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Summary

Living organisms detect seasonal changes in day length
(photoperiod) [1–3] and alter their physiological functions

accordingly to fit seasonal environmental changes. TSHb,
induced in the pars tuberalis (PT), plays a key role in the

pathway that regulates vertebrate photoperiodism [4, 5].
However, the upstream inducers of TSHb expression remain

unknown. Here we performed genome-wide expression

analysis of the PT under chronic short-day and long-day
conditions in melatonin-proficient CBA/N mice, in which

the photoperiodic TSHb expression response is preserved
[6]. This analysis identified ‘‘short-day’’ and ‘‘long-day’’

genes, including TSHb, and further predicted the acute
induction of long-day genes by late-night light stimulation.

We verified this by advancing and extending the light period
by 8 hr, which induced TSHb expression within one day. In

the following genome-wide expression analysis under this
acute long-day condition, we searched for candidate

upstream genes by looking for expression that preceded
TSHb’s, and we identified the Eya3 gene. We demonstrated

that Eya3 and its partner Six1 synergistically activate TSHb
expression and that this activation is further enhanced by

Tef and Hlf. These results elucidate the comprehensive
transcriptional photoperiodic response in the PT, revealing

the complex regulation of TSHb expression and unexpect-
edly rapid response to light changes in the mammalian

photoperiodic system.

Results and Discussion

Genome-wide Expression Analysis of the Mouse Pars
Tuberalis under Chronic Conditions

The pars tuberalis (PT) is thought to be responsible for detect-
ing photoperiod, by integrating circadian time and environ-
mental light/dark information [7–9]. Recently, a genome-wide
*Correspondence: shigey@med.kindai.ac.jp (Y.S.), uedah-tky@umin.ac.jp
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expression analysis revealed that the thyroid-stimulating
hormone (TSH) pathway triggers photoperiodic responses in
the Japanese quail [4, 5]. In mammals, nocturnal melatonin
secretion is thought to carry environmental light/dark informa-
tion to the PT [10–14], where the melatonin receptor is highly
expressed [15]. However, the detailed molecular mechanism
that links melatonin signals with TSHb expression in the PT
remains unclear.
To identify the upstream inductive mechanism of TSHb

expression, we performed genome-wide expression analyses
of the PT under chronic short-day and long-day conditions in
melatonin-proficient CBA/N mice, in which the photoperiodic
TSHb expression response is preserved [6] (Experimental
Procedures). The data obtained were first analyzed for
circadian gene expression (see Supplemental Experimental
Procedures available online) because PT contains circadian
oscillators [16] (Figure S1A; Supplemental Results and Discus-
sion). We identified 1000 significant 24 hr rhythmic genes in the
PT (Figure 1A; Table S1). The identified genes included several
clock and clock-controlled genes (Figure 1B; Table S2;
Supplemental Results and Discussion). Their average peak
time in the long-day condition was 7.71 hr later than in the
short-day condition (Figure 1B), suggesting that circadian
clocks in the PT are entrained to the end of a light period.
The obtained data were next analyzed to identify ‘‘photope-

riodic’’ genes in the PT (Supplemental Experimental Proce-
dures). This photoperiodic expression analysis significantly
identified 246 ‘‘long-day’’ genes and 57 ‘‘short-day’’ genes in
the PT (Figure 1C; Table S3). The identified genes included
TSHb, which was further confirmed by quantitative PCR
(qPCR) and radioisotope (RI) in situ hybridization (Figure 1D).
In contrast, TSH a subunit (Cga) and Tac1 [17] did not respond
to the photoperiod in the mouse PT (Figures S1B and S1C; see
details in Supplemental Results and Discussion).

