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0. INTRODUCTION 

Elliott [ 11, p. 303 remarked that the classification of AF C*-algebras via 
dimension groups is combinatorial in nature. Taking this remark seriously, 
we shall give a criterion for the nonsimplicity of an AF C*-algebra 2I in 
terms of recursion-theoretic properties of the dimension group &(‘?I): as 
will be shown in Theorem 6.1, appearance of (the noncommutative 
analogue of) Godel’s incompleteness [ 131 in &(!!I) is incompatible with Cu 
being simple. 

Giidel-Turing machinery can be naturally applied in this context, upon 
interpreting &,(2X) as a set of sentences in tukasiewicz logic [33]. This is 
done in three steps, as follows: 

1. In Theorem 1.3 we will show that every AF C*-algebra ‘8 can be 
embedded into a unique AF C*-algebra ‘?I, such that (K,(211,), [lql,])r 
((&(‘%I)),, [lair), where (&(‘?I)), is the free lattice ordered group over 
&(2X), and [la], is the image of [la] under the natural embedding of 
&(‘$I) into (K,(Ql)),. See [9, 14, and 111 for K. of AF C*-algebras, and 
[2, 341 for free lattice ordered abelian groups. 

2. Given an arbitrary lattice ordered abelian group G with order unit 
U, letting x* = u-x, x@y=u A (x+y) and x.y=O v (x+y-u), we 
regard the unit interval A = [0, u] of G as an MV algebra [4], i.e. (by 2.6) 
an algebra (A, 0, ., *, 0, u), where (A, 0, 0) is an abelian monoid, and 
where the following axioms hold: x 0 u = U, (x*)* = x, 0* = U, x @ x* = U, 
(x* @ y)* @ y = (x @ y*)* ox, x. y = (x* @ y*)*. Specifically, we exhibit 
a functor r from lattice ordered abelian groups with order unit onto MV 
algebras, with the following property: 

(G, u)r(G’, u’) iff T(G, u)rT(G’, u’). 
15 
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Upon restriction to totally ordered groups, r agrees with Chang’s 
map [S]. In Theorem 3.9 we prove that r is an equivalence [23]. 

3. Defining @II) = T(K,(‘LI), [ lH]), by Elliott’s fundamental result 
[l l] together with the main theorem in [lo] it follows that F maps 
AF C*-algebras with lattice ordered dimension group one-one onto coun- 
table MV algebras (see 1.1 and Theorem 3.12). Note that the domain of F 
includes AF C*-algebras with comparability of projections in the sense of 
Murray and von Neumann [ 121, e.g., the CAR algebra [3,9]. In 
Theorem 3.14, using Theorem 1.2 we generalize 3.12 by mapping any 
arbitrary AF C*-algebra ‘$I into a pair (A, B), where A = F(‘%,) and B c A, 
in such a way that ‘?I z ‘UI’ holds iff there is an MV-algebra isomorphism d 
of A onto A’ with d(B) = B’. 

The best excuse for the invariant p(2I) is that, unlike lattice ordered 
abelian groups with order unit, MV algebras (i) are closed under sub- 
algebras, quotients, and products [ 161, and (ii) have a distributive lattice 
structure naturally built in the algebraic structure (2.3). Moreover, (iii) the 
free MV algebra L with a denumerable set of free generators is isomorphic 
to an easily described MV algebra of continuous [0, l]-valued functions 
over the Hilbert cube introduced by McNaughton [25]. The properties of 
these functions will be discussed in 4.13-17. Last, but not least, (iv) MV 
algebras are to many-valued logic as boolean algebras are to 2-valued 
logic: the above free MV algebra L is also the Lindenbaum algebra of the 
tukasiewicz &,-valued sentential calculus [33, 31,4, 17, 321 (see [24] for 
an essential bibliography). 

