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ABSTRACT 
To effectively control and treat river water pollution, it is very critical to establish a water quality prediction 
system. Combined Principal Component Analysis (PCA), Genetic Algorithm (GA) and Back Propagation Neural 
Network (BPNN), a hybrid intelligent algorithm is designed to predict river water quality. Firstly, PCA is used to 
reduce data dimensionality. 23 water quality index factors can be compressed into 15 aggregative indices. PCA 
improved effectively the training speed of follow-up algorithms. Then, GA optimizes the parameters of BPNN. 
The average prediction rates of non-polluted and polluted water quality are 88.9% and 93.1% respectively, the 
global prediction rate is approximately 91%. The water quality prediction system based on the combination of 
Neural Networks and Genetic Algorithms can accurately predict water quality and provide useful support for real-
time early warning systems. 
 
Keywords: back propagation neural network, genetic algorithm, principal component analysis, water quality prediction. 

1. Introduction 
 
Rapid economic growth inevitably causes water 
pollution. To effectively control water pollution, 
automatic water quality monitoring stations are 
built in many important districts. Accurate water 
quality prediction methods are very important to 
monitor and control water pollution timely. 
Therefore, a powerful water quality prediction 
methods are vital when automatic water quality 
monitoring systems are established 
 
So far, many methods are used to predict water 
quality including grey relational method [1], 
mathematical statistics method [2], model-based 
approach [3], Bayesian approach [4], neural 
network model [5-8], and Genetic Algorithm (GA) 
[9-11]. Approximately, 85%-90% of the water 
quality prediction work have been completed using 
Neural Network. Neural network has many 
favourable characteristics, including mass 
information processing, distributed association, 
and the ability of self-learning and self-organizing  

 
 
[12-16]. As a high non-linear system, it also has a 
good fault-tolerance ability and a good applicability 
to complex problem. However, the non-linear 
transfer function of Neural Network has multiple 
local optimum solutions. Generally, the 
optimization process is influenced by the selection 
of initial point. If the initial point is closer to the 
local optimum point than to the global optimum 
point, it will cause the multi-layer network failing to 
obtain global optimum solutions. However, GA can 
avoid these problems easily. GA cannot be 
restricted by search space, it can obtain a global 
optimum solution of discrete, multi-extremum high-
dimensional problems with noise. GA has been 
used in water quality model calibration [9], river 
water quality management model optimization [10], 
and water quality monitoring networks optimization 
[11]. Then, combining BP Neural Network (BPNN) 
with GA can improve prediction accuracy and 
speed of BPNN [16-18]. In this paper, GA is used 
to optimize BPNN parameters to speed the 
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prediction process. The difference from other 
works is that we apply Principal Component 
Analysis (PCA) in the system to reduce data 
dimensionality and speed the learning process. 
 
Many factors affect water quality (There are 23 
factors in our work, see materials and methods 
section). These factors have complex non-linear 
relationship with water quality. Then, the data 
dimensionality should be reduced to extract the 
most important factors. PCA is a technology that 
can compress multiple original indices into a few 
aggregative variable indices, which can represent 
original data information. PCA has been 
successfully applied in environmental data analysis 
[19,20]. Here, PCA is applied to optimize and 
select the sample set. 
 
In this work, we combined PCA, BPNN and GA to 
predict water quality. By integrating the 
advantages of these algorithms, the water quality 
prediction system can not only ensure the 
prediction accuracy of water quality, but also can 
improve prediction speed. 
 
2. Materials and methods 
 
2.1 Dataset 
 
Experimental data are from the detection data of 
rivers flowing into Taihu Lake, China. There are 
2680 sample data. They were categorized into two 
groups, that is, non-polluted and polluted water. 
The ratio is approximately 1:1. 23 influencing 
factors of water quality are pH, NH3-N, volatile 
phenol, TN, Cr6+, CODMn, TP, BOD5, TCN, COD, 
petroleum, Cd, Cu, Zn, Pb, Hg, As, Se, F-, sulfide, 
dissolved oxygen, electrical conductivity, and LAS. 
 