Late-Night Light Stimulation Immediately Induces TSHb

Expression in the Mouse PT
We next examined the timescale of the TSHb induction after
the transition from the short-day to the long-day condition.
We transferred mice from the short-day to the long-day
condition by delaying lights-off for 8 hr (hereafter, the ‘‘delay’’
condition) and sampled the PTs at zeitgeber time 16 (ZT16;
ZT0 was defined as the time of lights-on) because TSHb is
rapidly induced at around ZT16 in the PT of the Japanese quail
[4]. However, in contrast to the previously reported immediate
induction of TSHb in the quail, TSHb expression in the mouse
PT increased gradually over the 5 days following the transition
from the short- to the long-day condition (Figure 2A). Because
the PT circadian clock was entrained to the lights-off timing
(Figure 1B), we speculated that the observed slow dynamics
of TSHb induction in the mouse PT were due to the gradual
entrainment of the PT circadian clock. We also hypothesized
that the ‘‘photoinducible’’ phase (the circadian time when light
stimulation can induce TSHb expression) is in the subjective
(circadian) late night (as defined in the short-day condition),
and therefore entrainment over 5 days might be required for
full transition of the photoinducible phase to the photoperiod
under the long day.
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Figure 1. Genome-wide Expression Analysis of Circadian and Photoperiodic Genes in the Mouse Pars Tuberalis under Chronic Short-Day and Long-Day

Conditions

(A) Heat map of 24 hr rhythmic genes in the mouse pars tuberalis (PT) under short-day (left two panels) and long-day (right two panels) conditions. In both

conditions, time-series data of the first and second experimental replicates are plotted. In the heat maps in (A)–(C), magenta tiles indicate higher gene

expression; green tiles indicate lower expression.

(B) Peak-time difference in the circadian expression of clock and clock-controlled genes between short-day and long-day conditions. The upper panel

shows a heat map of the clock and clock-controlled genes. The middle panel shows their peak times. The lower panel indicates the difference in peak

time between the short-day and long-day conditions. The peak time in the short-day condition for each gene was set to 0. The average difference in

peak time was 7.71 hr (dashed red line).

(C) Heat map of photoperiodic genes for which the expression level changed between the short-day and long-day conditions. The location of TSHb is

indicated.

(D) Confirmation of the GeneChip data for TSHb expression. TSHb expression under short-day and long-day conditions was measured by qPCR (n = 2,

top panels; TSHb expression relative to Tbp expression is plotted) and radioisotope (RI) in situ hybridization (n = 3, middle and bottom panels;

scale bars represent 300 mm). Error bars represent 6 standard error of the mean (SEM).
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To confirm that the PT circadian clock was gradually shifted
in this condition, we used a molecular timetable method
[18, 19], which can measure circadian phase from the
expression pattern of clock and clock-controlled genes with
a single-time-point sample (Supplemental Experimental
Procedures). We found that the PT circadian time was
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Figure 2. Late-Night Light Stimulation Immediately Induces TSHb Expression in the Mouse PT

(A) TSHb expression at ZT16 on days 0, 1, 3, and 5 after the transition of light condition, in which lights-off timing was delayed by 8 hr. TSHb expression was

measured by qPCR (n = 2). TSHb expression relative to Tbp expression is plotted. Error bars represent 6 SEM.

(B) Circadian timemeasurement from themouse PT. Colors and x values of the dots indicate themolecular peak time of individual clock and clock-controlled

genes. The peak time of the red cosine curve indicates the estimated circadian time (CT, dashed vertical line). The correlation coefficient (cor.) between the

red cosine curve and normalized expression data is also indicated in the panel.

(C) Linear regression analysis between the estimated circadian time (CT, x axis) of the PT and quantity of TSHb expression (y axis). Red dots indicate data

points. Green line indicates regression line. r2 = 0.7569.

(D) Gradual change in the estimated circadian time of the PT from day 0 to day 5. Color bars indicate the estimated circadian time (CT) of the PT on each day.

The x axis indicates the environmental zeitgeber time (ZT). The circadian time at ZT16 is indicated by a colored circle. The orange-outlined box indicates the

putative photoinducible phase. The background indicates the light conditions (white, light phase; gray, dark phase).

(E) CBA/N mice kept in the short-day condition (light:dark = 8:16 hr) for 3 weeks were then transferred to a long-day condition, in which the dark period

was advanced (advance condition) or delayed (delay condition) by 8 hr. Left panels: TSHb expression on the first long day (advance and delay conditions)

was measured by qPCR (n = 2). TSHb expression relative to Tbp expression is plotted. Right panels: TSHb expression in the short-day condition and on the

