
protein interaction) has not been demonstrated. Yet, it has become
increasingly evident that Flx1 affects the flavinylation status of Sdh1
(or the overall stability of Sdh1) in a manner that has yet to be under-
stood. In our on-going study with Flx1, we have shown that its dele-
tion in yeast results in a decrease in mitochondrial FAD levels by ~50%
[32], which is in line with the observation from Tzagoloff's laboratory
[40]. Additionally, we observe a near complete absence of the Sdh1
subunit, and consequently the SDH complex is undetectable as ana-
lyzed by BN-PAGE. We thus postulate that in a flx1Δ mutant, the
resulting FAD limitation in the mitochondria (presumably in
the matrix) leads to a flavinlyation defect of Sdh1 due to non-
binding of FAD to Sdh1 (the mechanism for covalent bond formation
remains functional in flx1Δ cells). Consequently, the unflavinylated
apo-Sdh1 becomes unstable leading to an absence of the SDH com-
plex (Fig. 2C). We note, however, that the Rutter group showed that
apo-Sdh1 was relatively stable in flx1Δ cells, but lacking almost
completely its flavinylation [12]. Currently, we are unsure of the rea-
son for this discrepancy in protein levels, but what is consistent be-
tween our group and Rutter's is that these observations suggest a
flavinylation impairment in Sdh1, resulting from FAD-limiting condi-
tions in the mitochondrial matrix in flx1Δ cells.

Perhaps one of the most interesting aspects of the flx1mutant is that
the flavinylation defect in Sdh1 can be reversed partially by over-
expression of Sdh5 [12]. This implies a FAD carrier/chaperone function
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of Sdh5, and that increasing this delivery vehicle can increase the
“effective” concentration of FAD available for Sdh1. This concept means
necessarily that some FAD is still available in the matrix of flx1Δ cells,
perhaps through turnover and FAD release of FAD-containing enzymes
in the matrix. Although, the flavinylation defect in Sdh1 can be partially
reversed with Sdh5 overexpression, the respiratory growth defect is not
restored indicating that Flx1 affects other cellular functions in addition to
the SDH complex.

In an independent set of work by the Barile laboratory studying
the relationship between Flx1 and Sdh1, covalent flavinylation of
Sdh1was found to be unaffected per se. The overall level of flavinylated
Sdh1 (holo-Sdh1) however, was significantly lowered compared toWT
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cells [52]. Since the Barile laboratory proposes that Flx1 is an exporter
of FAD [42], the loss of Sdh1 must result from something other than
FAD limitation. This decrease is proposed to be a result of post-
transcriptional control, with a mechanism involving the 5′-UTR of the
mRNA, with possible involvement of flavin (FMN or FAD) as controlling
the efficiency of translation [52]. Thus, the decreased level of Sdh1 in an
flx1Δ mutant is proposed to result from decreased Sdh1 expression,
rather than from FAD limitation in the mitochondria and subsequent
degradation of Sdh1.

4. In vivo flavinylation of Sdh1 requires other factors

4.1. Role of Sdh5, Sdh2 and Sdh1 carboxyl terminus

Unlike most flavoproteins such as VAO, monomeric sarcosine oxi-
dase (MSOX) and p-cresol methylhydroxylase (PCMH), where covalent
flavinylation has been demonstrated to be an autocatalytic process,
flavinylation of Sdh1 appears to involve a more complex mechanism.
This is perhaps due to the fact that Sdh1 is a mere single component
of a larger protein complex, requiring careful coordination of protein
folding, cofactor insertion, and finally the nucleation of all the subunits
into an active SDH complex. For example, although only Sdh1 and Sdh5
are seemingly required to achieve covalent flavinylation, the absence of
the Sdh2 subunit somehow affects dramatically the overall efficiency of
the covalent modification (Section 4.1.2). This indicates that covalent
flavinylation and SDH assembly are intertwined at least in one step
during the two processes.

The first evidence of a mediated flavinylation mechanism for
Sdh1 came from the laboratory of Bernie Lemire in 1996. In this
work, they noted that for flavinylation of Sdh1, “at least one matrix
component appears to be required [53]” and flavinylation was
found to be proportional to the concentration of the matrix fraction.
This insight has been validated by the discovery of the Sdh5 protein
in yeast; it is the first bona fide flavinylation protein factor to be
identified.

