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a b s t r a c t

Volatility plays an important role in portfolio management and option pricing. Recently,
there has been a growing interest in modeling volatility of the observed process by
nonlinear stochastic process [S.J. Taylor, Asset Price Dynamics, Volatility, and Prediction,
Princeton University Press, 2005; H. Kawakatsu, Specification and estimation of discrete
time quadratic stochastic volatility models, Journal of Empirical Finance 14 (2007)
424–442]. In [H. Gong, A. Thavaneswaran, J. Singh, Filtering for some time series models by
using transformation, Math Scientist 33 (2008) 141–147], we have studied the recursive
estimates for discrete time stochastic volatility models driven by normal errors. In this
paper, we study the recursive estimates for various classes of continuous time nonlinear
non-Gaussian stochastic volatility models used for option pricing in finance.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the last two decades, volatility models have received considerable attention with the emphasis being placed on state
spacemodels. From an econometric standpoint time-varying volatilitymodels have beenwidely developed, recognizing the
essence that the volatility and the correlation of assets change over time (see for example Heston and Nandi [1]). Although
state space models in which the conditional mean of the observed process is modeled as stochastic process are useful in
parameter estimation, it is widely recognized that stochastic volatility models, which model the volatility as a stochastic
process [13,14], should be employed to estimate the volatility parameters.
A filtering procedure has been suggested for discrete time stochastic volatility models, for instance, see Gong et al. [2],

and Kirby [3] with normal errors. For stochastic volatility models with time-varying parameters, when a new observation
is coming in, a new volatility parameter is added, and hence it is almost impossible to estimate the time-varying volatility
parameters. In order to construct an optimal recursive estimate for non-normal stochastic volatility models, we start with the
following discrete time example.
Consider a nonlinear state space model given in Shiryaev [4]

θt+1 = aθt + (1+ θt)ηt+1
yt+1 = Aθt + zt+1

(1.1)

where zt
iid
∼ N(0, σ 2z ), ηt

iid
∼ N(0, σ 2η ), and the sequences {zt} and {ηt} are independent, where {yt} process is observed and

all θt is the parameter process. Then in Gong et al. [2], we have the estimate θ̂t+1 and γt+1 = E[(θt+1 − θ̂t+1)2|F
y
t+1] as

θ̂t+1 = aθ̂t +
Aaγt

A2γt + σ 2z
(yt+1 − Aθ̂t) (1.2)
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γt+1 = a2γt + b21σ
2
η −

(aAγt)2

A2γt + σ 2z
=

a2σ 2z γt
A2γz + σ 2z

+ b21σ
2
η . (1.3)

where b1 =
√
E(1+ θt)2. However, the recursive system above is based on two very important assumptions: zt

iid
∼ N(0, σ 2z ),

ηt
iid
∼ N(0, σ 2η ). If the error terms in (1.1) are not normally distributed then we cannot interpret the recursive estimates as a

conditionalmean. Here, as an alternativewe propose an optimal (minimummean square error) estimatewithout the Gaussian
assumptions.

Lemma 1.1. In the class of all estimates of the form θ̂t+1 = aθ̂t + Gt(yt+1− Aθ̂t), the Gt which minimizes the mean square error
γt = E[(θt − θ̂t)2|F

y
t ] is given by Ĝt =

aAγt
A2γt+σ 2z

and the recursive estimates are given by

θ̂t+1 = aθ̂t +
Aaγt

A2γt + σ 2z
(yt+1 − Aθ̂t) (1.4)

γt+1 =
a2σ 2z γt
A2γt + σ 2z

+

( 1− a2

1− a2 − σ 2η

)
σ 2η . (1.5)

Proof. The difference of θt+1 − θ̂t+1 = a(θt − θ̂t)− Gt(yt+1 − Aθ̂t)+ (1+ θt)ηt+1. Then

γt+1 = E[(θt+1 − θ̂t+1)2|F
y
t+1] = (a− AGt)

2γt +

(
1− a2

1− a2 − σ 2η

)
σ 2η + σ

2
z G
2
t , (1.6)

by differentiating γt+1 and set the first derivative function to zero,

∂γt+1

∂Gt
= −2A(a− AGt)γt + 2σ 2z Gt

set
= 0.

We have Ĝt =
aAγt

A2γt+σ 2z
. The second derivative of γt with respect to Gt is positive, hence γt attains its minimum value at

Ĝt . �

The optimal linear estimate of θt and the MSE γt turn out to be the same as the one given in Gong et al. [2]. However,
we do not make any distributional assumptions to obtain the optimal estimates. Moreover, it is of interest to note that if we
let b1 =

√
E(1+ θt)2, then b21 =

1−a2

1−a2−σ 2η
, and γt+1 in (1.5) turns out to be

a2σ 2z γt
A2γt+σ 2z

+ b21σ
2
η . In the remainder of this paper,

Section 2 discusses the application of the optimal MSE approach to continuous time SV models, with several examples for
illustration.

