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Abstract

We derive and analyze a penalty method for solving American multi-asset option problems. A small, non-linear penalty term
is added to the Black–Scholes equation. This approach gives a fixed solution domain, removing the free and moving boundary
imposed by the early exercise feature of the contract. Explicit, implicit and semi-implicit finite difference schemes are derived, and
in the case of independent assets, we prove that the approximate option prices satisfy some basic properties of the American option
problem. Several numerical experiments are carried out in order to investigate the performance of the schemes. We give examples
indicating that our results are sharp. Finally, the experiments indicate that in the case of correlated underlying assets, the same
properties are valid as in the independent case.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

American derivatives are popular trading instruments in present-day financial markets. We consider American put
options where the payoff depends on more than one underlying asset. Such option prices can be modeled by higher
dimensional generalizations of the original Black–Scholes equation [1]. The purpose of this paper is to extend the
penalty method discussed in [19] to multi-asset American put option problems.

Various numerical techniques can be applied to price multi-variate derivatives. Higher dimensional generalizations
of lattice binomial methods can be used, cf. [2], where European options based on three underlying options are solved
numerically. Another way of pricing multi-asset derivatives is by the Monte Carlo simulation techniques, cf. [12]. In
a wide range of scientific fields, finite element and finite difference methods (FEM and FDM) are popular. For studies
of FEM and FDM concerning the numerical valuation of financial derivatives see, e.g., [11,27,6,26,4,5].

The idea behind the penalty method for multi-asset option models is similar to the method described in [19].
American put options can be exercised at any time before expiry. This introduces a free and moving boundary
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problem. By adding a certain penalty term to the Black–Scholes equation, we extend the solution to a fixed domain.
Furthermore, this term forces the solution to stay above the payoff function at expiry. Throughout the last decade,
a number of papers addressing penalty schemes for American options have been published, see [10,15,9,17,7] and
references therein.

The number of spatial degrees of freedom in the Black–Scholes equation equals the number of underlying assets
involved in the contract. This means that the spatial dimension can be of order O(10) (or even higher). Furthermore,
as will be explained below, in order to solve an n-dimensional option problem one must typically solve a series of
Black–Scholes equations with spatial dimensions n − 1, n − 2, . . . , 1, leading to a very CPU demanding procedure.
Consequently, it is necessary to design efficient numerical schemes for such problems. Stable higher order methods
for the Black and Scholes equation have been introduced by Voss et al. [23] and Khaliq et al. [15]. Mesh-free methods
based on radial basis functions may also reduce the computational efforts significantly, see Fasshauer et al. [9].

The present study is motivated by the scheme introduced by Forsyth and Vetzal in [28] for American options with
stochastic volatility. In their work they add a source term to the discrete equations. Our method represents a refinement
of their work in the sense that the penalty term is added to the continuous equation. For independent underlying
assets, this leads to restrictions regarding the magnitude of the penalty term as well as conditions for the discretization
parameters. Also, by choosing a semi-implicit finite difference discretization, we avoid solving non-linear algebraic
equations and thereby enhance the overall computational efficiency.

We present numerical experiments illustrating the properties of the schemes. In the case of correlated underlying
assets, we have been unable to derive proper bounds on the numerical solutions. However, numerical experiments
indicate that similar properties are present in such cases.

This paper is organized as follows: In Section 2 we describe the multi-asset Black–Scholes equation, along with the
penalty formulation of the problem. The boundary conditions corresponding to zero values of the underlying assets
are obtained by solving lower dimensional Black–Scholes equations. In Section 4, numerical schemes for the two-
factor model problem are derived, starting with specifying the two-factor model problem. First, an explicit scheme is
presented, and then both a semi-implicit and a fully implicit scheme are defined. Analysis of these schemes are carried
out in Section 4, under the assumption that the underlying assets are independent. Restrictions regarding the time step
size and the penalty term are then provided for all three schemes. In the last section of this paper, we present a series
of numerical experiments, starting with comparing the fully implicit and the semi-implicit schemes with respect to
computational efficiency. In Section 5, we show that the numerical experiments indicate that for our model data,
the restrictions derived in Section 4 for independent assets are also valid when the underlying assets are correlated.
Finally, we make some conclusive remarks in Section 6.

2. American multi-asset option problems

The multi-dimensional version of the Black–Scholes equation takes the form

∂ P

∂t
+

1
2

n∑
i=1

n∑
j=1

ρi, jσiσ j Si S j
∂2 P

∂Si∂S j
+

n∑
i=1

(r − Di )Si
∂ P

∂Si
− r P = 0, (1)

see e.g. [8,16] or [24]. Here, P is the value of the contract, Si is the value of the i th underlying asset, n is the number
of underlying assets, ρi, j is the correlation between asset i and asset j , r is the risk-free interest rate and Di is the
dividend yield paid by the i th asset.

The value of an American option at the time T of expiry of the contract is readily known as a function of the
underlying assets. That is, P(S1, S2, . . . , Sn, T ) is known and we want to use (1) to compute P throughout the time
interval [0, T ]. This means that P(S1, S2, . . . , Sn, T ) provides a final condition and that we seek to solve this PDE
backwards in time. The plus sign in front of the second-order term in (1) will thus not cause any stability problems. A
precise mathematical formulation of the problem will be presented below.