Other mitochondrial flavoproteins may also require an additional
protein(s) for covalent flavinylation. For example, dimethylglycine
dehydrogenase from rat liver, also a mitochondrial matrix flavoprotein,
is stimulated by amatrix protein factor for efficient covalent attachment
of FAD [54]. However, in the absence of this yet unidentified protein
factor, flavinylation still proceeds in an autocatalytic manner in vitro
[25]. What is remarkable about Sdh5 is that in its absence, covalent
flavinylation is completely abolished. Thus, the mechanism involving
Sdh5 is intriguing and begs the question of whether the flavinylation
mechanism in Sdh1 is unique relative to other flavor proteins.

4.1.1. Sdh5 — the small protein with a big function
The protein Sdh5 from S. cerevisiaewas discovered from a compen-

dium of uncharacterized mitochondrial proteins with a very high de-
gree of conservation in eukaryotes [12]. The small (~19 kDa) soluble
protein is conserved from bacteria to humans and present also in plants
[14], suggesting a high degree of functional significance. The bacterial
homolog (designated SdhE) is smaller, but appears to have the same
role as in yeast and in other eukaryotes. Sdh5 localizes to themitochon-
drial matrix in eukaryotes and plants, and to the cytosol in bacteria.
Although the exact function of Sdh5 has not been established, its dele-
tion in yeast indicates that it is absolutely required for the covalent
attachment of FAD to Sdh1 in vivo.

Yeast cells with a sdh5Δ genotype exhibit a respiratory defect
stemming from a non-functioning complex II. Specifically, the cova-
lent bond between the His90 residue of Sdh1 and FAD cannot form
leaving a catalytically inactive protein [12]. Somewhat surprisingly,
the steady-state levels of apo-Sdh1 persist, although decreased from
WT levels [12]. The same effects are seen with a deletion in the bacte-
rial homolog, sdhE, from Serratia [13]. Furthermore, in both yeast and
bacterial systems, the SDH complex (as visualized on Blue-Native gel)
can assemble in the absence of Sdh5/SdhE; albeit in the yeast system,
the amount of the assembled complex is typically lower compared
to the WT. In the bacterial system, the amount of the assembled
complex on blue native gel was equal or even greater than the WT,
leading the authors to conclude that the loss of SdhE does not affect
the stability or the formation of SDH in Serratia.

4.1.1.1. Interaction of Sdh1 and Sdh5. The SDH complex in yeast, when
analyzed by BN-PAGE, migrates to a position corresponding to an ap-
parent Mr of ~220 kDa [12]. Sdh5 is not a stable component of this
complex; rather, the protein migrates to a position corresponding to
an apparent Mr of a ~90 kDa — presumably a Sdh1–Sdh5 heterodimer
[12]. This interaction was confirmed using tandem affinity purification
of Sdh5 with polyhistidyl and hemagglutinin (HA) tags where Sdh1
was detected in the purification eluate [12]. Similar observations have
been made with SdhE in Serratia using reciprocal purifications of SdhE
and SdhA [13]. An interesting note with SdhE is that the population
of SdhA in complex with SdhE was suggested to have a covalently
bound FAD. The Sdh1–Sdh5 protein interaction is also important in
maintaining each protein's stability.

Deletion of SDH5 causes a significant decrease in the steady-state
level of Sdh1. Inversely, deletion of SDH1 leads to a similar depletion
of Sdh5 [12,32]. This interdependence on stability appears to result
from a protein–protein interaction between Sdh1 and Sdh5. Substitu-
tion of the covalently linking His90 residue in Sdh1 to a Ser does not
lead to the instability of Sdh5; rather, the steady-state level appears
to be equal to, or sometimes greater than, the level found in WT
cells [32]. Thus, a defect in covalent flavinylation does not lead to
the instability of either Sdh1 or Sdh5.