2. Continuous time SV models

Let (Ω,F , p) be a complete probability space, and let (Ft), 0 ≤ t ≤ T , be a non-decreasing family of right continuous
σ -algebra of F , satisfying the usual conditions.

dθt = f (θt)dt + dmt (2.1)
dyt = h(θt)dt + dMt (2.2)

where yt is the observed process and θt the unobserved volatility process, mt , Mt are uncorrelated square integrable mar-
tingales with variance process < m,m>t =

∫ t
0 σ

2
1 (s, ys)ds, < M,M >t =

∫ t
0 σ

2
2 (s, ys)ds, f (θt), h(θt) ∈ C

1 (continuously
differentiable), supt≤T E[f

2(θt)] <∞,
sup
t≤T E[h

2(θt)] <∞ and then apply to recently proposed stochastic volatility models.

Theorem 2.1.

dθ̂t = f (θ̂t)dt +
γth(1)(θ̂t)
σ 22 (t, yt)

(dyt − h(θ̂t)dt), (2.3)

dγt
dt
= γ̇t = 2f (1)(θ̂t)γt + σ 21 (t, yt)−

[h(1)(θ̂t)]2

σ 22 (t, yt)
γ 2t , (2.4)

where γt = E[(θt − θ̂t)2|F
y
t ].

Proof. Eq. (2.3) is the continuous time analog of Eq. (1.2) and the detailed proof of (2.3) using estimating functions follows
from Thompson and Thavaneswaran [5] or Thavaneswaran and Thompson [6].
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For the proof of (2.4), let δt = θt − θ̂t , and then γt = E[(θt − θ̂t)2|F
y
t ] = E(δ2t ). The stochastic differential equation of δt

is obtained by

dδt = dθt − dθ̂t

= f (θt)dt + dmt − f (θ̂t)dt −
γth(1)(θ̂t)
σ 22 (t, yt)

[dyt − h(θ̂t)dt]

= (f (θt)− f (θ̂t))dt + dmt −
γth(1)(θ̂t)
σ 22 (t, yt)

[(h(θt)− h(θ̂t))dt + dMt ].

Applying Itô’s formula to δ2t , and using first order approximation for f (θt) and h(θt),

dδ2t = 2δt
[
dmt −

γth(1)(θ̂t)
σ 22 (t, yt)

dMt
]
+

[
2δt
(
(f (θt)− f (θ̂t))−

γth(1)(θ̂t)
σ 22 (t, yt)

(h(θt)− h(θ̂t))
)

+
1
2
(2)
(
σ 21 (t, yt)+

σ 2t (h
(1)(θ̂t))

2

σ 42 (t, yt)
σ 22 (t, yt)

)]
dt

= 2δt
[
dmt −

γth(1)(θ̂t)
σ 22 (t, yt)

dMt
]
+

[
2δt(θt − θ̂t)

(
f (1)(θ̂t)−

γth(1)(θ̂t)
σ 22 (t, yt)

· h(1)(θ̂t)
)

+
1
2
(2)
(
σ 21 (t, yt)+

σ 2t (h
(1)(θ̂t))

2

σ 42 (t, yt)
σ 22 (t, yt)

)]
dt

= 2δt
[
dmt −

γth(1)(θ̂t)
σ 22 (t, yt)

dMt
]
+

[
2δ2t
(
f (1)(θ̂t)−

γth(1)(θ̂t)
σ 22 (t, yt)

· h(1)(θ̂t)
)

+

(
σ 21 (t, yt)+

σ 2t (h
(1)(θ̂t))

2

σ 42 (t, yt)
σ 22 (t, yt)

)]
dt (2.5)

and here

γt = γ0 +

∫ t

0

(
2γs
(
f (1)(θ̂s)−

γs(h(1)(θ̂s))2

σ 22 (s, ys)

)
+ σ 21 (s, ys)+

γ 2s (h
(1)(θ̂s))

2

σ 22 (s, ys)

)
ds

= γ0 +

∫ t

0

(
2γsf (1)(θ̂s)+ σ 21 (s, ys)−

γ 2s (h
(1)(θ̂s))

2

σ 22 (s, ys)

)
ds. �

Corollary. For the following Gaussian state space model:

dθt = a(t, y)θtdt + b(t, y)dW1(t)
dyt = A(t, y)θtdt + B(t, y)dW2(t)

where W1(t) and W2(t) are two Wiener processes, and
∫ t
0 b
2(s, y)ds <∞ and

∫ t
0 B
2(s, y)ds <∞.

Setting σ 21 (t, yt) = b
2(t, y), σ 22 (t, yt) = B

2(t, y), f (θt) = a(t, y)θt , and h(θt) = A(t, y)θt in (2.1) and (2.2), the recursive
estimates turn out to the one given by Liptser and Shiryaev [15]:

dθ̂t = a(t, y)θ̂tdt +
γtA(t, y)
B2(t, y)

[dyt − A(t, y)θ̂tdt],

γ̇t = 2a(t, y)γt + b2(t, y)−
A2(t, y)γ 2t
B2(t, y)

.

