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In this note we study multivariate perturbations of algebraic equations. In general, it is not
possible to represent the perturbed solution as a Puiseux-type power series in a connected
neighborhood. For the case of two perturbation parameters we provide a sufficient
condition that guarantees such a representation. Then, we extend this result to the case
of more than two perturbation parameters. We motivate our study by the perturbation
analysis of a weighted random walk on the Web Graph. In an instance of the latter the
stationary distribution of the weighted random walk, the so-called Weighted PageRank,
may depend on two (or more) perturbation parameters in a manner that illustrates our
theoretical development.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

We consider a polynomial perturbations of an algebraic equation, namely, an equation of the form

0 = P (x, ε1, . . . , εm) =
n∑

k=0

ak(ε1, . . . , εm)xk, (1)

where coefficients ak(ε1, . . . , εm) are in general complex polynomials of perturbation parameters ε1, . . . , εm . Without loss
of generality, we can assume that the perturbation parameters are small and the unperturbed equation P (x,0, . . . ,0) has a
zero solution. Furthermore, as in [3], we also assume that an(0, . . . ,0) �= 0.

If the partial derivative ∂ P
∂x (0,0, . . . ,0) �= 0, by the implicit function theorem the perturbed solution x(ε1, . . . , εm) is

analytic at the origin. That is, we expand the solution of (1) as the power series

x(ε1, . . . , εm) =
∑

k1,...,km

ck1,...,km

m∏
j=1

ε
k j

j , (2)

that is convergent in some polydisc centered at the origin and k j ∈ N ∪ {0}.
If the partial derivative ∂ P

∂x (0,0, . . . ,0) = 0, the perturbed solution might not admit the power series representation (2).
Firstly, the exponents may no longer remain integers. Furthermore, not every algebraic equation with polynomial coefficients
has a solution that admits a unique representation as a Puiseux-type series in some punctured connected neighborhood of
the origin. Let us give the following example.
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Example 1. Consider the perturbed polynomial

P (x,ε) = x2 + 2(ε1 − ε2)x − 3
(
ε2

1 + ε2
2

)
, (3)

with two perturbation parameters ε1 and ε2. The partial derivative of P in respect to x at 0 is

∂ P

∂x
(x,0,0) = 2x + 2(ε1 − ε2)|0 = 0.

The two roots of (3) are given by

x1,2(ε) = ε2 − ε1 ±
√

4ε2
1 − 2ε1ε2 + 4ε2

2 .

The solutions x1,2(ε) are not analytic at (ε1, ε2) = (0,0). Furthermore, x1,2(ε) does not have a representation as a unique
power series which is convergent in some connected punctured neighborhood of the origin. However, the solutions x1,2(ε)

can be expanded as power series in cones. For instance, if we consider the cone |ε1| < |ε2|, in this cone the solutions admit
the following power series expansion

x1,2(ε) = ε2 − ε1 ± 2ε2

(
1 − 1

4

ε1

ε2
+ 15

32

(
ε1

ε2

)2

+ 15

128

(
ε1

ε2

)3

+ O

((
ε1

ε2

)4))
.

In [4] and [5] a general framework for the derivation of the power (possibly, fractional power series) expansions of the
perturbed solutions valid in cones was provided. In [4] the author studied one algebraic equation with several perturbation
parameters and in [5] he generalized results of [4] to the case of a system of algebraic equations.

The goal of the present work is to identify a sufficiently general situation when the area of convergence is represented
by a connected neighborhood. In particular, we show that for two perturbation parameters that case can be identified by the
condition that the partial derivative of the discriminant with respect to any one of the perturbation parameters does not
vanish at the origin. We also identify a situation when we can deal with more than two perturbation parameters.

Our approach is based on the Newton polygon method. The application of the Newton polygon to the perturbed equa-
tions with one perturbation parameter is explained in [3,9,10]. In particular, the authors of [3] combine the Newton polygon
with the Newton-like iteration method to efficiently compute the Puiseux series expansions of the perturbed solutions.

The structure of the paper is as follows: In Section 2 we present our main result which provides a sufficient condition
for the existence of the Puiseux-type series of the perturbed solution convergent in a connected neighborhood of the origin.
We also show how our results can be applied in the case of more than two perturbation parameters. This is a generalisation
of the results from [1,2] where the case of one perturbation parameter was analysed. Then, in Section 3 we provide an
illustrative example of the perturbation analysis of a weighted random walk on the Web graph. The random walk stationary
distribution, Weighted PageRank, is used as a popularity measure for Web pages.