first long day (advance condition) was measured by RI in situ hybridization (n = 3). Scale bars represent 300 mm. Error bars represent 6 SEM.
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gradually shifted over 5 days (Figure 2B). We also noted that
the circadian time in the PT correlated well with the induction
of TSHb expression (Figure 2C; r2 = 0.7569), consistent with
the hypothesis. Based on these findings, we plotted the
measured circadian time and the hypothesized photoinducible
phase (i.e., the circadian late-night period) over the 5 days after
the shift and superimposed it on the photoperiod (Figure 2D).
This plot showed that TSHb expression was not induced on
the first day as a result of the mismatch between the hypothet-
ical photoinducible phase of the PT (Figure 2D, orange-out-
lined box) and the photoperiod (Figure 2D, day 1), whereas
TSHb expression was strongly induced on the fifth day
because of the match between the hypothetical photoinduci-
ble phase and the photoperiod, after gradual entrainment of
the PT over 5 days (Figure 2D, day 5). This result supports
our hypothesis that the photoinducible phase is in the circa-
dian late-night period.

Furthermore, this hypothesis also predicted that TSHb
expression would be strongly induced on the first day in an
alternative long-day condition in which the lights-on timing
was advanced by 8 hr (hereafter, the ‘‘advance’’ condition).
To verify this prediction, we examined TSHb expression in
the PT under the advance condition, and we found that it
increased immediately (Figure 2E; Figure S1D). RI in situ
hybridization also confirmed this immediate TSHb expression
(Figure 2E, right panels). On the other hand, TSHb expression
was not induced in the delay condition (Figure 2E, left-bottom
panel; Figure S1D). These findings suggest that the mouse PT
has a photoinducible phase during subjective late night and
that light stimulation occurring in the late night can induce
TSHb expression immediately, i.e., within one day.

Genome-wide Expression Analysis of Acute Long-Day

Genes in the Mouse PT
Given the rapid induction of TSHb, we reasoned that a
genome-wide expression analysis in the advance and delay
conditions might allow us to identify the the upstream induc-
tive mechanism of the TSHb pathway. Therefore, we per-
formed a second set of genome-wide expression analyses
under these acute long-day conditions (Experimental Proce-
dures). The data obtainedwere then analyzed to extract ‘‘acute
long-day’’ genes expressed in the PT (Supplemental Experi-
mental Procedures). This expression analysis identified 34
acute long-day genes in the PT (Figure 3A; Table S4), which
included several transcription factors; Eya3, Rorb, Maff,
Crem, andHdac4 (Figure S1D). We focused on Eya3 as a puta-
tive upstream activator of TSHb expression becauseCrem and
Hdac4 encode transcriptional repressors [20, 21] and because
Rorb andMaff could not activate the 7.7 kbp promoter of TSHb
(Figures S2A and S2B). We first confirmed the acute induction
of Eya3 expression in the PT under the advance condition via
qPCR and RI in situ hybridization (Figure 3B; Supplemental
Results and Discussion).

Eya3 and Six1 Synergistically Induce TSHb Expression
Eya3 is one of four mammalian homologs (Eya1–4) of eya
[22, 23], a transcriptional coactivator involved in fly eye devel-
opment [24, 25]. Eya family members form a complex with
a DNA-binding factor of the Six family and a corepressor of
the Dach family. Six-Eya-Dach genetic interactions are re-
ported to regulate the transcriptional activation and repression
of target genes. Of the Eya, Six, and Dach families, we found
that the Eya3 and Six1 mRNAs were highly expressed in the
PT under the long-day condition whereas the others were
weakly or barely expressed (Figure 4A). We therefore exam-
ined whether Eya3 and Six1 activate the TSHb promoter. The
transient transfection of Eya3 or Six1 increased the TSHb
promoter activity only slightly, whereas their cotransfection
synergistically increased its activation (Figure 4B). In contrast,
Eya3 and Six1 did not activate the SV40 promoter. We also
found that shorter versions of the TSHb promoter (Figure 4C)
were also synergistically activated by Eya3 and Six1 (Fig-
ure 4B). We thus used the shortest version of the TSHb pro-
moter (0.1 kbp) in the following experiments unless otherwise
indicated. We also confirmed that Eya3 increased TSHb
promoter activity in a dose-dependent manner when it was
expressed alone or with Six1 (Figure 4D; Figure S2C; Supple-
mental Results and Discussion).