For a majority of multi-asset option models the payoff function at expiry is

P(S1, S2, . . . , Pn, T ) = φ(S1, . . . , Sn) = max

(
E −

n∑
i=1

αi Si , 0

)
, (2)



B.F. Nielsen et al. / Journal of Computational and Applied Mathematics 222 (2008) 3–16 5

where E and α1, . . . , αn are given constants, see [16]. We will in this paper consider put options, i.e.

E, α1, . . . , αn ≥ 0.

Notice that the American early exercise feature of the contract imposes the constraint

P(S1, . . . , Sn, t) ≥ φ(S1, . . . , Sn)

on the solution for all admissible values of S1, . . . , Sn and t .
In the case of American options, the solution domain can be divided into two parts. In one region the price of the

option satisfies the Black–Scholes equation and in the second subdomain it equals the payoff function φ. This leads
to the linear complementarity form of the problem. Let L be the differential operator

L =
∂

∂t
+

1
2

n∑
i=1

n∑
j=1

ρi, jσiσ j Si S j
∂2

∂Si∂S j
+

n∑
i=1

(r − Di )Si
∂

∂Si
− r,

and

Ω = {(S1, . . . , Sn); S j > 0 for j = 1, . . . , n} = Rn
+,

Ωi = {(S1, . . . , Si−1, 0, Si+1, . . . , Sn); S j ≥ 0 for j 6= i},

S = (S1, . . . , Sn).

If T represents the time of expiration of the contract, then the American put problem can be written in the form

(P − φ),LP = 0 in Ω × [0, T ], (3)

LP ≤ 0 in Ω × [0, T ], (4)

P(S, t) ≥ φ(S) in Ω × [0, T ], (5)

P(S, T ) = φ(S) for all S ∈ Ω , (6)

P(S, t) = gi (S, t) for all S ∈ Ωi × [0, T ] and i = 1, . . . , n, (7)

lim
Si →∞

P(S, t) = Gi (S1, . . . , Si−1, Si+1, . . . , Sn, t) for all S ∈ Ω × [0, T ] and i = 1, . . . , n, (8)

and both P and its first derivatives must be continuous. Here gi (·, ·) and Gi (·, ·) are given functions providing suitable
boundary conditions. Typically, gi (·, ·) is determined by solving the associated n − 1-dimensional American put
problem and Gi (·, ·) is identical to zero. Further details can be found in Section 5. Until then, we will assume that
the boundary conditions are consistent with the constraint imposed by the early exercise feature of the option, i.e. that
gi (·, ·) and Gi (·, ·) are consistent with the constraint (5).

2.1. A penalty method

Define the function

q(S1, . . . , Sn) = E −

n∑
i=1

αi Si .

As for American single-asset option problems, cf. [19], a penalty method for solving (3)–(8) can be defined as follows

∂ P

∂t
+

1
2

n∑
i=1

n∑
j=1

ρi, jσiσ j Si S j
∂2 P

∂Si∂S j
+

n∑
i=1

(r − Di )Si
∂ P

∂Si
− r P +

εC

P + ε − q
= 0,

S ∈ Ω , t ∈ [0, T ], (9)

P(S, T ) = φ(S) for all S ∈ Ω , (10)

P(S, t) = gi (S, t) for all S ∈ Ωi × [0, T ] and i = 1, . . . , n, (11)

lim
Si →∞

P(S, t) = Gi (S1, . . . , Si−1, Si+1, . . . , Sn, t) for all S ∈ Ω × [0, T ] and i = 1, . . . , n, (12)
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where 0 < ε � 1 is a small parameter and C is a positive constant. Note that the penalty term

εC

P + ε − q

is of order ε in regions where P(S, t) � q(S), and hence the Black–Scholes equation is approximately satisfied. On
the other hand, as P approaches q this term is approximately equal to C assuring that the early exercise constraint (5)
is not violated. In Section 4 we will prove that for a two-factor problem, with independent assets, a discrete analogue
to (5) holds provided that C ≥ r E .

3. Discretization

For the sake of simplicity we will define and analyze our numerical schemes for a two-factor model problem and use
x and y, instead of the more conventional notation S1 and S2, to represent the asset prices. In principle, the numerical
methods and analysis presented in this paper can be extended to general n-dimensional American option problems,
provided that the payoff function at expiry is of the form (2). Nevertheless, the number of spatial dimensions in the
modified Black–Scholes equation (9) equals n, and hence the number of degrees of freedom needed to discretize this
equation grows rapidly with n. Furthermore, in order to determine proper boundary conditions, this procedure requires
that a series of similar PDEs with spatial dimensions n − 1, n − 2, . . . , 1 are solved. Appendix A contains a complete
description of the three-factor case, i.e. n = 3.

For n ≥ 3, the task of numerically determining the fair price of the option with our algorithms thus becomes CPU
demanding. This raises the question whether suitable higher order schemes can be designed, see Voss et al. [23] and
Khaliq et al. [15].