2. Results

Let P (x,ε) = ∑n
k=0 ak(ε1, ε2)xk be a polynomial of degree n � 2 in a variable x with polynomial coefficients in ε =

(ε1, ε2) such that an(0,0) �= 0. Consider the corresponding algebraic equation

P (x,ε) = 0 (4)

in a neighbourhood U of ε = (0,0) in C
2. Let x(i)(ε1, ε2), i = 1, . . . ,n, be (possibly multiple) roots of the polynomial P (x,ε)

with respect to x. Then, the descriminant of P (x,ε) is defined by

D(ε1, ε2) = an(ε1, ε2)
∏
i< j

(
x(i)(ε1, ε2) − x( j)(ε1, ε2)

)
.

If the discriminant D(0,0) �= 0, Eq. (4) has n distinct solutions, which are analytic in the coefficients of P , and, so, in ε.
Consequently, the partial derivative of P with respect to x at any unperturbed root is not equal to zero and the perturbed
solution admits the power series representation (2). Here we are predominantly interested in the case D(0,0) = 0. As
a regularity condition in this case we assume that

∂ D

∂ε1
(0,0) �= 0. (5)

By a regular algebraic function in variable εi , i = 1,2, we will mean a Puiseux series expansion

∞∑
k=0

rkε
k
di
i ,

for some integer di � 1 with non-negative powers of εi . Such a series is presumed to converge in any one-dimensional disc
V i such that 0 /∈ V i and 0 × V i ⊂ U.
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Theorem 1. Let the regularity condition (5) hold. Then, for a polynomial equation (4) any solution admits a form of a Puiseux series
in ε1 ,

x(ε) =
∞∑

k=0

ck(ε2)ε
k

d1
1 , (6)

where d1 is some positive integer and coefficients ck(ε2) that are algebraic functions in ε2 .

Remark 1. In the above ε
1

d1
1 is a multi-valued function with d1 branches corresponding to ε

1
d1
1 e2mπ i ; m = 0,1, . . . ,d1 − 1.

These branches correspond to the different roots of the polynomial (4).

Proof. We use the Newton Polygon technique with respect to the variable ε1, following the algorithm outlined in [3].
Detailed description of the Newton polygon process can be found in [9,10]. Let

ak(ε1, ε2) =
mk∑
j=0

ak, j(ε2)ε
j
1. (7)

Without loss of generality, see [3], we can assume that an(0,0) �= 0. This assumption excludes negative powers of ε1 in (6).
For non-zero ak, j we plot the points (k, j) in a quadrant of the two-dimensional lattice coordinates (ξ,η), with ξ,η ∈ N0
where ξ corresponds to the degrees of x and η corresponds to the degree of ε1 in ak(ε1, ε2). We join those points with a
convex polygon arc Γ so that each of its vertices is one of the plotted points and no other plotted point lies below any line
extending any segment of Γ . We choose any segment of the polygon arc Γ . It is described by η + γ1ξ = β1 of the arc Γ

with rational γ1 > 0. By the continuity argument γ1 and β1 can be selected universal for ε2. Let g1 denote the set of indices
k for which vertices corresponding to ak, j(k) lie on the chosen segment. Then, we need to solve the polynomial equation∑

k∈g1

ak, j(k)(ε2)ck = 0. (8)

By Puiseux theorem [8,10], c1(ε2) in (6) is a root of (8) and hence an algebraic function that admits a Puiseux series
representation in ε2. We note, that since the power in ε2 of the highest degree term in c1(ε2) is uniformly bounded by the
total degree of the original polynomial P , the negative power in ε2 of any such Puiseux series expansion is also uniformly
bounded. If c1(ε2) is a simple root, then the Newton polygon process stops. If c1(ε2) is a multiple root, we need to perform
one more iteration. As the smallest degree of ε1 in D is equal to 1, Theorem 6.2 in [3] guarantees that the Newton Polygon
process terminates at most in two steps. Suppose that c1(ε2) is a multiple root. Then, we make a change of variables
P1(x,ε) ← ε

−β1
1 P (ε

γ1
1 (x + c1(ε2)), ε) and we construct the Newton polygon for P1(x,ε). We note that the coefficients of

P1(x,ε), in general, are algebraic in ε2 and polynomial in ε1. Its second iteration provides the eventual value of the exponent
denominator d1 in (6) which is the smallest common denominator of γ1 and γ2. By Lemma 6.1 and Theorem 6.2 from [3],
the substitutions ε

−β2
1 P1(ε

γ2
1 x,ε) for P1 and then P1(x, εd1

1 , ε2) for the updated P1 ensure that the resulting polynomial has
only simple roots. These roots are, therefore, analytic functions in the coefficients of the polynomial, which in the original
perturbation parameters are algebraic functions in ε1 with algebraic coefficients in ε2. �
Remark 2. By choosing different segments of the Newton polygon one can obtain series expansions for all the roots of the
polynomial equation (4).