The population of Sdh1 associated with Sdh5 is a subfraction com-
pared to Sdh1 found associated with the mature 220-kDa complex in
WT cells. In the absence of the iron–sulfur protein Sdh2 subunit how-
ever, the steady-state level of Sdh5 accumulates [12,32]. This could
indicate that the relative fraction of the Sdh1–Sdh5 complex also in-
creases when SDH assembly is impaired.

An increase in Sdh5 steady-state level is also observed in the ab-
sence of Sdh3 [32], but a very important distinction between the ef-
fects of Sdh2 from Sdh3 is that the absence of the former leads to a
reduction of flavinylated Sdh1 by an approximately 50% compared
to WT level. Nevertheless, the Sdh1–Sdh5 complex appears to be dis-
crete and does not include the associations of Sdh2 or the membrane
subunits Sdh3 and Sdh4. This implies that the Sdh1–Sdh5 interaction,
and the steps leading to the covalent flavinylation of Sdh1, is an early
process prior to SDH complex assembly with the Sdh2 iron–sulfur
protein and Sdh3–Sdh4 membrane domain.

4.1.1.2. The solution structure of Sdh5 from yeast. The Sdh5 protein
from S. cerevisiae was recently cloned, expressed, and purified from
E. coli and its solution structure determined using NMR [60]. As isolat-
ed, the recombinant protein, lacking 55 amino acids from the amino
terminus (predicted disordered region), did not contain any notice-
able amounts of FAD. Furthermore, addition of FAD to the purified
protein did not induce chemical shift perturbations in its NMR spec-
trum, suggesting that the peptide backbone is not perturbed and
that FAD does not bind in vitro, at least to the truncated protein.
This of course does not rule out the possibility of FAD binding to
Sdh5 in vivo.

This demonstration of non-binding of FAD to Sdh5 is in contrast to
SdhE from Serratia, where the addition of exogenous FAD to the puri-
fied protein resulted in covalent binding of the flavin. This binding
was demonstrated by three techniques: a UV illuminated band on
SDS-PAGE that corresponds to the mass of SdhA; the optical spectral
characteristic of FAD-SdhA; and mass spectral analysis that identified
a SdhE peptide with bound FAD [13]. The FAD–SdhE covalent interac-
tion was likened to the heme chaperone CcmE that binds heme cova-
lently for delivery and insertion into a c-type cytochrome [55,56].
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Based on sequence homology, Sdh5 belongs to a large protein
superfamily now classified as “flavinylation factors of SDH” or “Sdh5
superfamily.” The structures of three other proteins belonging to
this family are also available as a result of structural genomics initia-
tives: YgfY from E. coli [57] along with two other proteins that are
currently unnamed, NMA1147 from Neisseria meningitides [58], and
VC2471 from Vibrio cholerae. Compared to its bacterial counterparts,
the eukaryotic Sdh5 has an extra stretch of residues comprised essen-
tially of a strand at its amino terminus (after cleavage of the predicted
mitochondrial targeting peptide [59]).

The overall structure of the core, a compact five α-helical bundle
(Fig. 3A), is highly conserved however. This suggests a strong functional
conservation. In fact, the five α-helical structures of all four proteins are
largely superimposable. Furthermore,many of the conserved amino acid
residues of this superfamily, are located in a strikingly concentrated re-
gion on the surface of the α-helical core. This conserved surface patch
is functionally important. Charge reversal of a highly conserved Arg68

residue to an Asp that lies in this conserved patch resulted in a complete
absence of the UV-illuminated band corresponding to flavo-Sdh1 on a
SDS-PAGE gel [60] (Fig. 3B). In fact, yeast cells harboring this mutation
in Sdh5 are respiratory defective and unable to grow in respiratory me-
diumdue to a nonfunctioning SDH.Most interestingly, this charge rever-
sal results in an accumulation of the Sdh1–Sdh5 complex, effectively
“trapping” the otherwise transient interaction of Sdh1 with Sdh5 that
can be purified using an affinity tag on Sdh5 (unpublished result).