Any countable MV algebra has the form A z L/Z, letting I range over all 
ideals of L: stated otherwise, A is the Lindenbaum algebra L/I, of some 
theory 0 in L, a theory being a set of sentences (5.1, 5.7). Hence there 
exists a unique map 0 sending each AF C*-algebra ‘11 with lattice ordered 
K, into a nonempty set QCU) of theories in L, with the property that for 
any theory 0, 0 E 8(2l) iff F(‘%)s L/I,. For any two such AF C*-algebras 
2t and 23 we have 

?I 2 23 iff e(a) = Q(B) iff fw) n Q(B) # Izr. 

For each consistent theory 0 in L there is a unique (up to isomorphism) 
AF C*-algebra 2t such that 0 E d(cU). As an example, in Section 7 we shall 
explicitly write down a set 0 of sentences in tukasiewicz logic 
corresponding to the CAR algebra. 

Following the ideas of [ 131 we say that 2I is Giidel incomplete iff there is 
a theory 0 E &‘$I) such that the set a of consequences of 0 is recursively 
enumerable but not recursive. In Theorem 6.1 we prove that if ‘u is Gijdel 
incomplete then 2t is not simple. Thus, purely combinatorial (actually, 
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proof-theoretical) information on the invariant e(2I) provides purely 
algebraic information on the AF C*-algebra ‘?I.’ 

In C*-mathematical physics, if it is true that nature does not have ideals 
[ 18, p. 852; 21, p. 468; 8, p. 851, then accordingly, every nonsimple C*- 
algebra %-hence, by Theorem 6.1, every Godel incomplete AF C*- 
algebra-is an incomplete description of the physical reality, a possible 
completion of 2I being any simple quotient N/3. However, while Cu may 
have a recursively enumerable theory 0 = a E O(a) (this being indeed the 
case of many explicit examples of AF C*-algebras in the literature), the 
quotient VI/3 need not inherit a recursively enumerable theory from 0. 

The Godel incompleteness theorem for Peano arithmetic [ 13, 261 is a 
source of examples of the above phenomenon, already for abelian VI, as 
shown in Example 6.4. In Example 6.5 we exhibit a Giidel complete 
primitive nonsimple AF C*-algebra, thus solving a problem posed by the 
referee. 

In Section 8 we study the freeness properties of the AF C*-algebra YJI 
defined by @IN)= L. Using the fact that the maximal ideal space of !IJI is 
homeomorphic to the Hilbert cube (8.1) we shall prove in Theorem 8.4 
that every primitive ideal in YJI is essential. We then conclude this paper by 
characterizing unital AF C*-algebras with comparability of projections as 
those C*-algebras which are quotients of m by some primitive and essen- 
tial ideal (8.8). 

The prehistory of the present paper is in [29], where the author 
introduced a noncommutative framework for certain model-theoretical 
notions and their generalizations considered, e.g., in [27 and 281. 
However, this paper is independent of [27-291. 

The author wishes to express his gratitude to the referee and to A. Con- 
nes for their advice in the writing of the final version of this paper. 

1. CANONICAL EMBEDDING INTO AF C*-ALGEBRAS 
WITH LATTICE-ORDERED K,, 

(1.1) Following [3] we say that a C*-algebra 2I is approximately 
finite-dimensional (AF) iff 2I is the inductive limit of an increasing 
sequence of finite-dimensional C*-algebras, all with the same unit. We refer 
to [9 or 141 for the definition of the functor K, from the category of 
AF C*-algebras with C*-algebra homomorphisms, to the category of coun- 

’ Theorem 6.1 is perhaps worth mentioning in connection with the problem of the 
applicability of many-valued logic outside mathematical logic: compare with J. Dieudonnk, 
Present trends in pure mathematics, A&L in Math. 27 (1978). 239. 
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table partially ordered abelian groups with order-preserving group 
homomorphisms. 