An So Site Is Important for Eya3-Six1-Dependent
Activation of the TSHb Promoter

It has been reported that Six and Eya can activate their target
genes through different consensus sequences for Six binding
(MEF3 site, see [26, 27]; So site, see [27–29]). Therefore, we
searched for Six consensus sequences in the 0.1 kbp TSHb
promoter and found one MEF3 site (+1) and two So sites
(245 and 252) upstream of the transcription start site (TSS).
These MEF3 and So sites in the TSHb promoter are highly
conserved among vertebrates (Figure 4C). We first deleted
and mutated the one MEF3 site in the TSHb promoter and
found that it was dispensable for the Eya3-Six-dependent
activation of the TSHb promoter (Figure 4E). We then sequen-
tially deleted the two So sites (Figure 4C, So1 and So2).
Although deletion of the So2 site did not affect the Eya3-Six-
dependent activation of the TSHb promoter, deletion of the
So1 site significantly decreased the change elicited by the
Eya3-Six-dependent activation (Figure 4F). These results indi-
cate that the So1 site is essential for the full activation of the
TSHb promoter by the Eya3-Six1 complex.
Because Tef can increase TSHb promoter activity [30], we

also examined the contribution of Tef and its family member
Hlf to the 0.1 kbp TSHb promoter. We found that Tef or Hlf
synergistically increased the luciferase activity of the TSHb
promoter when cotransfected with Eya3 and Six1 (Figures
S2D–S2J; seedetails in Supplemental Results andDiscussion).

Photoinducible Phase at Subjective Late Night
In this study, genome-wide expression analyses of the mouse
PT revealed that TSHb and Eya3 expression are induced by
late-night light stimulation. Because these expression data
might include potentially important factors besides Eya3
and TSHb, we have made them publicly available (http://
photoperiodism.brainstars.org/). We further demonstrated
that Eya3 and its partner Six1 are expressed in the mouse PT
and synergistically activate TSHb expression through an So
site in the TSHb promoter. This activation is further enhanced
by Tef and Hlf through a D box close to the So site. Because
previous reports described Eya3 induction in the PT under
long-day conditions in birds [4, 5] and sheep [17], its induction
under long-day conditions appears to be an evolutionarily
conserved molecular mechanism in the photoperiodism of
vertebrates. Among the remaining challenges is the in vivo
functional analysis of Eya3-dependent induction of TSHb
expression.
Based on these and previous findings, we propose the

following hypothetical model for a gradual transition over
months from short-day to long-day conditions in the natural
environment. As the photoperiod is gradually extended to

http://photoperiodism.brainstars.org/
http://photoperiodism.brainstars.org/
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Figure 3. Genome-wide Expression Analysis of Acute Long-Day Genes in the Mouse PT

(A) Heat map of photoperiodic genes whose expression was altered by the photoperiod change only in the advance condition. Magenta tiles indicate higher

gene expression in the PT; green tiles indicate lower expression. GeneChip data for TSHb expression are displayed for reference.

(B) Confirmation of the GeneChip data for Eya3 expression. Left panels: Eya3 expression on the first long day (advance and delay conditions) wasmeasured

by qPCR (n = 2). Eya3 expression relative to Tbp expression is plotted. Right panels: Eya3 expression under the short-day condition and on the first long day

(advance condition) was measured by RI in situ hybridization (n = 3). Scale bar represents 300 mm. Error bars represent 6 SEM.
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completely cover the photoinducible phase (the subjective late
night, determined in the short-day condition), Eya3 is gradually
induced, which triggers TSHb expression in the PT under
natural conditions. These natural and relatively slow expres-
sion dynamics can be speeded up by artificial light stimulation
at subjective late night, which acutely induces Eya3 expres-
sion. This artificial situation reveals that the mammalian
photoperiodic system has unexpectedly rapid dynamics and
indicates that the PT of CBA/N mice is an ideal model system
for elucidating the remaining molecular mechanisms of photo-
periodism (Supplemental Results and Discussion). Identifying
the upstream inducer of the acute Eya3 elevation as well as
elucidating the signal transduction cascade from the mela-
tonin receptor to Eya3 expression will provide further insights
into photoperiodism.

Experimental Procedures

Animals and Housing

Male CBA/N mice (Japan SLC, Shizuoka, Japan), which have normal retinas

(Supplemental Results andDiscussion), were purchased 3weeks after birth.

