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In this paper the incidence algebra for t-designs with automorphisms and the 
fundamental theorem discovered in [4] are exploited to obtain a generalization of 
Connor’s inequality. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

A t-design or generalized Steiner system S(J; t, k, u) is a pair (X, a) with 
a u-set X of points and a family 43 of k-subsets of X called blocks, such that 
each block has k points and any t points are contained in exactly 1 blocks. 
An automorphism of (X, 6’) is a permutation of X which preserves B. It is 
well known (see, e.g., [S] ) that for i +j < t the number of blocks of an 
.S(& t, k, u) design which contains i given points but does not contain any 
of a set ofj other points is 

(1) 

With this notation we write b = bz for the number of blocks in the design 
and we write r = 67 = bk/u for the number of blocks containing a given 
point. 

In [ 1 ] (also see [2]) W. S. Connor developed a system of inequalities 
concerning the pairwise intersections pV= IKinKJ of m blocks, 
K,, K2, . . . . K,,, of a S(& t, k, u) design. The characteristic matrix of the m 
blocks is the m by m matrix 

582a/SQ/2-7 

C=r(r-A)Z-r[pii] +AkJ=r(r-1)Z- [rpu-;Ik], (2) 
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where J= [l, 1, . . . . 11’ and I is the m by m identity matrix. Connor’s 
theorem is 

det( C) 2 0, Pi) 

det(C) = 0 if m>b-v; (3ii) 

if m = b - v, kr(r-A)“-’ det(C) 
P(r - ny 

is a perfect square. (3iii) 

Given a S(A; t, k, v) design (A!, ~8) if we define the incidence matrix Wi, to 
be the (f) by L!+Y matrix given by 

if TGK, 
otherwise, 

then parts (3i) and (3ii) of Connor’s theorem can be restated as follows: 
The matrix 

Q’=r(r-A)- vB W,,+AkJ (5) 

is positive semidefinite of rank <b - v, because the matrices C are exactly 
the principle submatrices of Q’. In [7] R. M. Wilson establishes the 
following theorem. 

THEOREM 1 [7]. Let P, denote the matrix of orthogonal projection from 
the vector space Qb of b-tuples of rational numbers whose coordinates are 
indexed by the blocks of an S(1; t, k, v) design with t 3 2s and v 2 k + s onto 
W( WSB), the row space of the sth incidence matrix W,,. Then 

P,= i (-I)‘$$ @LWi,. 
i=O s 

Equation (5) and thus parts (3i) and (3ii) of Connor’s theorem are a 
consequence of this theorem. In Section 3 we obtain a generalization of 
Connor’s theorem by generalizing Theorem 1. 

2. BACKGROUND AND NOTATION 

The tools we use to obtain our generalization were established by Kreher 
in [4]. The reader who is familiar with this paper may wish to skip this 
section. 

In addition to the definitions found in the introduction. we mention a 
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few more definitions and notational conventions. An S(l; t, k, u) design is 
also known as a t - (u, k, 1) design and when L = 1 it is the familiar Steiner 
system S(t, k, u). 

If X is a finite set and F a field, then an X-vector U over F is a function 
U: X + F, and we write U = (U[x]: x E X). The set of all X-vectors over F 
is Fx. Similarly, given finite sets A and B an A by B matrix M over F is a 
function M: A x B -+ F and we write M = (M[a, 61: a E A and b E B). The 
set of all X by X matrices over a field F is denoted by Mat,(X). 
Multiplication of matrices is the usual matrix product. That is, if M is A by 
B and N is B by C then MN is the A by C matrix whose [a, cl-entry is 

@WCs, cl = c Mu, b]N[b, cl. 
bsB 

The vector space over F spanned by the rows of A4 is the row space, W(M); 
the column space V(M) is defined similarly. 

For notation definitions and theorems on permutation groups the reader 
is directed to the book by Wielandt [6]. Here we introduce some notation 
and concepts relevant to the present paper. If X is a set, then Sym(X) 
denotes the symmetric group on X. A group G is said to act on a set X if 
there is a function Xx G +X (usually denoted by (x, g) + xg) such that 
for all g, h E G and x E X, 

x1=x and x(gh) = (x”)“. 