For any AF C*-algebra ‘%, &(2l) is a dimension group, i.e., a partially 
ordered group which is the direct limit of a directed set of simplicial 
groups-a partially ordered group being simplicial iff it is order-isomorphic 
to a free abelian group Z” with coordinatewise ordering. Equivalently [lo], 
a dimension group is a partially ordered abelian group G which is directed 
(G=G+ -G+), unperforated (x$G+ =-Vn~c~\{0}, nx$G+), and has 
the (Riesz) interpolation property (Vu, h, c, dE G with a, b < c, d, 3g E G with 
a, b < g < c, d). An element u of a partially ordered group G is an order unit 
iff for every a E G there is H E w such that a 6 IZU. Given the AF C*-algebra 
2l, the image [ 1 pI] of the unit of ‘9I in &(2l) is an order unit in K&Y). 
Given a C*-algebra morphism Ic/: 2l + 8 between AF C*-algebras Cu and 
23, if rl/(l,)= 1, then, letting Q=K,($), we have that 4([la])= [la]. By 
a morphism in the category of partially ordered abelian groups with order 
unit we shall mean an order-preserving group homomorphism which also 
preserves order units [14, p. 1403. Given any two such groups G and G’ 
with order unit u and u’, respectively, we let 

(G, u)r(G’, u’) 

mean that there is an isomorphism of partially ordered groups 4: G -+ G’ 
such that 4(u) = u’. 

1.2. THEOREM [ 111. (i) For every countable dimension group G with 
order unit u there is an AF C*-algebra ‘?I such that (G, U)E (&(%I), [la]). 

(ii) Given two AF C*-algebras 6. and 23, then ‘2Ig’B t# 

(&WO> Cl,l)~~&(~~~ Clal). 
(iii) Given two AF (Y-algebras ‘58 and 23 and an order-preserving 

group homomorphism 4: K,,(a) + K,,(B) with #([lp,]) = [la], there is a 
C*-algebra homomorphism $: ‘?I + 23 such that I&($) = 4 and $( 1 9,) = 1%. 

Now let (G, u) be a dimension group with order unit u. Since G is unper- 
forated then there exists the free lattice ordered group G, over G [Z, Appen- 
dix 2.6; 34, 2.71. Uniqueness is obvious from the definition. Let y: G -+ G, 
be the natural embedding, and aI= q(u). 

1.3. THEOREM. Let Cu be an AF C*-algebra. Then there is a unique (up to 
isomorphism) AF C*-algebra 2lt such that WOWA C19,,1)~ 
((&(2X)),, [lpi],). Moreover, ‘u is isomorphic to a C*-subalgebra of%,. 

Proof: Let (G, ~4) = (I&((u), [ 1 a]). As an immediate consequence of the 
definition of G, and ‘I: G + G,, we have that G, is abelian (since G is 
abelian), and G, is generated by q(G) as a lattice ordered group; therefore 
G, is countable (since G is countable), and u, = q(u) is an order unit for G,. 
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Since G, is lattice ordered then G, has the Riesz interpolation property, and 
is directed an unperforated [34, p. 188; 2, 1.31. By the above mentioned 
characterization of dimension groups [lo] and by Theorem 1.2(i), (ii), 
there is a unique AF C*-algebra ‘%, such that (K&!Iu,), [la,])g (G,, u,). By 
Theorem 1.2(iii) there is a unit-preserving C*-algebra homomorphism 
$: 2I + YII, such that KO($) = q. Since rl is one-one, then $ is one-one [ 14, 
Exercise 1951. Thus $ is a C*-algebra isomorphism of % onto a C*-sub- 
algebra of YI,, as required. 1 

(1.4) By an l-group we shall mean a lattice ordered abelian group. If 
(G, u) and (H, u) are l-groups with order unit u and u respectively, then a 
map 1: G + H is said to be a unital l-homomorphism iff L is a group 
homomorphism and a lattice homomorphism such that A(u) = u. Unital I- 
homomorphisms are precisely the morphisms in the category of l-groups 
with order unit. By an l-ideal in an l-group G we mean a convex subgroup 
J which is a sublattice of G. If G has an order unit u then the image u/J 
under the quotient map is an order unit of G/J, and the quotient map is a 
unital l-homomorphism of (G, u) onto (G/J, u/J). 