Mutation of two other residues (a loosely conserved Tyr71 and a
non-conserved Trp113) in the periphery of the highly conserved region
also resulted in the loss of the covalent attachment of FAD (Fig. 3B). This
defect in flavinylation did not stem from unstable Sdh1 protein levels as
steady-state levels of SDH subunits (Sdh1–Sdh3) in R68E and Y71D
mutants were found to be near normal as indicated by immunoblots
of purified mitochondria [60]. The results of these Sdh5 substitutions
illustrate the functional importance of this conserved region, which
we speculate to be an interaction surface for Sdh1. Mutation of residues
on the opposite side of this face had no effect on flavinylation of Sdh1
(Fig. 3C).

4.1.2. The role of the carboxyl terminus of Sdh1
The C-terminal domain of Sdh1 consists of two loops interconnected

by two β sheets; the entire domain sits atop the surface of Sdh1 [17].
The closest distance between this domain and the nearest edge of FAD
is ~17 Å. Truncation of 70 residues in this C-terminal domain prevents
the covalent attachment of FAD [61]. Addition of purification tags such
as polyhistidyl or hemagglutinin tags at the C terminus of Sdh1 renders
cells inviable on respiratory medium (unpublished results), further
highlighting the importance of this domain. One contributing factor
BA

Fig. 3. The NMR structure [60] of Sdh5 from yeast (PDB 2LM4). (A) Cartoon model showing
mutated leads to the loss of flavinylation in Sdh1. (B) Surface rendering showing the presenc
of on the other side of Sdh5 does not lead to the loss of covalent flavinylation in Sdh1.
in the importance of the C terminus is a set of key essential residues
located in this region [32]. Mutation of a Cys630Arg638 pair to alanine
residues located at the very tail end of the C terminus prevents
flavinylation. Additionally, mutation of Arg582 to Ala located near, but
not in the C-terminal tail, also prevents flavinylation. The flavinylation
defects in these two sets of mutations prevent also the assembly of
the tetrameric SDH complex. A second-site suppressor mutation of the
R582A mutant can restore covalent flavinylation and assembly of SDH.
The resulting suppressor mutation, a M599R substitution in Sdh1, has
the effect of restoring the lost positive charge in the C-terminal region.

Thefinding that the SDH assembly is impaired in the C-terminalmu-
tants is revealing in our view. Sdh1 lacking a covalently-bound flavin
should not lead to an assembly defect. This has been clearly shown in
the Sdh1 H90S mutant [8] and in a yeast strain lacking SDH5 [32] and
in the bacteria Serratia lacking SdhE [13]. Based on these observations,
we postulate that FAD binding to Sdh1, but not covalent attachment,
is required to stabilize the Sdh1conformation enabling association
with Sdh2 and the membrane-spanning subunits. If true, then the
C-terminal mutants prevent the binding of FAD to Sdh1.

SDH assembly is also impaired in flx1Δ cells [32], which is character-
ized by attenuated levels of mitochondrial matrix FAD [32,40]. This
observation supports the notion that FAD associationwith Sdh1 is a pre-
requisite for SDH assembly. Thus, the C-terminal positively charged Arg
residues could be important for the recruitment and/or guidance of the
dianionic FAD to the binding site.

4.1.3. The role of Sdh2 in the flavinylation of Sdh1
The covalent flavinylation of Sdh1, requiring its interaction with

Sdh5, appears to be a process that is discrete from its interaction
with other SDH subunits. This notion is based on the observation
that covalent flavinylation can be achieved by co-expressing yeast
Sdh1 and Sdh5 in a heterologous E. coli host [12]. Yet, deletion of
SDH2 in yeast leads to a reduction of covalent flavinylation by approx-
imately half compared to WT cells, although total Sdh1 protein levels
remain relatively unchanged [32,61]. This reduction is specific to
Sdh2, as deletions of SDH3 or SDH4 genes have relatively a minor ef-
fect. If indeed the covalent attachment is discreet to Sdh1 and Sdh5,
then the decreased flavinylation in sdh2Δ cells is a curious effect.