3.1. A two-factor model problem

We will consider the following penalty formulation of an American put problem with two underlying assets,
i.e. n = 2,

∂ P

∂t
+

1
2
σ 2

1 x2 ∂2 P

∂x2 +
1
2
σ 2

2 y2 ∂2 P

∂y2 + ρσ1σ2xy
∂2 P

∂x∂y

+ (r − D1)x
∂ P

∂x
+ (r − D2)y

∂ P

∂y
− r P +

εC

P + ε − q
= 0, x, y > 0, t ∈ [0, T ), (13)

P(x, y, T ) = φ(x, y), x, y ≥ 0, (14)

P(x, 0, t) = g1(x, t), x ≥ 0, t ∈ [0, T ], (15)

P(0, y, t) = g2(y, t), y ≥ 0, t ∈ [0, T ], (16)

lim
x→∞

P(x, y, t) = G1(y, t), y ≥ 0, t ∈ [0, T ], (17)

lim
y→∞

P(x, y, t) = G2(x, t), x ≥ 0, t ∈ [0, T ], (18)

where

q(x, y) = E − (α1x + α2 y), φ(x, y) = max(q(x, y), 0). (19)

Recall that we want to solve this problem backwards in time starting with the final condition (14).
Let, for given positive integers I , J and N ,

1x =
x∞

I + 1
, 1y =

y∞

J + 1
, 1t =

T

N + 1
, (20)

xi = i1x, i = 0, . . . , I + 1, (21)

y j = j1y, j = 0, . . . , J + 1, (22)

tn = n1t, n = 0, . . . , N + 1, (23)

qi, j = q(xi , y j ), i = 0, . . . , I + 1 and j = 0, . . . , J + 1, (24)

Pn
i, j ≈ P(xi , y j , tn). (25)
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Here x∞ and y∞ are the upper boundaries of the truncated solution domain. Throughout this paper we will assume
that 1x = 1y = h.

The discrete final condition and boundary conditions are defined in a straightforward manner

P N+1
i, j = max(qi, j , 0), i = 0, . . . , I + 1 and j = 0, . . . , J + 1, (26)

Pn
i,0 = (g1)

n
i , i = 0, . . . , I + 1 and n = 0, . . . , N + 1, (27)

Pn
0, j = (g2)

n
j , j = 0, . . . , J + 1 and n = 0, . . . , N + 1, (28)

Pn
i,J+1 = (G1)

n
i , i = 0, . . . , I + 1 and n = 0, . . . , N + 1, (29)

Pn
I+1, j = (G2)

n
j , j = 0, . . . , J + 1 and n = 0, . . . , N + 1. (30)

Here (g1)
n
i , (g2)

n
j , (G1)

n
i , (G2)

n
j are discrete approximations of g1(xi , tn), g2(y j , tn), G1(xi , tn), G2(y j , tn),

respectively. We let (G1)
n
i = (G2)

n
j = 0, whereas (g1)

n
i and (g2)

n
j are obtained by solving the corresponding 1D

Black–Scholes equations.
In order to simplify the notation needed in this paper we introduce the finite difference operators

Dxx Qn
i, j =

Qn
i+1, j − 2Qn

i, j + Qn
i−1, j

h2 , Dyy Qn
i, j =

Qn
i, j+1 − 2Qn

i, j + Qn
i, j−1

h2 , (31)

Dxy Qn
i, j =

Qn
i+1, j+1 − Qn

i, j+1 − Qn
i+1, j + 2Qn

i, j − Qn
i−1, j − Qn

i, j−1 + Qn
i−1, j−1

2h2 , (32)

Dx Qn
i, j =

Qn
i+1, j − Qn

i, j

h
, Dy Qn

i, j =
Qn

i, j+1 − Qn
i, j

h
, (33)

Dt Qn
i, j =

Qn
i, j − Qn−1

i, j

1t
, (34)

where {Qn
i, j }

I+1,J+1
i, j=0 , for n = 0, . . . , N + 1, is a discrete function defined on the mesh defined in Eqs. (20)–(23).

Since we use upwind differences in (33), and a first-order approximation of the time derivative in (34), the truncation
error of the resulting scheme is O(h, 1t). Throughout this paper we will assume1 that

r ≥ D1, D2,

and, hence we use an upwind differencing to discretize the transport terms in (13), cf. (33).

3.2. An explicit scheme

Assume that we know the solution at time step n, and we wish to compute Pn−1. Applying the space and time
finite difference operators at time step n, the explicit scheme reads

Dt Pn
i, j +

1
2
σ 2

1 x2
i Dxx Pn

i, j +
1
2
σ 2

2 y2
jDyy Pn

i, j + ρσ1σ2xi y jDxy Pn
i, j

+ (r − D1)xiDx Pn
i, j + (r − D2)y jDy Pn

i, j − r Pn
i, j +

εC

Pn
i, j + ε − qi, j

= 0,

for i = 1, . . . , I , j = 1, . . . , J and n = N + 1, N , . . . , 1. The final condition and boundary conditions are defined in
(26)–(30).