Such a function is said to be a group action of G on X and is denoted by 
G 1 X. Thus, if G 1 X is a group action, then G may be thought of as being. 
mapped homomorphically onto a subgroup of Sym(X) and xg is the image 
of XE X under g E G. If XE X, the stabilizer in G of x is the subgroup 
G,= (gEG:xg=x} and the orbit of x under G is xc= {xg:gEG}. We 
note that 1GI = lx’1 . IG,(. A group action G ) X induces a natural action on 
the power set P(X), on the collection (I) of t-subsets of X and on Mat,(X). 
If S c X and g E G, then we define Sg by: Sg = {sg: s E S}; if F is a field and 
ME MatAP(X then Mg is defined by Mg[S, T] = M[Sg, Tg]. The set of 
all orbits of group action G 1 L2 is denoted by O/G. 

If ME MatdP(X)) has the property that Mg = M for all g E G, then M is 
said to be G-inouriunt. The set of all G-invariant matrices is denoted by 
Alg(G I X). That is, 

Alg(G I X)= {MEMat,(P(X)):Mg=MforallgEG}. 

It is easy to verify that Alg(G I X) is an algebra over the rationals Q. 
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If G 1 X is a group action, define the P(X)/G by P(X)/G matrices A, B, 
and D as follows: For each A, r~ P(X)/G, 

A[A, r] = I{Kd? Kz T,}I, 

B[A,~]=~{TEA:T~K,,}I, 

if A=T, 
otherwise, 

where 7’, E A and Z&, E r are any fixed representatives. 
To emphasize the dependence of A, B, and D on the group action G ) X 

we write A(G I X), B(G I X), and D(G I X) for A, B, and D, respectively. 
Now, because T E K implies Tg E Kg for an g in G and subsets T and K of 
X, it is easy to establish that A(1 I X) = B(l I X) E Alg(G I X). See, for 
example, [ 43. 

The fundamental theorem discovered by Kreher in [4] is 

THEOREM 2. There is an epimorphism r: Alg(G I X) + Mato(P(X)) 
which has the properties 

(i) r:A(l I X)+A(G IX) 
(ii) z: BT( 1 I X) + BT(G I X). 

We will use this theorem to generalize Wilson’s and consequently 
Connor’s theorem to designs with a given automorphism group. 

3. GENERALIZATION OF CONNOR'S INEQUALITY 

Before giving the generalization we introduce some useful notation. If 
ME Mato(P(X)/G), then Mlk denotes the (r)/G by (f)/G submatrix of M 
corresponding to the rows and columns labeled by ( f)/G and (t)/G, respec- 
tively. Using this notation with A = A(G I X) we may state the observation 
of Kramer and Mesner, see [ 33: 

Given integers 0 < t <k < u, a u-set X and G < Sym(X) there exists 
an S(1; t, k, u) design (X, W) with G as an automorphism group if 
and only if there is a nonnegative integer solution U to the system: 

A,, U= AJ, where J= [l, 1, 1, . . . . 1)‘. 

Furthermore, the correspcnding design is simple if U[r] E (0, 1 } 
for each orbit r of k-subsets. 

In 1982, Wilson [7] obtained some very useful identities among these 
matrices when the group is trivial. His W,, matrix is our Ark(l I X), where 
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1 represents the identity group on X. Restating the fundamental theorem of 
[4] with this notation we have 

THEOREM 2’. There is an epimorphism r: Alg(G) --, Mat,( P(X)/G) with 
the properties 

(i) z: W,,-+Atk; 
(ii) t: Wz -+ BT,. 

Finally, for convenience, if (X, 33) is an S(L; t, k, v) preserved by 
G< Sym(X), we denote by A,, and B,, the submatrices of Atk and B, 
whose columns are indexed by g/G. Similarly, we define FVl, as that 
submatrix of W,, with columns corresponding to 9I. We are now in a 
position to generalized Connor’s inequalities. 

We first present some elementary relations among the Ark’s and 
introduce a new family of matrices A,k. The matrix Afk denotes the (I)/G 
by (f)/G matrix whose [d, r]-entry is 

Alk[d, rJ= I{TELI: TnK,=@}l, 

where K, E r is any fixed representative. Similarly, we define Blk and mrk as 
follows: 

~,,cCT, Kl= ; if TnK= 0; 
otherwise. 

Finally, Atgs, Blo, and E’,a are defined for a S(2; t, k, u) design (X, L@) in a 
similar fashion. 