2.2 Principal component analysis (PCA) 
 
PCA applies the idea of dimensionality reduction 
under the premise that the minimum original data 
loss is guaranteed. It can compress multiple 
original indices into a few aggregative variable 
indices. In this paper, we assume the water 
sample number is n (here n=2680), the number of 
factors affecting the water quality is p (here p=23); 
thus, a water quality data matrix of n*p (2680*23) 
order is constituted. The original sample data 

matrix is
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1 2

p

p

n n np

x x x
x x x
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x x x , The new variable 
target denotes as vector y1, y2, y3, ym (m p). Y is 
linear combination of the data X. 
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In the Eq. 1, the loading vector

1 2, ,..., ( 1,2,..., )i i i ipa a a a i m is determined by

( ) 0i iI a , satisfying the following conditions: 
 
(1) iy  is uncorrelated to jy to form the orthogonal 

subspace (i j). 
 
(2) T

i ia a , the variance of yi, is maximized. 
 
(3) 1T

i ia a , ia is standardized. 
 
Eigenvalue decomposition of the covariance matrix 
of X determines the loading vector ia as an 

eigenvector associated with eigenvalues i . 

1
/ ( 1,2,..., )
p

i j
j

i p is the contribution of PCi. The 

PCi contribution indicates the ability of PCs to 
represent the original data. After ranking the value 
of i  (usually in descending order), the first PCs 
with the largest eigenvalues are selected. The 
criterion is the cumulative value up to 85%. The 
selected PCs are aggregative indices that are used 
in BPNN. 
 
2.3 Optimize BPNN using GA 
 
The BP network model contains one hidden layer. 
For the determination of hidden layer node 
number, empirical formula estimating or trial  
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method of repeated trial calculation are mostly 
adopted. Here, the hidden layer neuron number is 
determined according to the experimental Eq. 2. 
The different Q are tested and 8 is more 
appropriate on condition that the goal and gradient 
are met as possible. In the end, the finial network 
structure is 15-8-1. 
 

( ) 1,10Q input nodes output nodes C C              (2)
 

 
In our experiment, the output value is limited to the 
range of [0, 1], and we select logsig as the transfer 
function from the input to the hidden layers and 
from the hidden to the output layers. BPNN training 
Levenberg-Marguardt (LM) is applicable to the 
centre network of sufficient memory. Applying the 
LM optimization algorithm to water quality 
prediction may shorten the learning time and 
improve the training speed. BPNN has problems in 
slow convergence rates and appearances of a 
“local minimum” in convergence learning. The big 
challenge of water quality prediction is that there is 
a complex non-linear recessive relationship 
between input and output data. Then, it is very 
practical to obtain an useful model through a large 
amount of sample learning and training. 
 
2.4 The combined model of PCA, BPNN and GA 
 
We combined PCA, BPNN and GA algorithms to 
establish a water quality prediction system. PCA is 
used to remove some redundant information to 
reduce data dimensionality and obtain principal 
components. Using obtained principal components 
as network input neurons has many advantages: 
(1) reducing node number of the network input 
layer, (2) simplifying neural network structure, (3) 
improving both BPNN training speed and model 
prediction rate accuracy with GA optimization 
network parameters. Figure 1 is the simplified 
flowchart of the combined model. 
 
The steps of the combined PCA, BPNN and GA 
algorithm to predict water quality are: (1) 
Converted 2680 groups of sample data into their 
corresponding 2680 groups of aggregative index 
sample data; the data were normalized and 
labeled; (2) Conducted PCA in input samples 
X1,X2,…,X23; converted them into aggregative 
index Z1,Z2,…,Zm (m<23); (3) Selected BPNN 
hidden layer neuron number from repetitive 

random testing; (4) Randomly divided the 2680 
normalized aggregative index sample data into 
training (2000 sample data) and testing sets (680 
sample data); BPNN is carried out with GA (GA 
optimizes BPNN weights and threshold values). 
 
2.5 Verify and test the combined model 
 
We randomly selected 2000 groups of data for 
training, with 1000 groups of polluted samples and 
non-polluted samples. A five-fold cross validation 
is used to estimate the performance of the hybrid 
intelligent algorithm. The predictive value outputted 
by BPNN with GA approached 1 or 0, which could 
predict whether the water quality is polluted. The 
local and global prediction accuracies are 
computed according to Eqs. 3 and 4. 
 

 
 

Figure 1. The simplified flowchart of the  
combined PCA, BPNN and GA algorithm. 