2. FROM ABELIAN LATTICE GROUPS 
WITH ORDER UNIT TO MV ALGEBRAS 

In [4] Chang defined MV algebras as follows: 

2.1. DEFINITION. An MV algebra is an algebra (A, 0, ., *, 0, l), where 
A is a nonempty set, 0 and 1 are constant elements of A, @ and . are 
binary operations, and * is a unary operation, satisfying the following 
axioms (where we let xv y=(x.y*)@y and x A y=(x@y*)*y): 

Ax1 x@y=y@x Axl’ x.y=y.x 
Ax2 x@(y@z)=(x@y)@z Ax2’ x.(y’z)=(x.y).z 
Ax3 x@x*=l Ax3’ x.x*=0 
Ax4 x01=1 Ax4’ x.0=0 
Ax5 x00=x Ax5’ x.1=x 
Ax6 (x@y)*=x*.y* Ax6’ (x.y)*=x*@y* 

Ax7 x = (x*)* 
Ax8 0*=1 

Ax9 xvy=yvx Ax9’ XA y=y/\x 
Ax10 xv(yvz)=(xvy)vz AxlO’XA(yAZ)=(XAy)AZ 

Ax11 x@(y ~z)=(x@y) A (x@z) Axll’ x.(y v z)=(x.y) v (x.z). 
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Remark. We use 0 instead of Chang’s original +, as the latter symbol 
denotes group addition in our paper; also, we write y* instead of Chang’s 
original notation j, for typographical reasons. By a traditional abuse of 
notation we shall simply denote by A the whole MV algebra (A, O,...), 
whenever this may cause no confusion. Following [4, p. 4681 we shall con- 
sider multiplication . more binding than addition 0. 

2.2. DEFINITION. For all x, y E A we write x d y iff x v J? = I’. 

2.3. THEOREM. (i) The relation < is a partial ordering over A; jbr all 
x, y E A, x v y, and x A y are respectively the sup and the inf of the pair 
(x, y) with respect to < ; also, for every x E A, 0 < x d 1. 

(ii) Every MV algebra is a subdirect product qf totally ordered MV 
algebras. 

(iii) A is a distributive lattice with respect to the operations v and A. 

Proof. (i) [4, 1.11, 1.41. (ii) is proved in [S, Lemma 3). (iii) is 
immediate from (i) and (ii). i 

In [S, p. 751 Chang defined a map from totally ordered abelian groups 
with order unit into totally ordered MV algebras. A natural generalization 
of Chang’s map to lattice-ordered abelian groups with order unit is given 
by the following definition, as will be proved in Theorem 2.5. 

2.4. DEFINITION. Let G = (G, +, -, O,, v G, A L-.) be a lattice ordered 
abelian group with order unit U. We define T(G, U) = (A, 0, ., *, 0, 1) by 
the following stipulations: A = [O,, u] = { g E G IO, < g d u}, and, for all 
x, YEA, 

x@y=u Ac;(x+y) 

x * = u - x 

o=o, 

1 =u. 

Further, given a unital I-homomorphism 0: (G, U) -+ (G’, u’), we define 
r(0): T(G, U) + T(G’, u’) by r(e) = 01, = restriction of 8 to A. 

r(0) is well defined, since 0 is order-preserving. We shall now extend 
Chang’s result [S, Lemma 41: Following [4, p. 4711 we say that a map 
p: A + A’ is an MV-homomorphism iff ~(0) = 0’, p( 1) = l’, and p preserves 
the operations 0,. ., and *. In case ~1 is one-one onto A’, then p is an 
isomorphism of A onto A‘. Of course, these notions are particular instances 
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of the universal algebraic notions [ 161. We refer to [23] for all category- 
theoretic concepts used in this paper. 