Remark 3. We note that the condition (5) allows us to represent the perturbed solution as Puiseux-type series in the
variables ε2 and D .

We note that the regularity condition (5) is essential as the example in the introduction clearly demonstrates.
Let us illustrate the construction of the Puiseux-type series of the perturbed solution by the following example.

Example 2. Consider the perturbed polynomial

P (x,ε) = x2 + 2(ε1 − ε2)x + (
ε1 + ε2

2

)
.

Its discriminant is

D(ε1, ε2) = (ε1 − ε2)
2 − (

ε1 + ε2
2

) = ε2
1 − ε1 − 2ε1ε2.

Clearly, D(0,0) = 0 and

∂ D
(0,0) = −1 �= 0.
∂ε1
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Fig. 1. Newton diagram for Example 2; 1st step. Fig. 2. Newton diagram for Example 2; 2nd step.

Thus, the condition of Theorem 1 is satisfied. Here,

a0(ε1, ε2) = ε1 + ε2
2, a1(ε1, ε2) = 2ε1 − 2ε2, a2(ε1, ε2) = 1.

Thus,

a0,0(ε2) = ε2
2, a0,1(ε2) = 1, a1,0(ε2) = −2ε2, a1,1(ε2) = 2, a2,0(ε2) = 1.

Fix ε2 and plot an associated Newton polygon as in Fig. 1.
The Newton polygon consists of one horizontal line. This means that the Puiseux series of any perturbed solution starts

with a term depending only on ε2. To find this term we set ε1 = 0. The polynomial equation P (x,ε) = 0 reduces to

x2 − 2ε2x + ε2
2 = 0,

which has as a multiple root x = ε2. Next, we make a change of variable x = ε2 + x1 and transform P (x,ε) = 0 into

(ε2 + x1)
2 + 2(ε1 − ε2)(ε2 + x1) + (

ε1 + ε2
2

) = 0,

which simplifies to

P̃ (x1, ε1, ε2) = x2
1 + 2ε1x1 + 2ε1ε2 + ε1 = 0.

For the above equation, as before, we construct the Newton polygon (see Fig. 2).
From the Newton polygon we conclude γ = 1/2 and β = 1 and the defining equation, consisting of zero degree terms of

ε−1
1 P̃ (ε

1/2
1 c, ε1, ε2) = 0 with respect to ε1, is

c2 + (1 + 2ε2) = 0,

which has two simple non-zero roots

c1,2 = ±√−1 − 2ε2.

Thus, the Puiseux-type series expansion for the perturbed solution with two first terms is given by

x1,2(ε) = ε2 ± √−1 − 2ε2ε
1/2
1 + · · · .

We note that the above series in ε1 and ε2 has infinitely many terms. However, an equivalent series expansion of x1,2(x,ε)

in D and ε2 has a benefit of having only a finite number of Puiseux terms.

Sacrificing the possibility of expanding the coefficients ck in (6) as a Puiseux series, we can generalize Theorem 1 to
the case of more than two perturbation parameters. For the polynomial equation (1) let D be the discriminant of P with
respect to the variable x.

Theorem 2. Let the following regularity condition1 hold

∂ D

∂ε1
(0,0, . . . ,0) �= 0. (9)

Then, for a polynomial equation (1) any solution admits the form of a Puiseux series in ε1:

x(ε) =
∞∑

k=0

ck(ε2, . . . , εm)ε
k

d1
1 , (10)

for some positive integer d1 and coefficients ck(ε2, . . . , εm) that are algebraic functions in ε2, . . . , εm.

1 Of course, the regularity condition (9) can be replaced by ∂ D
∂ε (0,0, . . . ,0) �= 0 for at least one j = 1, . . . ,m.
j
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Proof. This follows the lines of the proof of Theorem 1 with replacing ε2 by ε′ = (ε2, . . . , εm). The only difference appears
when we determine coefficients ck(ε

′) as algebraic functions of ε′ being solutions of some polynomial equations. Apart of
the univariate case ε′ = ε2, such algebraic functions do not necessarily possess Puiseux series representation in punctured
neighbourhoods of the origin.2 �
3. Perturbation analysis of Weighted PageRank