The exact role of Sdh2 in promoting the efficiency of flavinylation in
vivo is unclear. It has been suggested that the subunit aids in the folding
of apo-Sdh1 [61], adopting a requisite structure for FAD interaction and
subsequent covalent bond formation [32]. However, flavinylation can
still occur without Sdh2. Thus, if a requisite, prefolded structure is re-
quired for flavinylation, then Sdh1 must be able to fold without the
aid of Sdh2. An interesting question that arises from noting the effect
of Sdh2 is whether Sdh1 forms a complex with Sdh5 before or after its
C
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Tyr71

Arg68

Tyr71

Arg68

the primarily helical characteristic of the protein and the residues (yellow sticks) when
e of the residues all on the same face of Sdh5. (C) Mutation of two glutamic acids that lie
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interaction with Sdh2. The notion that Sdh2 aids in the folding of
apo-Sdh1 prior to flavinylation suggests that the interaction with
Sdh5 would follow the Sdh1–Sdh2 interaction. Therefore, a coIP of
Sdh5 should yield both Sdh1 and Sdh2, but thus far only a Sdh1–Sdh5
interaction has been reported [12,32]. Deciphering the exact role of
Sdh2 in covalent flavinylation should lead to an understanding the tem-
poral relationship between FAD insertion and subunit interaction and
final SDH assembly.

5. Summary of events in Sdh flavinylation and assembly

The review thus far has presented prior and recent advances in
flavinylation of Sdh1, assembly of SDH complex, and in characteriza-
tion of Sdh5. We summarize these findings below in a conceptual
model of events in flavinylation and assembly of SDH (Fig. 4).

5.1. Import and processing

The maturation of Sdh1, similar to other mitochondrial matrix pro-
teins, starts with import from the cytosol by the TOM and TIM23 com-
plexes, directed by amino terminal targeting presequence. Removal of
this presequence – predicted to be by the proteases MPP and Oct1
[62] – is a necessary step before further maturation can occur. There-
fore, FAD attachment requires the proteolytically processed Sdh1 pro-
tein [61,63]. Interestingly, an engineered amino terminal truncate of
Sdh1, lacking its presequence, is flavinylation incompetent when
assayed in vitro for FAD attachment [53]. Therefore, the authors of the
study concluded that the process of presequence cleavage is itself,
required for flavinylation.

5.2. Fold and formation of a structure

After import and presequence processing,flavin attachment occurs in
the mitochondrial matrix requiring several components found in this
compartment: ATP, Mg2+, TCA cycle intermediates succinate and/or
fumarate, and Sdh5. Upon entry into thematrix, the apo-Sdh1 folds, per-
haps into an intermediate structure, but likely bearing similarity to ama-
ture fold. Alternatively, the apo Sdh1 may adopt a fully folded, mature
state (Fig. 4 step 2).

Two findings support the idea of a prefolded state prior to binding
FAD. First, TCA cycle intermediate succinate is required for flavinylation
suggesting that the active site, competent to bind succinate, has already
formed [61,64]. Second, C-terminal truncates and C-terminal mutants
preclude covalent flavinylation. If only the unfolded state was required,
then only the residues around the N terminus should affect covalent
flavinylation [32,61].

5.3. Association with Sdh5 and covalent bond formation

In the concept of a prefolded state described above, Sdh5 likely inter-
acts with a folded Sdh1 (Fig. 4 step 3). At this stage, Sdh5 could sequester
mitochondrial matrix FAD for a coordinated delivery to apo-Sdh1. The
demonstration in Serratia that purified SdhE could covalently bind exog-
enous FAD certainly raises this possibility. Furthermore, the fact that in
flx1Δ cells, Sdh5 overexpression can partially restore flavinylation of
Sdh1 leaves open the possibility that Sdh5 is indeed a FAD chaperone.

Discrepant results exist onwhether Sdh5/SdhE stably associate with
FAD.Whereas a fraction of SdhEwas reported to contain a covalent FAD
adduct, purified recombinant yeast Sdh5 did not contain any noticeable
amounts of FAD as isolated and exogenous additions did not perturb the
Sdh5 backbone structure as monitored by NMR (see Section 4.1.1.2).
Cells lacking Sdh5 or SdhE still assemble SDH without any covalent
flavinylation of Sdh1/SdhA. If FAD binding (noncovalent) to Sdh1 is in-
deed required for assembly to proceed, then delivery of FAD to Sdh1
must still take place in the absence of Sdh5/SdhE. Consistent with this
view, FAD limitation in the mitochondrial matrix by deletion of flx1
prevents assembly of SDH, seemingly since there is no interaction of
FAD and Sdh1 [32].