For chronic long-day and short-day experiments, mice were first housed

under short-day conditions (light:dark = 8:16 hr, ZT0 = lights-on, ZT8 =

lights-off, 400 lux), given food and water ad libitum, and maintained under

these short-day conditions for 3 weeks. The mice were then separated
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Figure 4. Eya3 and Six1 Synergistically Induce TSHb Expression

(A) Expression of the Eya, Six, and Dach families in the mouse PT at ZT8 in the long-day condition was detected by RI in situ hybridization. Scale bar

represent 300 mm.

(B) The TSHb promoter (27.7 kbp, 20.6 kbp, 20.2 kbp, and 20.1 kbp) is activated by EYA3 and SIX1.

(C) Left: evolutionary conservation scores among vertebrate species were obtained from the UCSC Genome Browser (http://genome.ucsc.edu/). Genomic

positions relative to the transcription start site (TSS, also designated as ‘‘21’’) of the 0.6 kbp, 0.2 kbp, and 0.1 kbp TSHb promoter constructs are indicated.

Right: theMEF3 site, D box, and So sites in the 0.1 kbp TSHb promoter are indicated. Colored letters indicate nucleotidesmatching the consensus sequence

of the MEF3 site, D box, and So sites.

(D) The TSHb promoter (20.1 kbp) is activated by EYA3 in a dose-dependent manner with or without SIX1 (Supplemental Experimental Procedures).

(E) The TSHb promoter (20.1 kbp) and its MEF3-deleted [P(TSHb-DMEF3)], MEF3-mutated [P(TSHb-mutMEF3)], and D box-mutated [P(TSHb-mutD)] forms

are activated by EYA3 and SIX1.
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into two groups. One group was maintained under the short-day conditions

and the other was housed under long-day conditions (light:dark = 16:8 hr,

ZT0 = lights-on, ZT16 = lights-off, 400 lux) for 2 weeks. Mice in both groups

were sacrificed and their PTs were sampled every 4 hr for 1 day, starting

at ZT0.

For the acute long-day experiments, mice were first housed under short-

day conditions for 3 weeks as described above and then separated into

two groups. In one, the lights-on timing was advanced by 8 hr (advance

condition), and in the other, the lights-off timing was delayed by 8 hr (delay

condition). In both cases, photoperiod was extended by 8 hr. PTs from both

groups were obtained every 4 hr for 1 day, starting at the lights-on time

(ZT16 in the advance condition and ZT0 in the delay condition, when ZT

was defined in the short-day condition).

This studywasperformed in compliancewith theRules andRegulationsof

the Animal Care and Use Committee, Kinki University School of Medicine,

and carefully followed theGuide for the Care andUse of Laboratory Animals,

Kinki University School of Medicine. Mice were also carefully kept and

handled according to the RIKEN Regulations for Animal Experiments.

Sampling of PT

Slices (0.5 mm thick) of the brain of CBA/N mice were cut on a mouse brain

matrix (Neuroscience, Inc., Tokyo) and frozen, and the PT was punched out

with a microdissecting needle (gauge 0.5 mm) under a stereomicroscope.

The samples included a small amount of the surrounding tissue, such as

the median eminence and ependymal cells. We sampled 25 mice at each

time point. This entire procedure was repeated twice (n = 2) to obtain exper-

imental replicates.

Microarray Analysis

Total RNA was prepared from the pooled PT samples obtained at each time

point under each condition using TRIzol reagent (GIBCO). cDNA synthesis

and cRNA labeling reactions were performed as described previously [31].

Affymetrix high-density oligonucleotide arrays forMusmusculus (GeneChip

Mouse Genome 430 2.0) were hybridized, stained, and washed according to

the Expression Analysis Technical Manual (Affymetrix). The expression

values were summarized by the robust multiarray analysis method [32].

The microarray data are available at the NCBI Gene Expression Omnibus

(GSE24775) or at our website (http://photoperiodism.brainstars.org/).

Accession Numbers

Microarray data reported herein have been deposited in the NCBI Gene

Expression Omnibus with the accession number GSE24775.

Supplemental Information

Supplemental Information includes Supplemental Results and Discussion,

two figures, four tables, and Supplemental Experimental Procedures and

can be found with this article online at doi:10.1016/j.cub.2010.11.038.
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