 
Local prediction accuracy (LA): 
 

1
i

i
P

LA ,  here,  i
i

i

TP
n                                    (3) 

 
Overall prediction accuracy (TA): 
 

1
i

i
T

TA
N

                                                              (4) 

 
In the Eqs.3 and 4, N is the number of all sample 
data, is class of sample data (non-polluted or 
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polluted water), in  is number of class i, iT  is 
number of correctly predicted samples in class i. 
After that, the remaining 680 sample data is used 
to test the combined model. 
 
3. Results and discussion 
 
3.1 Principal component analysis 
 
After conducting PCA, 23 original sample indices 
are compressed into 15 aggregative indices. Table 
S1 shows the related coefficient matrix in PCA. 
Table 1 shows eigenvalues and contribution rates. 
 

Principal 
component Eigenvalue Contribution 

rate (%) 
Cumulative 

rate (%) 
1 3.90 16.97 16.97 
2 2.26 9.85 26.81 
3 1.92 8.34 35.15 
4 1.65 7.19 42.34 
5 1.41 6.13 48.48 
6 1.29 5.60 54.07 
7 1.18 5.12 59.20 
8 1.05 4.58 63.78 
9 1.01 4.38 68.16 

10 0.89 3.86 72.03 
11 0.83 3.61 75.64 
12 0.76 3.29 78.93 
13 0.74 3.20 82.13 
14 0.63 2.75 84.88 
15 0.59 2.55 87.43 
16 0.57 2.49 89.92 
17 0.47 2.05 91.97 
18 0.42 1.82 93.80 
19 0.35 1.51 95.31 
20 0.33 1.41 96.72 
21 0.27 1.17 97.90 
22 0.26 1.12 99.02 
23 0.23 0.98 100.00 

 
Table 1. Eigenvalues and contribution rates. 

 
The relevant matrices show that there is a strong 
correlation between volatile phenol and NH3-N, TN 
and COD and NH3-N, hexavalent chromium and 
volatile phenol, CODmn and COD, TP and NH3-N 
and TN, BOD5 and CODmn. Obviously, the 
information overlapped. 
 
The characteristic values and contribution rates in 
Table 1 show that the first 15 principal components 
can represent 87.43% information of the original 
data. Then, 15 principal components can replace 
23 primary data. And these 15 principal 
components are input neurons for BPNN. The 

dimensionality reduction can speed the training 
process with less information loss. 
 
3.2 The performance of the combined model 
 
We use the remaining 680 sample data  to test the 
performance of the combined model. 
 
Table 2 shows that prediction accuracy of polluted 
water, prediction accuracy of non-polluted water, 
and global prediction accuracies are 93.1%, 88.9% 
and 91% respectively. And, the prediction 
accuracies of polluted water are all larger than that 
of non-polluter water. In this work, the river data 
are determined from 2001. In 2007, a large bloom 
of blue-green algae in Taihu Lake caused water 
quality to deteriorate severely. When we randomly 
choose the training data, if the number of the data 
in 2007 is larger, the prediction accuracy of 
polluted water is higher, while the non-polluted 
water is lower. The strong characteristic of heavily 
polluted water in this period may affect the result.  
At the same time, these prediction accuracies 
show that the combined model is suitable for 
predicting water quality. Most of all, this algorithm 
is very stable due to using GA to adjust BPNN 
connection weight and threshold values. 
 
3.3 Comparison of BPNN performance with and 
without GA 
 
We also compared BPNN prediction rates with or 
without using GA. Table 3 shows the results. 
 
Table 3 and Figure 2 shows that BPNN search 
process with GA is unlikely to be entangled with 
the local optimum solution. Most predicted rates 
are approximately 90%, although the predicted 
accuracy is higher. BPNN predicted rate without 
using GA optimization sometimes achieves rates 
above 80%, but repeated experiments show that 
the trained model predicted rates float larger and 
sometimes converge to local optimum solutions in 
the BP network without genetic algorithm 
optimization. That can be proved by the MSE. The 
MSE with GA is significantly smaller than the MSE 
without GA. The smaller the MSE, the better the 
convergence. In the search process of BPNN 
without GA, the optimum solution cannot be 
searched, and the predicted accuracy declines. To 
overcome the disadvantages of BPNN, GA is 
necessary to optimize BPNN parameters. 
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Table S1. The related coefficient matrix. 