Defining

F(V1, V2, V3, V4, V5, V6, V7, q, x, y) = e(x, y)V1 + [b(y) − e(x, y)]V2 + [a(x) − e(x, y)]V3

+ [1 − 2a(x) − 2b(y) + 2e(x, y) − c(x) − d(y) − r1t]V4

+ [a(x) − e(x, y) + c(x)]V5 + [b(y) − e(x, y) + d(y)]V6 + e(x, y)V7 +
εC1t

V4 + ε − q
, (35)

1 If r ≤ D1, or r ≤ D2 we preserve upwind differencing by replacing (33) with the proper finite difference operator.
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where

a(x) =
1
2

1t

h2 σ 2
1 x2, b(y) =

1
2

1t

h2 σ 2
2 y2, c(x) = (r − D1)

1t

h
x,

d(y) = (r − D2)
1t

h
y, e(x, y) =

1
2

1t

h2 ρσ1σ2xy, (36)

this scheme can be written in the form

Pn−1
i, j = F(Pn

i−1, j−1, Pn
i, j−1, Pn

i−1, j , Pn
i, j , Pn

i+1, j , Pn
i, j+1, Pn

i+1, j+1, qi, j , xi , y j ). (37)

3.3. Semi-implicit and fully implicit schemes

The implicit and semi-implicit methods are obtained by applying the spatial finite difference operators at time step
n and the time difference at time step n + 1,

Dt Pn+1
i, j +

1
2
σ 2

1 x2
i Dxx Pn

i, j +
1
2
σ 2

2 y2
jDyy Pn

i, j + ρσ1σ2xi y jDxy Pn
i, j

+ (r − D1)xiDx Pn
i, j + (r − D2)y jDy Pn

i, j − r Pn
i, j +

εC

Pn+1/2
i, j + ε − qi, j

= 0, (38)

for i = 1, . . . , I , j = 1, . . . , J and n = N , N − 1, . . . , 0, where we define Pn+1/2
i, j = Pn+1

i, j in the semi-implicit

scheme and Pn+1/2
i, j = Pn

i, j in the fully implicit method. As for the explicit scheme, the final condition and boundary
conditions are defined in equations Eqs. (26)–(30).

Some simple algebraic manipulations show that this scheme can be written in the form

ei, j Pn
i−1, j−1 + [b j − ei, j ]Pn

i, j−1 + [ai − ei, j ]Pn
i−1, j − [1 + 2ai + 2b j − 2ei, j + ci + d j + r1t]Pn

i, j

+ [ai − ei, j + ci ]Pn
i+1, j + [b j − ei, j + d j ]Pn

i, j+1 + ei, j Pn
i+1, j+1 = −Pn+1

i, j −
εC1t

Pn+1/2
i, j + ε − qi, j

, (39)

where

ai = a(xi ), b j = b(y j ), ci = c(xi ),

d j = d(y j ), ei, j = e(xi , y j ).

Note that the semi-implicit scheme Pn+1/2
i, j = Pn+1

i, j gives a system of linear algebraic equations, whereas the fully

implicit scheme Pn+1/2
i, j = Pn

i, j leads to a system of non-linear equations.

4. Analysis in the case of independent assets

In this section we will prove that our schemes satisfy the early exercise constraint. Our analysis will only cover the
case of independent assets, i.e. we will assume that

ρ = 0

throughout this section. Unfortunately we have not been able to derive similar results in the correlated case. However,
such problems will be addressed by numerical experiments in Section 5.

4.1. Analysis of the explicit scheme

Theorem 1. Assume that ρ = 0 and that C ≥ r E. Then the approximate option values generated by the explicit
scheme (37) satisfy

Pn
i, j ≥ max(q(xi , y j ), 0), i = 0, . . . , I + 1, j = 0, . . . , J + 1 (40)
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and n = N + 1, N , . . . , 0, provided that

1t ≤
h2

σ1x2
∞ + σ2 y2

∞ + (r − D1)hx∞ + (r − D2)hy∞ + rh2 +
C
ε

h2
. (41)

Proof. In the case of independent assets the function F , defined in Eq. (37), takes the form

F(V1, V2, V3, V4, V5, V6, V7, q, x, y) = b(y)V2 + a(x)V3 + [1 − 2a(x) − 2b(y) − c(x) − d(y) − r1t]V4

+ [a(x) + c(x)]V5 + [b(y) + d(y)]V6 +
εC1t

V4 + ε − q
, (42)

i.e. e(x, y) = 0 for all x, y ≥ 0, see (36). Clearly, for all x, y ≥ 0

∂ F

∂V2
,

∂ F

∂V3
,

∂ F

∂V5
,

∂ F

∂V6
≥ 0, (43)

and for V4 ≥ q

∂ F

∂V4
≥ 0, (44)

provided that 1t satisfies (41).
Assume that inequality (40) holds at time step tn . From the definition (37) of our scheme, and inequalities (43) and