2.5. THEOREM. The map r is a functor from the category of lattice 
ordered abelian groups with order unit to the category of MV algebras. For 
any such group (G, u), the lattice operations on the unit interval [Oo, u] of 
G agree with the lattice operations on the MV algebra f(G, u), as given by 
2.1-2.3. 

To prove the theorem we first give an equivalent reformulation (due to 
Mangani, Boll. Un. Mat. Ital. (4) 8 (1973) p. 68) of the definition of MV 
algebra. 

2.6. LEMMA. Let (A, 0, ., *, 0, 1) be an algebra where 0 and 1 are con- 
stant elements of A, 0, and ’ are binary operations on A, and * is a unary 
operation on A, obeying the following axioms: 

Pl (x0 y)@Z=x@(yoZ), 

P2 x00=x, 
P3 x@y=y@x, 
P4 x01=1, 

P5 (x*)* =x, 
P6 O*=l, 
P7 xgx* = 1, 

P8 (x*@y)*@y=(~@y*)*Ox, 
P9 x’y=(x*@ y*)*. 

Then A is an MV algebra. Conversely, every MV algebra obeys axioms 
Pl-P9. 

Proof of Lemma 2.6. We first prove that every MV algebra obeys 
Pl-P9: Note that PI = Ax2, P2 = Ax5, P3 = Axl, P4= Ax4, P5 = Ax7, 
P6 = Ax8, P7 = Ax3. Concerning P8, note that (x*@y)*@y= 
(x* @ (y*)*)* @ y, by Ax7; the latter expression is equal to (x. y*)@ y, by 
Ax7 and Ax6’, and hence equal to x v y by definition of v , Definition 2.1. 
Similarly, using the commutativity of 0 (Axl), one has y v x = 
(x 0 y*)* 0 x. Now Ax9 yields the desired conclusion. The validity of P9 is 
a consequence of Ax6’ and Ax7. 

Conversely, we shall now prove that every algebra obeying PlLP9 is an 
MV algebra. Consider the following (tukasiewicz) axioms: 

Al x*@(y*@x)= 1 

A2 (x*@y)*@((y*@z)*@(x*@z))=l 
A3 ((x. y*)O y)*@((y.x*)@x)= 1 
A4 (x0 y*)*@(y*@x)= 1. 
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One immediately verifies that Pl-P9 imply Al, A3, and A4. As for A2, 
using Pl-P9 we have (x* @ y)* @ (y*@z)* @ x* @ z = (x*0 y)* @ 
x* @ (y*@z)* @ z = (x*@y)* @ x* @ (y@z*)* @ y = (x*@y)* 
@ (x*@y) @ (y@z*)* = l@(y@z*)*=l. Therefore, Pl-P9 imply 
Al-A4. Arguing now as Chang does in [4, pp. 4724731 we conclude that 
Pl-P9 imply all MV axioms. 

2.7. LEMMA. [22] (i) For any l-group G with order unit u, f(G, u) is 
an MV algebra. 

(ii) The lattice operations on G agree with the lattice operations on 
r(G, ~1. 

Proof. (i) We prove that Z(G, U) satisfies Pl-P9. Let x, y, z be 
arbitrary elements of [O,, u]. Then we have 

P2: x@O=u r\.(x+O,)=u A~X=X, becausex<.u. 

P3: x@y=u A\(x+y)=U Ac(y+x)=y@x. 
Pl: (xOy)Oz = U /Y.(z+(xOy)) = U /Y.(z+(u r\G.(x+y))) 
24 Ac((Z+U) A~ (Z+X+y)) = (U A(;(Z+U)) A.(X+J’+Z) = 

:A G (x + y + z). Note that z+uG30G+u=u, since zG>O. We have 
thus proved that 0 is associative. 

P4: X@l=U A.(X+U)=U=l. 