Another possible function of Sdh5 is that it may assist in the acti-
vation of the FAD isoalloxazine ring to the highly reactive quinone
methide form suitable for a nucleophilic attack by the covalently-
linking His90 residue [23,24]. This activation reaction can be catalyzed
by bases (arginines) nearby the isoalloxazine ring perhaps present in
Sdh5. Activation of the N3 atom of the histidyl imidazole side chain
can also be considered [24].

5.4. Association with Sdh2

The Sdh1–Sdh2 association could be considered the second most
critical interaction next to Sdh1's association with Sdh5. This is because
in the absence of the Sdh1–Sdh2 interaction, covalent flavinylation ap-
pears impaired [61,32]. We tentatively place the Sdh1–Sdh2 complex
after the Sdh1–Sdh5 association and post covalent flavinylation (Fig. 4
steps 4–5). A key element in this assignment is that a Sdh1–Sdh5–
Sdh2 tricomplex has yet to be observed. This complex should exist if a
Sdh1–Sdh2 complex precedes a Sdh5 association. It is possible that
Sdh2 further stabilizes holo-Sdh1 preventing either degradation or ag-
gregation, especially in light of the fact that a significant amount of
Sdh2's surface area is involved in interaction with Sdh1 [17].

5.5. Assembly of SDH post-flavinylation

Assembly factors or chaperoning are required for the maturation
of the SDH complex post flavinylation of Sdh1. For example, Hsp60
(a catalytic chaperone that assist in folding of new monomeric pro-
teins and oligomeric complexes) has been found associated with
Sdh1 [53]. However, immunodepletion of this chaperone from the
matrix did not affect flavinylation. Tcm62, with some sequence simi-
larity to yeast Hsp60, and to E. coli GroEL [65,66] is also proposed to
serve a chaperonin function in the assembly of SDH [65]. Tcm62
forms a complex containing at least Sdh1, Sdh2, and Sdh3 subunits
[65]. Overexpression of Tcm62 results in an accumulation of Sdh2
subunit that can be found in an aggregated form possibly indicating
an effect directly with the iron sulfur subunit.

The recruitment of Sdh3 and Sdh4 likely constitutes the terminal
step in the assembly of SDH (Fig. 4 steps 5-6), as deletions of genes
encoding these subunits do not affect covalent flavinylation. The
mechanism of recruitment of the soluble catalytic dimer to the mem-
branes via Sdh3 and Sdh4 is unknown.

5.6. Concluding remarks

The covalently-linked FAD in SDH is essential for the catalytic
function of the SDH complex. Formation of the covalent bond be-
tween FAD and the histidyl residue of Sdh1 is dependent on the as-
sembly factor Sdh5, although its mechanistic role has yet to be
defined. The dependency of covalent insertion of FAD on Sdh5 raises
the question whether other assembly factors are needed for FAD
insertion or covalent addition in other flavoproteins.

The elucidation of the solution structure of Sdh5 and the identifi-
cation of the C-terminal segment of Sdh1 as a key determinant in
FAD binding raises intriguing new questions about the formation of
FAD center in SDH. FAD binding to Sdh1 is also key to the assembly
process of the tetrameric enzyme. The conservation of the process
between prokaryotes and eukaryotes creates new opportunities and
systems to elucidate the mechanistic details. Intriguing questions
left to resolve include: “Does Sdh5 deliver FAD to Sdh1?”, “What
role does FAD binding have on the conformation of Sdh1 during bio-
genesis?”, “How does the Sdh1 C-terminal Arg motif contribute to
flavinylation?”, “What is the role of Sdh2 in the flavinylation of
Sdh1?”, and “What is the role of the Flx1 carrier protein in Sdh1
flavinylation?”. Foundational results are beginning to emerge, but
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we are far from definitive answers to these questions. The field is
poised in being able to meet these challenging questions. The topic
is of health relevance as impairment of flavinylation either by muta-
tions in SDHAF2 (Sdh5) or SDHA (Sdh1) predisposes humans to a
range of tumors ranging from paragangliomas, pheochromocytomas,
gastrointestinal stromal tumors and neuroblastomas.
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