(44), we find that

Pn−1
i, j = F(0, Pn

i, j−1, Pn
i−1, j , Pn

i, j , Pn
i+1, j , Pn

i, j+1, 0, qi, j , xi , y j )

≥ F(0, qi, j−1, qi−1, j , qi, j , qi+1, j , qi, j+1, 0, qi, j , xi , y j ). (45)

Recall the definition (19) of the payoff function q at time t = T of the basket option. Thus,

qi, j−1 = qi, j + α2h, qi−1, j = qi, j + α1h,

qi+1, j = qi, j − α1h, qi, j+1 = qi, j − α2h,

and consequently

Pn−1
i, j ≥ b jα2h + aiα1h + qi, j − r1tqi, j − [ai + ci ]α1h − [b j + d j ]α2h +

εC1t

qi, j + ε − qi, j

= qi, j − r1tqi, j − (r − D1)
1t

h
xiα1h − (r − D2)

1t

h
y jα2h + C1t

= qi, j − r1tqi, j − r1t (xiα1 + y jα2) + D11t xiα1 + D21t y jα2 + C1t

≥ qi, j − r1tqi, j − r1t (E − qi, j ) + C1t,

where we have used the definition (19) of q . Therefore, if C ≥ r E then

Pn−1
i, j ≥ qi, j + (C − r E)1t ≥ qi, j .

Furthermore, from Eq. (42) and (45) and the assumption that Pn
i, j satisfies (40), i.e. Pn

i, j ≥ 0 and Pn
i, j ≥ qi, j , we

find that

Pn−1
i, j ≥ 0,

and, hence the desired result follows by induction. �

4.2. Analysis of the semi-implicit and fully implicit schemes

Theorem 2. For every C ≥ r E the approximate option prices {Pn
i, j } defined by the fully implicit scheme (38) satisfy

Pn
i, j ≥ max(q(xi , y j ), 0), i = 0, . . . , I + 1, j = 0, . . . , J + 1, (46)
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and n = N + 1, N , . . . , 0. Similarly, if C ≥ r E, and in addition

1t ≤
ε

r E
, (47)

the numerical option prices generated by the semi-implicit version of (38) satisfy the lower bound (46).

Proof. In a straightforward manner it follows that the difference

un
i, j = Pn

i, j − qi, j

between the approximate option value Pn
i, j and q , used in the payoff function at expiry (19) and (24), satisfies the

equation

[1 + 2ai + 2b j + ci + d j + r1t]un
i, j = un+1

i, j + b j u
n
i, j−1 + ai u

n
i−1, j + [ai + ci ]u

n
i+1, j

+ [b j + d j ] un
i, j+1 +

εC1t

un+1/2
i, j + ε − qi, j

− r1t E,

cf. Eq. (39) (and recall that ρ = 0, i.e. e(x, y) = 0 for all x, y ≥= 0). Next, by defining

un
= min

i, j
un

i, j

it follows that

[1 + 2ai + 2b j + ci + d j + r1t]un
≥ un+1

k,l + b j u
n

+ ai u
n

+ [ai + ci ]u
n

+ [b j + d j ]u
n

+
εC1t

un+1/2
k,l + ε − qi, j

− r1t E,

where k and l are indices such that un
k,l = un . Hence, we conclude that

[1 + r1t]un
≥ un+1

k,l +
εC1t

un+1/2
k,l + ε − qi, j

− r1t E . (48)

Having established inequality (48) the result follows exactly as for the single-asset option problem analyzed in [19].
The rest of the proof is therefore omitted. �

5. Numerical experiments

We will now present a number of examples concerning options depending on two or three assets. In the derivation
and analysis of the schemes above we only assumed that the boundary conditions fulfilled the constraint (5), imposed
by the early exercise feature of the contract. Clearly, in order to perform numerical experiments we need to fully
specify these boundary conditions. Since we are considering put options the contract gets worthless as the price of
either of the assets tends to infinity, i.e. for a two-factor problem

G1(y, t) = 0, y ≥ 0, t ∈ [0, T ],

G2(x, t) = 0, x ≥ 0, t ∈ [0, T ],

see Eqs. (17) and (18). Next, it follows from the lognormal distribution model of the assets, cf. e.g. [25], that if one of
the assets is zero at time t∗ then the asset will be worthless at any time t ≥ t∗. Hence, we conclude that g1 and g2, in
Eqs. (15) and (16), are the solutions of the associated single-asset American put problems,

∂g1

∂t
+

1
2
σ 2

1 x2 ∂2g1

∂x2 + (r − D1)x
∂g1

∂x
− rg1 = 0 for x > x̄(t) and 0 ≤ t < T, (49)

g1(x, T ) = max(E − α1x, 0) for x ≥ 0, (50)

∂g1

∂x
(x̄(t), t) = −α1, (51)

g1(x̄(t), t) = E − α1 x̄(t), (52)
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lim
x→∞

g1(x, t) = 0, (53)

x̄(T ) = E/α1, (54)

g1(x, t) = E − α1x for 0 ≤ x < x̄(t), (55)

and a similar problem for g2. Here x̄(t) represents the free (and moving) boundary, see e.g. [8,16] or [25]. (Similar
properties are valid in the case of basket options depending on n = 3 assets, see Appendix for a discussion).