Our study is partly motivated by the perturbation analysis of Weighted PageRank. PageRank is one of the principal
measures used by Google to rank relevant answers to a user’s query [7]. Google precomputes and updates offline the
ranking of all pages on the Web and then uses it online only for those pages that are relevant to the query. Denote by N
the total number of pages on the Web and define the N × N matrix W as follows:

wij =

⎧⎪⎨
⎪⎩

1/di, if page i links to j,

1/N, if page i does not have outgoing links,

0, otherwise,

(11)

for i, j = 1, . . . , N , where di is the number of outgoing links from page i. The matrix W corresponds to the one-step
transition of the random walk on the graph where the nodes are Web pages and edges are hyper-links between the nodes.
The PageRank π is defined as a stationary distribution of the random walk on the Web graph with random restart with
probability α at the probability distribution row-vector v defining user preference. The transition matrix of such a random
walk is given by

T = (1 − α)W + αev. (12)

Here we use the symbol e for a column vector of ones having by default an appropriate dimension. In the standard Page-
Rank, there is no preference among the outgoing links. However, one could give preference based on the link type. For
instance, one could assign less weight to navigation links (e.g., links within one organization) and more weight to recom-
mendation links (e.g., links which refer to reputable sources of relevant information). This leads to a more general definition
of Weighted PageRank [6]. A distribution of weight among navigation and recommendation links can be controlled by a
parameter ε1. For instance, ε1 can represent the total weight attributed to navigation links from a node and 1 − ε1 the total
weight attributed to the recommendation links from that node. Thus, the transition matrix for the Weighted PageRank (12)
takes the form

T = (1 − α)W (ε1) + αev, (13)

where

W (ε1) = ε1W1 + (1 − ε1)W2,

and where the matrix W1 corresponds to the transitions along the navigation links and W2 corresponds to the transitions
along the recommendation links. The most significant particular cases are when α is close to 0 and when it is close to 1.
A connection between this application and the theory developed in the previous section will arise when we define the
second perturbation parameter ε2 to be either α or 1 − α in (13). When α ≈ 0 the process follows closely a random
walk on the original Web graph and when α ≈ 1, the preference vector v and the number of incoming links to a node
dominate the contribution to the value of PageRank. Thus, when ε2 = α we analyze the case when α approaches 0, and
when ε2 = 1 − α we analyze the case when α approaches 1.

We are going to derive asymptotic expansions for the PageRank π(ε1, ε2) and also for the second eigenvalue of the tran-
sition matrix (13) which indicates the rate of convergence to the steady state. Let us demonstrate the range of possibilities
of asymptotic expansions with the following examples.

Example 3. Define matrix W and the preference vector v as

W =
[

1 − ε1 ε1
ε1 1 − ε1

]
, v = [1 0].

First, we study the case α ≈ 0. Then, by (13) the transition matrix T (ε1, ε2) takes the form

T =
[

(1 − ε1)(1 − ε2) + ε2 ε1(1 − ε2)

ε1(1 − ε2) + ε2 (1 − ε1)(1 − ε2)

]
.

2 In general, as demonstrated in Example 3 below, an algebraic function can only be expanded as a convergent series in some sector emanating from the
origin.
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Fig. 3. The (ε1, ε2)-convergence region when α = ε2 ≈ 0 in Example 3.

PageRank π is a solution of the following linear system for π = [π1 π2],
π T = π, πe = 1.

Equivalently, x = π1 is a solution of the equation

P (x, ε1, ε2) = ε1(1 − ε2)x + (1 − ε1)(1 − ε2)(1 − x) − (1 − x) = 0 (14)

and π2 = 1 − x. Solving equation (14), we obtain

π =
[

ε1 − ε1ε2 + ε2

2ε1 + ε2 − 2ε1ε2
,

ε1 − ε1ε2

2ε1 + ε2 − 2ε1ε2

]
.

The component π1 can be rewritten in the form

π1 = 1

2

(
1 +

(
1 + 2

ε1

ε2
− 2ε1

)−1)
.

The latter expression cannot be expanded as a Laurent series in either one of the perturbation parameters in a punctured
neighbourhood of the origin. However, it admits a Laurent series representation for any pair (ε1, ε2) in the region described
by

−1

2
<

ε1

ε2
− ε1 <

1

2
,

which is depicted as the marked area in Fig. 3. The same is true for the second component π2.
Let us now study the case α ≈ 1. Then, the transition matrix T (ε1, ε2) takes the form

T =
[

(1 − ε1)(1 − ε2) + ε2 ε1(1 − ε2)

ε1(1 − ε2) + ε2 (1 − ε1)(1 − ε2)

]
.

Solving a system of two linear equations, we obtain the following expression for the PageRank:

π =
[

1 − ε2 + ε1ε2

1 − ε2 + 2ε1ε2
,

ε1ε2

1 − ε2 + 2ε1ε2

]
,

which can be expanded as a Taylor series in a neighbourhood of the origin.
The second eigenvalue of T in this example can be easily calculated. It is given by

λ2 = tr(T ) − λ1 = tr(T ) − 1 = 1 − 2ε1 − ε2 + 2ε1ε2,

which is an analytic function.