PROPOSITION 3. Given an S(J; t, k, v) design (X, .%?) and integers 
O<i<j<k, then 

A,A,, = Vi) 

Aja= i (-l)‘B;AiB (7iii) 
i=O 

Aj,= 2 (-l)iB;Ai3 
i=O 

Jj, B& = b;Bf (7v) 
AjaBL = b;B;, (7vi) 
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where i + j < t in (7~) and (7vi). Furthermore, these equations hold when the 
A’s and B’s are interchanged. 

Proof: Equation (7i) is just a special case of Proposition 9 in [4] and 
the proof of (7ii) is similar. For (7iii) consider the [J, K]-entry of 
R=Cj=,(-l)‘W$WiB, JE(:) and KELP, which is 

R[J,K]= i (-l)i 
if p=O 

= pj,CJ, Cl, 
i=O if p#O 

where p = 1 Jn Kl. Hence applying Theorem 2 yields the required result. 
For Eq. (7iv) again we appeal to Theorem 2 by examining the [J, K]-entry 
of C{=o(-l)iF+$piB, JE(~) and KE%~‘; it is 

where p = 1 J n KI. Thus this entry is just Wj,[J, K]. For (7~) we show 
6pja W,& = bj 8’; and apply the fundamental theorem. If JE (I), and ZE (I), 
then the [J, II-entry of the left-hand side is 

l{KE& JnK#@andZ&K}I= “0: 
if [ZnJI =0 
otherwise 

= b{ W;[J, Z]. 

The proof of (7vi) is similar. Finally, to complete the proof we can 
interchange A’s with B’s by applying Proposition 4 of [4]. 1 

We should remark that Wilson in 1984, see [7], states this proposition 
for the trivial automorphism group. Indeed, in the same paper Wilson also 
shows that for an S(;1; t, k, u) design (X, W) with s 6 t/2 and s d k < u-s, 
the matrix P,(l 1 X) corresponding to the orthogonal projection from Qa 
onto %?( W,,) is given by 

(bf)-’ p; Wi,. 

That is, P,(l I X) has the following properties: 

(i) W,, PA1 I X) = W,,; 
(ii) if U. W&=0, then U.P,(l I X)=0; 

(iii) (P,(l 1 X))‘= P,(l I X). 

Hence, in view of Theorem 2, the fundamental theorem, when there is a 
group G < Sym(X) preserving W, we write 
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Then P, = P,(G 1 X) has the following properties: 

0) AsaP, = A,,; 
(ii) if U. BTB=OO, then U.P,=O; 

(iii) Pz = P,. 

Properties (i) and (iii) follow, of course, from the fundamental theorem. 
To verify property (ii), however, we make liberal use of Proposition 3. 
Equations (7i) and (7ii) show that 

%‘(B,,)sW(B,,)~ ... c-S?(B,,) 

and 

SqB,,) c W(B,,) E . . . G W(B,,), 

respectively. Therefore, by (7iii) and (7iv) we have for each j= 0, 1, 2, . . . . k, 

a(B,a) G (J W( Biia) c a( Bj,) 
i=O 

and 

a(Bja) E (,J B(Bi,) S a(Bja), 
i=O 

respectively. Thus, W(B,,) = W(Bja) for all j= 0, 1, 2, . . . . s. Whence, it 
follows that P,(G I X) annihilates the row space of BTa and so property (ii) 
follows. 

We now give the central theorem of this paper from which we will derive 
generalizations of Connor’s inequalities. 

THEOREM 4. Let (X, 9) be an S(J.; t, k, u) design preserved by 
G < Sym(X) with s < t/2 and s < k < v - s. Then, D’/2PSD-“2 is the matrix 
corresponding to the orthogonal projection from QaalG onto W(A,,D-‘J2). 

Proof Let U E W(ASdD-“‘), then 0 = U . D-‘i’A& = U . D-‘12 x 
(D-‘B,,D)== U~D-‘i2DB~~D-‘= U. D1J2BTaDD-‘, whence U. D’12BTa 
= 0. Thus, by property (ii), U. D112PS = 0. Hence, (D1~2P,D-1~2)T 
annihilates UEW(A,~D-“~). Now we need to show that D1/2PsD-1/2 fixes 
the vectors in UE~(A~~D-~‘~) 

The matrix D1’2PSD-1/2 fixes’vectors in UEW(A,~D-“~) if and only if 
(A,,D-1’2)(D1’2P,D-112)= A,,D-1/2. From property (i) we have 

A,,D-‘l==A,,pD’I=P,D-‘l==A,,D-‘/=D’/=P D-‘/2 s 3 

which concludes the proof. I 
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We give an obvious but important corollary. 