In the experiments below we applied the penalty method, derived for single-asset problems in [19], to compute an
approximate solution of (49)–(55), i.e. to compute (g1)

n
i and (g2)

n
j in Eqs. (27) and (28).

The following model parameters were used in the experiments

r = 0.1,

E = 1.0,

T = 1.0.

Furthermore, for n = 2 we applied

σ1 = 0.2, σ2 = 0.3,

α1 = 0.6, α2 = 0.4,

D1 = 0.05, D2 = 0.01,

and for n = 3

σ1 = 0.2, σ2 = 0.3, σ3 = 0.2,

α1 = 0.3, α2 = 0.3, α3 = 0.4,

D1 = 0.05, D2 = 0.01, D3 = 0.01.

The correlation parameters ρ1,2, ρ1,3, ρ2,3 were zero in the independent cases. For options depending on two
correlated assets a number of tests were performed with different correlation parameters, i.e. with ρ = ρ1,2 =

0.05, 0.1, 0.15, . . . , 0.95, 1.0. Finally, ρ1,2 = ρ1,3 = ρ2,3 = 0.5 in the correlated 3D example presented below.
In order to perform simulations, we must choose an upper limit for the solution domain, that is a domain where

option values outside are regarded worthless. If not stated otherwise, we used x∞ = y∞ = 4 and x∞ = y∞ = z∞ = 4
for two and three underlying assets, respectively.2 The role of the size of the computational domain will be addressed
in Section 5.2.

Numerical results for the fully implicit scheme are not provided, based on the lack of efficiency of the non-
linear scheme examined in [19]. The implementation of the finite difference schemes was done within the PyCC
framework [20].

In order to illustrate the properties stated in Theorems 1 and 2, we computed the difference between the numerical
solutions and the early exercise constraint. That is, for a number of different values of ε, we computed

φ = min
i, j,n

(Pn
i, j − max(qi, j , 0)) (56)

for the 2D problems and

φ = min
i, j,k,n

(Pn
i, j,k − max(qi, j,k, 0)) (57)

for the three-factor cases (k is the index used in the third “asset dimension”).

5.1. Independent assets

We first compared the explicit and semi-implicit schemes with respect to efficiency, i.e. we compared the CPU
time for a given spatial resolution, choosing time step sizes according to (41) for the explicit scheme and (47) for the
semi-implicit scheme.

2 For options depending on three assets the computational domain was [0, x∞] × [0, y∞] × [0, z∞].
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Table 1
CPU time comparison of the explicit and semi-implicit schemes for a two-factor problem

h N ε Explicit Semi-implicit
CPU time (s) 1t CPU time (s) 1t

0.1 1 681 0.01 0.4 s 1.2 × 10−3 0.07 0.1
0.05 6 561 0.01 2.87 s 3.1 × 10−4 0.43 0.1
0.01 160 801 0.01 4.76 × 103s 1.2 × 10−5 83 0.1
0.1 1 681 0.001 0.47 s 1.1 × 10−3 0.24 0.01
0.05 6 561 0.001 2.83 s 3.0 × 10−4 0.86 0.01
0.01 160 801 0.001 4.65 × 103s 1.2 × 10−5 123 0.01

Note that 1t satisfies the bounds given in (41) and (47). We used a uniform mesh size h with a total number of unknowns N = I · I in space, where
I is the number of nodes in each spatial dimension. In all experiments φ = 0, cf. (56).

Table 2
CPU times for the semi-implicit scheme applied to a three-factor model problem with uncorrelated assets

h N ε 1t CPU time (s)

0.1 59 319 0.01 0.1 7.3
0.05 493 039 0.01 0.1 127.4
0.1 59 319 0.001 0.01 14.6
0.05 493 039 0.001 0.01 263.5

We used a uniform mesh size h with a total number of unknowns N = I 3 in space, where I is the number of nodes in each spatial dimension. In
all experiments φ = 0, cf. (57).

The linear system of algebraic equations in the semi-implicit case was solved with the stable bi-conjugate gradient
method (called Bi-CGSTAB), cf. e.g. [3,13,22]. We used a relative residual convergence criterion for the iterative
solver, i.e. the iteration process was stopped as soon as ‖rk‖/‖r0‖ ≤ 10−4, where rk represents the residual vector
after k iterations.

The results obtained with two underlying assets are given in Table 1. We observe that the severe restrictions on the
time step size in the explicit case make this scheme slow for fine grained meshes. On the other hand, we experienced
a fast convergence of the iterative solver used in the semi-implicit case. Together with the mild restriction on the time
step size, the latter method is thus the most attractive as the mesh is refined.

It is somewhat surprising that the CPU times needed by the semi-implicit scheme with 1t = 0.01 are only roughly
twice as long as those required with 1t = 0.1. This is due to the fact that with 1t = 0.01 a very good initial guess
for the iterative solver was available at each time step.