P5: (x*)*=U-((u-x)=x. 
P6: O*=u-O,=u=l. 
P7: X@X*=U A.(X+X*)=U AG(X+U-X)=U=l. 

P8: (x*@y)* @ y = u A.(y+(X*@y)*) = U AG(y+U- 

(U A(;(X*+y))) = U AG(Y+U-(U AG(U-XX+))) = U A,(y+U+ 

(-u v,(-u+x-y))) = U AG(Y+((U-U)VG(U--+X-J’))) = 

u f’c(Y+(O vG(X-y))) = u A~((Y+O) vG(Y+X-Y)) = u A~ 

(y v,x)=y vGx = x v.y,becausex,y<,u.Thisshowsthatxandy 
are interchangeable, whence P8 holds. 

P9: x’ y = (x* 0 y*)* by definition of I-. 

Thus T(G, U) obeys Pl-P9, hence by Lemma 2.6 it is an MV algebra. 
(ii) Let x, y E A = T(G, u). By Definition 2.1, in the MV algebra A we 

have: x v y = (x. y*) @ y = (x* 0 y)* @ y. The above proof that A obeys 
P8 now yields x v y = xv c; y. Further, by [4, Theorem 1.2(iii)] we obtain 

XA J.‘=(X* V J’*)*=U-((U-X)Vc(U-J’))=U+((X-U) A(;(y-U)) 

=(U+X-U)AG(U+y-U)=X A\c;y. 

This completes the proof of Lemma 2.7. 
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2.8. End of the Proof of Theorem 2.5. In the light of Lemmas 2.6 
and 2.7, there remains to be proved that whenever 8: (G, U) -+ (G’, u’) is a 
unital I-homomorphism (1.4), r(0) is an MV-homomorphism. To this 
purpose, let p = r(e), and (A, 0, ., *, 0, 1) = Z(G, u); similarly, let 
(A’, @‘, .‘) *‘, 0’, 1’) = T(G’, u’). We have already noted after Definition 2.4 
that p(A)cA’, p(O)=O’, and h(l)= 1’. 

Claim 1. p preserves 0. Indeed, for all x, y E A we have p(xO Y) = 
e(u r\.(x+ y)) = e(u) A(yH(x+y) = u’ AC;, (e(x) + ’ O(y)) = u’ Afy (p(x) 
+‘!44’))=/4x) 0’ P(Y). 

Claim 2. p preserves *. Indeed, for all XE A, p(x*) = @(u-x) = 
u’ -’ e(x) = a’ -’ p(x) = (p(x))*‘. 

Claim 3. p preserves multiplication. Immediate from Claims 1 and 2, 
since multiplication is definable in terms of @ and *. 

Claim 4. r preserves identities. Indeed, if j: G -+ G is the identity 
function on G, then r(j) =jl A : A --) A is the identity function on A. 

Claim 5. r preserves composition. Assume we are given the following 
diagram: (G,u)+@(G’,u’)+~(G”,u”). Then T($od)=($~d)l~= 
II/~(dlA)=(rCIIA,)~(~lA)=r(ll/)~r(~). 

The proof of Theorem 2.5 is now complete. 1 

2.9. Remarks. From now on we shall use v and A (instead of v G 
and A c) to denote the lattice operations on G. The above theorem ensures 
that no confusion may arise with the lattice operations of the MV algebra 
T(G, U) = (A, @,...). Thus, for example, let us show in the new notation 
that, for all x1 ,..., x, E A, x1 0 . . . Ox,, = u A (x, + . . . + x,). For n = 2, this 
is by definition. Proceeding by induction we have x, @ . ox,+ , = u A 

((U A (X,+ .” +X,))+X,+,) = U A ((U+X,+,) A (X, + ..’ +X,+,)) = 

(U A (u+.X,+1)) A (xi+ ... +x,+,) = U A (x1 + .‘. +x,+,), because 
u<u+x,+1. 