2.1. Klebaner’s model

Klebaner [7] considered the following state space model

dθt =
(
µ+

1
2
σ 2
)
θtdt + σθtdW2t

dyt = θtdt + dW1t ,

where {W1t} and {W2t} are two independent wiener processes,µ and σ are constants. Let b1 =
√
E(σθt)2 andW ∗2t =

θt
b1
W2t ,

and then dθt = (µ + 1
2σ
2)θtdt + σb1dW ∗2t . Then σ

2
1 (t, yt) = σ

2b21, σ
2
2 (t, yt) = 1, f (θt) = (µ +

1
2σ
2)θt , and h(θt) = θt .
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Hence the optimal linear recursive estimates are given by

dθ̂t =
(
µ+

1
2
σ 2
)
θ̂tdt + γt [dyt − dt],

γ̇t = 2
(
µ+

1
2
σ 2
)
γt + σ

2b21 − γ
2
t .

2.2. Hull & White model

For the Hull and White [8] SV model of the form

dθ2t = aθ
2
t dt + bθ

2
t dW2t (2.6)

dyt = αytdt + θtytdW1t (2.7)

where, α, a and b are constants, and {W1t} and {W2t} are two independent wiener processes. Since in (2.7) the drift term
does not include the parameter process θt , in order to use Theorem 2.1, we can apply Itô formula to y2t .

dy2t = (2αy
2
t + θ

2
t y
2
t )dt + 2θty

2
t dW1t . (2.8)

The diffusion term in (2.6) and (2.8) contain the parameter process θt , and by setting b21 = E(θ
2
t ) and b

2
2 = E(θ

4
t ), the

model becomes

dθ2t = aθ
2
t dt + bb2dW

∗

2t

dy2t = (2αy
2
t + θ

2
t y
2
t )dt + 2b1y

2
t dW

∗

1t

Hence by Theorem 2.1, the recursive estimates are given by

dθ̂2t = aθ̂
2
t +

γt

4b21y
2
t
[dy2t − (2αy

2
t + θ̂

2
t y
2
t )dt]

γ̇t = 2αγt + b2b22 −
1
4b21

γ 2t .

2.3. Heston’s SV model

Stein and Stein [9] and Heston [10] considered the SV model of the form

dθt = k(β − θt)dt + cdW2t (2.9)
dyt = αytdt + θtytdW1t (2.10)

where, α, β , k, and c are constants, and {W1t} and {W2t} are two independent wiener processes. Since in (2.10) the drift term
does not include the parameter process θt , in order to use Theorem 2.1, we first apply Itô formula to log yt and then setting
b21 = E(θ

2
t ),

d log yt = (α −
1
2
θ2t )dt + b1y

2
t dW

∗

1t .

Then by Theorem 2.1, the recursive estimates are given by

dθ̂2t = k(β − θ̂t)dt −
γt θ̂t

b21

[
d log yt −

(
α −

1
2
θ̂2t

)
dt
]

γ̇t = −2kγt + c2 −
θ̂2t

b21
γ 2t .

2.4. Aihara & Bagchi model

Aihara and Bagchi [11] considered the following model

dθt = α(m− θt)dt + k
√
θtdW2t (2.11)

dyt = Tr(Q )θtdt + dW1t (2.12)

where Tr(Q ) (see Aihara and Bagchi [11] for details), α, m, and k are constants, and {W1t} and {W2t} are two independent
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Wiener processes. By setting b21 = E(
√
θt)
2 in (2.11) and applying Theorem 2.1, the recursive estimates are given by

dθ̂t = a(m− θ̂t)dt +
γtTr(Q )
k2b21

(dyt − Tr(Q )θ̂tdt)

γ̇t = −2αγt + 1−
Tr2(Q )
k2b21

γ 2t .

2.5. Christoffersen–Heston–Jacobs [12] model

For the SV model studied in Christoffersen, Heston and Jacobs [12]

dθt = (a− cθt)dt + ξ
√
θtdZ2t

dyt = (R+ uθt)dt +
√
θtdZ1t

where the Wiener processes {Z1t} and {Z2t} are correlated with correlation coefficient ρ. R, u, a, c , and ξ are constants. This
correlatedmodel can be transformed to amodelwith uncorrelated noises. Let {W1t} and {W2t} be two standard uncorrelated
Wiener processes. Define dZ1t = dW1t and dZ2t = ρdW1t +

√
1− ρ2dW2t , then the above model may be written by using

only dW1t and dW2t .

dθt = (a− cθt)dt + ξ
√
θtρdW1t + ξ

√
θt
√
1− ρ2dW2t

dyt = (R+ uθt)dt +
√
θtdW1t

By setting b21 = E(
√
θt)
2 and applying Theorem 2.1, the recursive estimates are given by

dθ̂t = (a− cθ̂t)dt +
γtu
b21
[dyt − (R+ uθ̂t)dt]

γ̇t = −2cγt + ξ 2b21 −
u2

b21
γ 2t ,

Note: σ 21 = ξ
2b21ρ

2
+ ξ 2b21(

√
1− ρ2)2 = ξ 2b21.

3. Conclusions

We have obtained the optimal recursive estimates for various classes of nonlinear non-normal stochastic volatility
models. Recursive estimates for recently proposed stochastic volatility models are also considered in some detail.
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