In Section 4 we showed that if certain conditions on the time step size and the penalty function are satisfied, then
the early exercise constraint is fulfilled in a discrete sense. We wanted to test the sharpness of the properties expressed
in Theorems 1 and 2 by violating these restrictions, looking for negative values of φ.

We considered this issue for basket options defined in terms of two independent assets. First the time step 1t was
increased by 15% for the explicit scheme. When ε = 0.01, φ = −4.8 × 1049 which clearly violates (40).

We also broke the milder restriction for the semi-implicit scheme by choosing 1t = 10−2 and ε = 10−4. Again,
we experienced negative values of φ, i.e. φ = −9.7 × 10−2.

Finally we subtracted 10% from the constant C in the penalty term, i.e. we chose C = 0.9 ·r E , in the semi-implicit
case. We used ε = 10−2, 1t = 10−2 and h = 0.1 in this experiment. The penalty term was thus weaker, exerting less
force on the solution as it approached the payoff function at expiry. We obtained φ = −6.7 × 10−4, hence we were
not able to keep the solution in the proper state space.

The results obtained with the semi-implicit scheme for options depending on three independent assets are shown
in Table 2. Compared with the 2D cases reported above, this problem is significantly more CPU demanding.
Consequently, the computational load increases rapidly with the number n of “asset dimensions”. In fact, from a
practical point of view, for n ≥ 4 the techniques presented in this paper are CPU intensive.
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Table 3
The relative deviation between the numerical approximations generated on the largest solution domain and the smaller domains

i 1 2 3

di (%) 0.29 0.12 0.09

In these experiments we used the mesh parameters h = 0.05 and 1t = 0.1.

Table 4
CPU times for three-factor semi-implicit simulations with correlation coefficients ρ1,2 = ρ1,3 = ρ2,3 = 0.5

h N ε 1t CPU time (s)

0.1 59 319 0.01 0.1 6.0
0.05 493 039 0.01 0.1 101.0
0.1 59 319 0.001 0.01 13.1
0.05 493 039 0.001 0.01 218.4

We used a uniform mesh size h with a total number of unknowns N = I 3 in space, where I is the number of nodes in each spatial dimension. In
all experiments φ = 0, cf. (57).

5.2. Varying the size of the computational domain

The importance of the size of the computational domain was also investigated. More precisely, the two-factor model
problem defined above, with independent assets, was solved on a number of domains Ωi = Ωx i

∞,yi
∞

for i = 1, 2, 3, 4,
where

x1
∞ = y1

∞ = 4,

x2
∞ = y2

∞ = 6,

x3
∞ = y3

∞ = 8,

x4
∞ = y4

∞ = 10.

Let Pi denote the numerical approximation of the solution P of (13)–(18) generated by the semi-implicit scheme on
Ωi for i = 1, 2, 3, 4. Table 3 contains the relative difference di between Pi and P4 at time t = 0, measured in the
L2-norm, for i = 1, 2, 3:

di =
‖P4(·, 0) − Pi (·, 0)‖L2(Ωi )

‖P4(·, 0)‖L2(Ωi )

.

These results indicate that the American option problem can be solved on a rather small domain. The size of the
computational domain needed will of course depend on the involved parameters. For example, it increases as α1 and
α2 decrease and E increases, cf. the definition (19) of the payoff function at expiry φ. This issue has been analyzed in
a number of papers, see [14,18,17,21].

5.3. Correlated assets

The results presented in Section 4 were obtained for independent underlying assets. A number of numerical
experiments were undertaken for correlated assets as well. They indicate that the early exercise constraint still holds,
even though we are beyond the scope of our theoretical investigations. More precisely, for n = 2 we chose different
values for the correlation parameter ρ = ρ1,2 between assets S1 and S2; ρ = 0.05, 0.1, 0.15, . . . , 0.95, 1.0. The
experiments given in Table 1 were carried out with the new correlation parameter settings, and in all cases φ = 0.
Thus, the early exercise constraint was fulfilled for both schemes. A plot of the numerical solution computed with the
semi-implicit scheme at time t = 0 with ρ = 0.5 is shown in Fig. 1.

Table 4 contains the results obtained for a basket option depending on n = 3 correlated underlying assets with
ρ1,2 = ρ1,3 = ρ2,3 = 0.5. The comments regarding the independent 3D cases presented above are valid for this
example as well; the CPU power needed to solve the problem increases rapidly with n, and for n ≥ 4 the present PDE
methods are CPU demanding.
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Fig. 1. A plot of the solution of the two-factor model problem computed with the semi-implicit scheme at time t = 0 with correlation ρ = 0.5. We
used ε = 10−2, x∞ = y∞ = 4.0 and h = 1t = 10−1.

In this paper we have focused on the CPU time required by our methods. An equally important matter is the
accuracy of the proposed penalty schemes. Do they converge towards the correct solution as ε, h, 1t → 0? If so,
at what speed? These are delicate and difficult issues beyond the scope of the present text. Please see Forsyth and
Vetzal [10] for further information.