COROLLARY 5. For an S(A; t, k, u) design (X, 9J) preserved by 
G<Sym(X) with s< t/2 and s<k<v-s, the matrix D’j2P D-If2 is 
symmetric, idempotent, positive semidej?nite, and has rank I (:)/Cl s 

Proof: This is always the case for a matrix corresponding to the 
orthogonal projection onto a subspace. Also note that the projection has 
rank equal to the dimension of the subspace, in this case the dimension of 
9(A,,D-‘/2). By the proof of Theorem 6 in [4] we have 

dim(a(A,,)) = rank(d,,) > rank(A,) = [($)/Gl. 

This, however, is the number of rows of AJa, whence, dim(W(A,,D-‘/2)) 
= raMA,,) = l(WI. I 

If A and Z are orbits of blocks of an S(I; t, k, u) design (X, 9I) preserved 
by G < Sym(X), we define pi = pj(A, ZJ to be the number of blocks in r 
which intersect an orbit representative, say K, E A, in exactly i points. That 
is, 

pj= ({KEZ? lKnK,I =i}l. 

Writing p = [pO, p,, . . . . ~~1, we then have 

LEMMA 6. (i) B,&4i,y[A, r] = CT=,, pj (j); 
(ii) &Ai,[A, ZJ =I;=, pj (‘;j). 

Proof. To prove (i) we construct a graph on A u Z-u (7) as follows: 

(a) If K E A and ZE (7) then K is adjacent to Z just when K contains t 
(b) if ZE (f) and K’ E f then Z is adjacent to K’ just when Zc K’. 

There are no other edges. 
We also partition (f) into its G-orbits [a,, Q2, . . . . a,], where 

n = I ( f)/Gl. Let K, E A. The number of paths of length 2 from K,, into Z are 
counted in two ways. First, K, is adjacent to BT,[A, Qj] i-subsets in iRj for 
each j= 1, 2, . . . . n. Also, if ZE Q,, then Z is adjacent to A,,[SZ,, Z] blocks 
in f. Thus, the number of paths of length 2 from KO into Z is 

t BE[A, ln,]Ai,[12,, Z-J = BLA,,[A, f]. 
j=l 

On the other hand, the number of paths of length 2 from KO to a particular 
K’ in r is I{ZE(~):K~~Z and ZsB}(=(T), where m=lK,,nK’l. 
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Therefore, summing over all K’ E r gives the desired result. The proof of 
(ii) can be done in the same fashion. 1 

It follows from Lemma 6 that the [d, r]-entry of P,(G ] X) is 
.fM4 O), where 

f,(Y)= f: (-l)i ;I; (bf)-’ $ Y[jl (“T’). 
i=O ( > j-0 

Interchanging the order of summation we see that 

fs( y, = 2 Psj yCil~ 
j=O 

where 

Thus, if P, = CBso, Psi, . . . . psk], thenfJ Y) = /3, Y. Hence, the Cd, r]-entry of 
P,(G 1 X) is just p, .p(d, r). It is important to observe that /I, is indepen- 
dent of the choice of group action. Therefore it may be computed a priori 
to choosing a group. 

COROLLARY 7. Let A,, AZ, . . . . A, be some set of orbits of blocks of an 
S(Iz; t, k, v) design (X, &I) preserved by G < Sym(X) with integers s < t/2 and 
k + s d v. Then the m by m matrix 

has nonnegative determinate and is singular ifm > Ig/Gl - l(f)/Gl. 

Proof Let M= [B,. (Ai, A,)]. Then Z-D1’2MD-1’2 is a principal 
submatrix of I- D”*P D- ‘I2 which by Corollary 5, is 
definite of rank equil to la/G/ - I($)/GI. Hence, 

positive semi- 
rank(l- 44) = 

rank(Z- D1’2MD-“2) < ISl/Gl - I(f)/G(. m 

When G is trivial and t = 2, Corollary 7 is Connor’s inequality [ I]. Also 
note that when m = 1, Corollary 7 says that if the orbit A is to be used 
in the construction of an S(& t, k, v) with s< t/2, k + s < v, and 
automorphism group G, then A must satisfy 

1 -D;p(A, A)aO. 
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