3. PROPERTIES OF THE FUNCTOR f  

3.1. PROPOSITION. Let G be an l-group with order unit u. Let 
(A, 0, .t *, 0, 1) = T(G, u). Let x be an arbitrary element of G +. Then we 
have 

(i) There are a, ,..,, a,, E A such that x = a, + . . . + a,, and 
a,@a,+I=a,foralli=l,...,n-l; 
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(ii) If, in addition, y= b, + ... +b, with b ,,..., ~,EA and 

biOb,.l =bi for all i= l,..., n - 1, then the following identities hold: 

xv y=(a, v b,)+ ... +(a, v b,) (1) 

x A y=(a, A b,)+ ... +(a,, A b,). (2) 

Proof (i) For each m = 1, 2,..., define a,,, by the following stipulation: 
a, = x A u, a,, , = (x - a, - a, - . . - a,) A U. A straightforward induc- 
tion argument shows that each a,,, belongs to [0, u] and that for every 
j>, 1, a, + . . . + a, < x. An easy computation shows that ai 0 ai+, = ai for 
alli>l.Sincex<nuforsomenEW, thenO=a,,+,=a,+,= . . ..ascanbe 
verified by representing G as a subdirect product of totally ordered groups 
[2, 4.1.8-J 

(ii) Again using [2, 4.1.81 write G as a subdirect product of totally 
ordered groups, G 4 n G,. Let us agree to denote by ai, and b,, the 
image in G, of a, and hi, respectively. For notational simplicity we also let 0 
and 1 respectively denote the image in G, of the zero and of the order unit 
of G. As a consequence of our assumptions we have 0 < ai,, b, d 1, 
x,=a,,+ ... +a,, y,=b,j+ ... +b,,, aii@a,+,,,=a,,, and hijOb,+,,= 
b,, where @ refers to the addition operation in the MV algebra T(G,I 1). 
We observe that in the totally ordered group G, the sequence (a,,,..., a,,) 
has the form (l,..., 1, C, 0 ,..., 0) for some c E [0, 1 ] E G;: as a matter of fact, 
since a,, 2 azi 2 . > a,,, 
O@aii=ki+,,, 

then by [4, 3.131 whenever 1 #a,, = 
@ aQ, it follows that a, + ,,, = 0. Similarly, (b ,,,..., b,,,) = 

(l,..., 1, d, 0 ,..., 0) for some de [0, 11. 

Claim. If xi d y, then a,, 6 b ,,,..., a,j< b,,. For otherwise (absurdum 
hypothesis) if ak, > b,, then ak ,,,=ak 2.,= ... =a,,= 1, and 
b k+ 1.j =b - . . = b,,, = 0, by the above discussion. Hence, a,, >, b, for kfl.i- 

all i= l,..., n, and ak, > bk,, whence x, > y,, a contradiction. Our claim is 
settled. From the claim it follows that (a,, v b,,) + ... + (a,,, v b,,) = 
b,,+ ... +b,,,=yi=xjv y,, which establishes (1) in Gj, provided x, < y,. 
In case x, > yj one similarly proves that (1) holds in G,, by interchanging 
the roles of xj and y,. In conclusion, since the identity (1) holds in each G,, 
then it holds in G. The proof of (2) is similar. 1 

3.2. DEFINITION. Given an I-group G with order unit U, let 
(A, 0, ., *, 0, 1) = r( G, u). For every sequence (I$‘, ,..., M’,) of elements of A, 
and every a E A we write (u’, ,..., w,) +a iff the following identities are 
simultaneously satisfied: 
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w,@w2@ ... @a*=w,T 

w, 0 w* 0 . . . 0 M’,, = (1. 

3.3. PROPOSITION. Adopt the notation of the above definition. Then for 
all w, ,..., w,, a E A the following are equivalent: 

6) w,+ ... +w,,=a, and 

(ii) (M’ ,,..., II’,,)-a. 