COD pH NH3-N
volatile 
phenol

TN Cr6+ CODMn TP BOD5 TCN petroleum Cd Cu Zn Pb Hg As Se F-- sulfide LAS
dissolved 

oxygen
electrical 

conductivity

COD 1 -0.1 0.33 0.07 0.41 -0.05 0.41 0.28 0.19 0.07 0.18 -0.07 0 -0.1 -0.1 -0.1 0.06 0.09 0.31 -0.01 0.01 -0.08 0.29

pH -0.1 1 -0.16 0.01 -0.13 0.05 -0.21 -0.15 0.02 -0.06 -0.1 0.17 -0.1 -0.3 -0 0.15 -0.1 -0.1 -0.02 -0.09 0.04 0.15 -0.14

NH3-N 0.33 -0.2 1 0.41 0.66 0.12 0.38 0.45 0.31 0.08 0.11 -0.1 0.2 0.08 -0 -0.1 0.22 0.02 0.29 0.14 0.02 -0.12 0.39

volatile phenol 0.07 0.01 0.41 1 0.3 0.5 0.16 0.13 0.1 0.02 -0.04 -0.12 0.34 0 0 -0.1 0.09 0.04 0.05 0.15 -0.01 -0.06 0.2

TN 0.41 -0.1 0.66 0.3 1 0.1 0.25 0.44 0.28 0.06 0.01 -0.02 0.09 0.05 -0.1 -0 0.09 0.15 0.23 0.11 0.11 -0.03 0.38

Cr6+ -0.1 0.05 0.12 0.5 0.1 1 0 0 0.04 -0.01 0 0.01 0.29 0 0 -0 0.08 0 -0.06 0.02 0 -0.01 -0.14

CODMn 0.41 -0.2 0.38 0.16 0.25 0 1 0.38 0.54 0.09 0.2 -0.16 0.22 0.01 0.01 -0.1 0.35 -0 0.2 0.19 -0.07 -0.12 0.27

TP 0.28 -0.2 0.45 0.13 0.44 0 0.38 1 0.33 0.04 0 -0.1 -0 -0 -0.2 -0 0.07 -0 0.27 0.27 0 -0.09 0.32

BOD5 0.19 0.02 0.31 0.1 0.28 0.04 0.54 0.33 1 0.02 0.12 0.04 0.18 -0.1 0.21 -0.1 0.26 -0 0.13 0.19 -0.04 -0.05 0.12

TCN 0.07 -0.1 0.08 0.02 0.06 -0.01 0.09 0.04 0.02 1 -0.02 -0.01 0.01 0.19 0 -0 0 0 0.07 0.03 0.02 0 0.08

petroleum 0.18 -0.1 0.11 -0.04 0.01 0 0.2 0 0.12 -0.02 1 -0.26 0 0.04 0.06 -0.1 0.4 -0 0.12 -0.05 -0.03 -0.04 0.11

Cd -0.1 0.17 -0.1 -0.12 -0.02 0.01 -0.16 -0.1 0.04 -0.01 -0.26 1 0.03 0.11 0.01 0.14 -0.1 0.01 -0.16 -0.12 0.01 0.05 -0.19

Cu 0 -0.1 0.2 0.34 0.09 0.29 0.22 -0.04 0.18 0.01 0 0.03 1 0 0.02 0 0.48 -0 -0.26 0 0.01 -0.05 -0.16

Zn -0.1 -0.3 0.08 0 0.05 0 0.01 -0.02 -0.06 0.19 0.04 0.11 0 1 -0.1 0 -0.1 0.06 -0.05 -0.01 0.08 0.04 -0.06

Pb -0.1 -0 -0.03 0 -0.06 0 0.01 -0.15 0.21 0 0.06 0.01 0.02 -0.1 1 0.05 0.23 -0 -0.06 -0.01 0 -0.03 -0.11

Hg -0.1 0.15 -0.1 -0.07 -0.03 -0.01 -0.07 -0.02 -0.06 -0.01 -0.05 0.14 0 0 0.05 1 0.02 0 -0.36 0.04 0.26 0.45 -0.23

As 0.06 -0.1 0.22 0.09 0.09 0.08 0.35 0.07 0.26 0 0.4 -0.1 0.48 -0.1 0.23 0.02 1 -0 -0.08 -0.03 0.03 -0.04 0.03