In the above example we have encountered Laurent series expansion for the PageRank distribution and the second
eigenvalue of the associated transition matrix. The next example shows that a Puiseux series expansion for the second
eigenvalue of T may arise.
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Fig. 4. Newton diagram for Example 4.

Example 4. Define the matrix W and the preference vector v as

W =
⎡
⎣ 1 − ε1 ε1 0

0 0 1
1 0 0

⎤
⎦ , v = [1 0 0].

Consider α ≈ 0 in (13). Then, with ε2 = α and the transition matrix T (ε1, ε2) becomes

T =
⎡
⎣ (1 − ε1)(1 − ε2) + ε2 (1 − ε2)ε1 0

ε2 0 1 − ε2
1 0 0

⎤
⎦ .

The characteristic polynomial of T is given by

Q = x3 + (−1 + ε1 − ε1ε2)x2 + (−ε1ε2 + ε1ε
2
2

)
x − ε1 + 2ε1ε2 − ε1ε

2
2 .

If ε1 = 0 and ε2 = 0, then Q reduces to

Q = x3 − x2 = x2(x − 1).

Thus, we conclude that the second and the third eigenvalues branch at zero.
Next, we calculate the discriminant D of the characteristic polynomial, which equals

D = −4ε1 − 15ε2
1 + 8ε2ε1 − 4ε2

2ε1 + 54ε2ε
2
1 − 12ε3

1 − 71ε2
2ε

2
1

+ 66ε2ε
3
1 + 4ε4

1 + 40ε3
2ε

2
1 − 146ε2

2ε
3
1 − 20ε4

1ε2 + 166ε3
2ε

3
1

+ 41ε2
2ε

4
1 − 8ε4

2ε
2
1 − 102ε4

2ε
3
1 − 44ε3

2ε
4
1 + 26ε4

2ε
4
1

+ 32ε5
2ε

3
1 − 8ε5

2ε
4
1 − 4ε6

2ε
3
1 + ε4

1ε
6
2 .

Clearly, we have

D(0,0) = 0,
∂ D

∂ε1
(0,0) = −4,

∂ D

∂ε2
(0,0) = 0.

According to Theorem 1, there exist a Puiseux series of the form given by (6). From the Newton diagram associated with
polynomial Q (see Fig. 4) we conclude that d1 = 1/2. Substituting x(ε1, ε2) = c1(ε2)ε

1/2
1 + c2(ε2)ε1 . . . into the equation

Q = 0 and collecting coefficients at the same power of ε1, we obtain the following equations for c1 and c2:

c2
1 = −(1 − ε2)

2, c2 = 1

2

(−ε2 + ε2
2

) + 1

2
c2

1.

Consequently, we obtain

c1 = ±i(1 − ε2),

and

c2 = 1

2
(−1 + ε2).

It can be easily verified that

λ1 = 1, λ2,3 = 1

2

(
ε1 ±

√
ε2

1 − 4ε1
)
(−1 + ε2)

are the three roots of Q (x, ε1, ε2) = 0. One can further verify that the roots λ2,3 have the first two terms ±i(1 − ε2)ε
1/2
1

and 1
2 (−1 + ε2)ε1 in its Puiseux series expansion with respect to ε1.

We note that according to the proof of Theorem 1 one can have at most two iterations of the Newton polygon procedure.
However, in this case we have at most three distinct eigenvalues and we are certain that the branching terminates after the
first substitution.
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4. Conclusions

We analysed perturbed algebraic equations whose coefficients are polynomials in several perturbation parameters.
In general, it is not possible to represent the perturbed solution as a Puiseux-type power series in a connected neigh-
borhood. For the case of two perturbation parameters we provide a sufficient condition that distinguishes one perturbation
parameter and guarantees such a representation. Then, we extend this result to the case of more than two perturbation
parameters at the expense of sacrificing the possibility of Puiseux series expansions for the coefficients of the Puiseux se-
ries in the distinguished perturbation parameter. Our approach is based on Newton diagram technique. We motivate our
theoretical development by the perturbation analysis of the Weighted PageRank, a frequently used measure for Web pages
popularity. It is seen that – even in the artificially simple two and three state related Markov chains – the concept of the
Weighted PageRank exhibits the full range of possible cases of asymptotic expansions for several perturbation parameters.
Our Example 4 shows that the mixing time could be large for random walks with nearly periodic behaviour.
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