Remark

In the case of correlated underlying assets we can construct a final condition that satisfies the early exercise
constraint, but leads to a solution violating this constraint at the first time step. To see this, we consider a two-factor
problem with parameters

σ1 = σ2 = σ,

E = 1,

α1 = α2 = 1/2,

ρ = 1/2.

Instead of using a final condition of the form (14), we study the problem obtained by defining

P(x, y, T ) = P̄(x, y) =

{
p∗ for (x, y) = (2, 6),

φ(x, y) (x, y) 6= (2, 6),
(58)

where φ is the function given in (19) and p∗ is a positive constant. Note that P̄ satisfies the early exercise constraint
(5).

Assume that x∞ > 2, y∞ > 6, and let i∗ and j∗ be indices such that (xi∗−1, y j∗) = (2, 6). Recall the form (37) of
the explicit scheme. If h ≤ 1/2 then

Pn−1
i∗, j∗ = F(0, 0, P̄(xi∗−1, y j∗n), 0, 0, 0, 0, qi∗, j∗ , xi∗ , y j∗)

= F(0, 0, p∗, 0, 0, 0, 0, qi∗, j∗ , xi∗ , y j∗)

≤ −
5
8

1t

h2 σ 2 p∗
+

εC1t

ε + 3
.

Hence,

Pn−1
i∗, j∗ < 0
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provided that

p∗ >
8h2εC

5σ 2(ε + 3)
. (59)

Furthermore, if h � 1 then (59) is satisfied for rather small values of p∗ and in such cases P̄ ≈ φ.
As far as we know, final conditions of the form (58) do not appear in mathematical finance. However, the example

discussed above shows that our methods must be used with care for correlated assets: For each type of contracts the
schemes must be tested thoroughly. In all our tests with the final condition (14), which is financially meaningful, our
algorithms worked well and the early exercise constraint (5) was never violated.

6. Conclusion

We have presented a penalty method for solving multi-asset American put option problems. Explicit, semi-implicit
and a fully implicit finite difference schemes utilizing a penalty term have been derived. For independent underlying
assets, conditions on the discretization parameters and the penalty term have been established that assure that the
numerical solution satisfies the constraint arising from the early exercise feature of the contract.

We have carried out several numerical experiments for the explicit and semi-implicit schemes. We prefer the
semi-implicit scheme to the explicit one for fine grained meshes due to the computational efficiency of the semi-
implicit scheme. The experiments indicate that the constraints derived in Section 4 are sharp. In the case of correlated
underlying assets we have not achieved similar theoretical results. However, the experiments indicate that for our
model parameters, the solutions of the explicit and semi-implicit schemes satisfy the early exercise constraint. Finally,
we presented an example of a final condition that leads to the violation of the early exercise constraint for the explicit
scheme in the correlated case.

The theoretical investigations presented in this paper address options depending on two underlying assets. This
analysis can be extended in a rather straightforward manner to problems involving n ≥ 3 assets. However, for
such high-dimensional Black–Scholes PDEs our algorithms are CPU demanding and require the use of sophisticated
numerical tools. Further information about this issue can be found in [23,15,10,9].

Appendix. The three-factor problem

Our penalty approach applied to the American put problem with three underlying assets leads to the following
equations:

∂ P

∂t
+

1
2
σ 2

1 x2 ∂2 P

∂x2 +
1
2
σ 2

2 y2 ∂2 P

∂y2 +
1
2
σ 2

3 z2 ∂2 P

∂z2 + ρ1,2σ1σ2xy
∂2 P

∂x∂y
+ ρ1,3σ1σ3xz

∂2 P

∂x∂z
+ ρ2,3σ2σ3 yz

∂2 P

∂y∂z

+ (r − D1)x
∂ P

∂x
+ (r − D2)y

∂ P

∂y
+ (r − D3)z

∂ P

∂z
− r P +

εC

P + ε − q
= 0, x, y, z > 0, t ∈ [0, T ),

P(x, y, z, T ) = φ(x, y, z), x, y, z ≥ 0,

P(x, y, 0, t) = p1(x, y, t), x, y ≥ 0, t ∈ [0, T ],

P(x, 0, z, t) = p2(x, z, t), x, z ≥ 0, t ∈ [0, T ],

P(0, y, z, t) = p3(y, z, t), y, z ≥ 0, t ∈ [0, T ],

lim
x→∞

P(x, y, z, t) = 0, y, z ≥ 0, t ∈ [0, T ],

lim
y→∞

P(x, y, z, t) = 0, x, z ≥ 0, t ∈ [0, T ],

lim
z→∞

P(x, y, z, t) = 0, x, y ≥ 0, t ∈ [0, T ],

where

q(x, y, z) = E − (α1x + α2 y + α3z), φ(x, y, z) = max(q(x, y, z), 0).

The functions p1, p2 and p3 can be determined by solving appropriate two-factor Black–Scholes equations. More
precisely, p1, p2 and p3 satisfy problems of the form (13)–(19). Consequently, the computation of the fair price of
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an American put option depending on three assets requires that three Black–Scholes equations with n = 2 spatial
dimensions are solved. Finally, as explained in Section 5, Eqs. (13)–(19) involve the value of single-asset options.
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