Se 0.09 -0.1 0.02 0.04 0.15 0 -0.03 -0.01 -0.02 0 -0.02 0.01 -0 0.06 -0 0 -0 1 -0.04 -0.01 -0.01 -0.01 0.06

F-- 0.31 -0 0.29 0.05 0.23 -0.06 0.2 0.27 0.13 0.07 0.12 -0.16 -0.3 -0.1 -0.1 -0.4 -0.1 -0 1 0.11 -0.18 -0.3 0.52

sulfide -0 -0.1 0.14 0.15 0.11 0.02 0.19 0.27 0.19 0.03 -0.05 -0.12 0 -0 -0 0.04 -0 -0 0.11 1 0 -0.01 0.14

LAS 0.01 0.04 0.02 -0.01 0.11 0 -0.07 0 -0.04 0.02 -0.03 0.01 0.01 0.08 0 0.26 0.03 -0 -0.18 0 1 0.68 -0.03

dissolved 
oxygen

-0.1 0.15 -0.12 -0.06 -0.03 -0.01 -0.12 -0.09 -0.05 0 -0.04 0.05 -0.1 0.04 -0 0.45 -0 -0 -0.3 -0.01 0.68 1 -0.12

electrical 
conductivity

0.29 -0.1 0.39 0.2 0.38 -0.14 0.27 0.32 0.12 0.08 0.11 -0.19 -0.2 -0.1 -0.1 -0.2 0.03 0.06 0.52 0.14 -0.03 -0.12 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Number of 
times 

Size of 
training set 

Size of 
testing set 

Percent of accuracy in 
predicting polluted 

water 

Percent of accuracy in 
predicting non-polluted 

water 

Percent of overall 
prediction accuracy

1 2000 680 0.910 0.875 0.891 
2 2000 680 0.895 0.805 0.850 
3 2000 680 0.970 0.940 0.955 
4 2000 680 0.920 0.890 0.905 
5 2000 680 0.960 0.935 0.948 

Average   0.931 0.889 0.910 
 

Table 2. Prediction accuracy of polluted water and non-polluted water. 

No. Average prediction rate 
with GA 

Average prediction rate 
without GA 

Mean Squared Error  
with GA 

Mean Squared Error  
without GA 

1 0.891 0.711 0.0036 0.0620 
2 0.850 0.841 0.0510 0.0530 
3 0.955 0.684 0.0032 0.0760 
4 0.905 0.856 0.0035 0.0210 
5 0.948 0.703 0.0032 0.0740 

 
Table 3. Average prediction rates and Mean Squared Error with and without GA in BPNN. 
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Figure 2. The prediction rate of water  
quality with and without GA algorithm. 

 
Table 3 and Figure 2 shows that BPNN search 
process with GA is unlikely to be entangled with 
the local optimum solution. Most predicted rates 
are approximately 90%, although the predicted 
accuracy is higher. BPNN predicted rate without 
using GA optimization sometimes achieves rates 
above 80%, but repeated experiments show that 
the trained model predicted rates float larger and 
sometimes converge to local optimum solutions in 
the BP network without genetic algorithm 
optimization. That can be proved by the MSE. The 
MSE with GA is significantly smaller than the MSE 
without GA. The smaller the MSE, the better the 
convergence. In the search process of BPNN 
without GA, the optimum solution cannot be 
searched, and the predicted accuracy declines. To 
overcome the disadvantages of BPNN, GA is 
necessary to optimize BPNN parameters. 
 
4. Conclusions 
 
We present a water quality prediction model that 
combines PCA, BPNN and GA. Using BPNN 
model to study water classification and prediction 
can overcome disadvantages including the large 
workload of traditional evaluation methods and 
strong subjectivity. This model possesses 
objectivity, universality and practicality. PCA 
converts the multi-indices into a few aggregative 
indices with little original data information loss 
and reduces the input data to speed the training 
process. Using GA to optimize network 
parameters can effectively prevent the search 
process from converging to local optimum  
 
 

solutions, optimize global optimal network 
parameters, and significantly improve the 
accuracy of water quality prediction. This model 
makes full use of the advantages and 
characteristics of PCA, BPNN and GA algorithms 
to predict water quality. This model can obtain 
high training speed and good prediction rate and 
can be extended to other classification problem. 
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