Proof: Let wO=a*=u-a . Assuming (i) we have u = w,, + 

;,‘+ 
... + w,. For each i= 0 ,..., n we have w,* = u A (U - wi) = u A 
... +w-,+w,+I + ... +w,,) = w()o ... @w+l@w,+,cg ... ow,, 

recalling Remarks 2.9. Therefore, (ii) holds. Conversely, if (ii) holds, then 
by 2.9 we have for all i = 0 ,..., n, 

u A (w,+ .‘. +M’,~~,+M’,+,+ ... +w,)=u-w,, 

whence by distributivity 

(w,-uuu) A (w,-u+wo+ “. +w~,+wM’,+L+ ... +wn)=O, 

Letting 1 w  = w0 + . . . + u’,, we have W,A (-u+c~)=O, and, in 
particular, O< -u+C w. Applying [2, 1.2.241 we obtain C w  A 
(-u+Cw)=O. Since 06 -u+CW<CW, we conclude that --u+ 
xw=O, i.e., O< -u+a*+w,+ ... +w,,= -a+w,+ .f. +w,,. 1 

3.4. PROPOSITION. If both K and 2 are unit& l-homomorphisms of (G, u) 
into (G’, u’), and r(~) = r(l*), then K = A. 

Proof: (Compare with [20, 1.51). For every .x E G+ there is n E w such 
that x Gnu. By [2, 1.2.171 there are a ,,..., U,E [0, u] such that 
~=a,+ ... +a Since by hypothesis K 1 [0, u] = 2) [0, u], then 
K(X) = C ~(a;) z&!(ui) = i(x), whence K 1 G + = i / G +. Since G is directed, 
each ZEG has the form z=x-y for some x,y~G+. Then, 
K(Z)= K(X)-K(J')=Jb(X)-i(y)=%(Z). 1 

3.5. PROPOSITION. Let G and G’ be l-groups with order unit u and u’, 
respectively. Assume p: f(G, u) -+ f(G’, u’) is an MV homomorphism. Then 
,a = T(2) for some unital l-homomorphism ,I: (G, u) -+ (G’, u’). 
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Proof: For the moment, we define /. over G + as follows: Given an 
arbitrary x E G + , by Proposition 3.1(i) there are elements a, ,..., a, E [0, u] 
such that x = a, + . . . + a,. We stipulate 

l(x) = p(a, ) + ‘. . + p(u,). (3) 

Claim 1. j. is well defined over G +, i.e., if also x = h, + .. . + h,, for 
some h 1 ,..., b,,,E [0, u] then n(h,)+ ... +P(~,)=P(u,)+ ... +~(a,). 

As a matter of fact, since 6, + .. . + h, = a, + . + a,,, then by the Riesz 
decomposition property [2, 1.2.161 there are elements g,i E G + (for 
i = l,..., m and j = l,..., n) such that 

aj = C a, and h,=C gij3 for all i, j. 

In particular, griE [0, u]. By Proposition 3.3 for each i= l,..., m and 
j = l,..., n the identities (g, ,,..., gmj) - aj and ( gi, ,..., g,,,) - b, are satisfied in 
T(G, u). Since p is an MV homomorphism, and a,, h,, gjiE [0, u], it follows 
that the corresponding identities (g’, ,,..., gk,) -a! and (g:, ,..., g:,,)-h: are 
satisfied in Z(G’, u’), where we let p’ = p(y) for any y E [0, u]. Again using 
Proposition 3.3 we obtain 

a; = 1 g$ and h( = 1 g:,. 

Noting that a;, b:, g$E [0’, u’] and using (4’) twice, we obtain 
a; + ... +UL = xi g:, + ... +C,g:, = Ci g',,+ .'. +Ci gL, = hi + ... 
+ bh, which settles Claim 1. 

Claim 2. L. preserves addition over G +, i.e., 2(x + y) = n(x) + L(y) for 
all x, y E G + . 

Indeed, any such x, y have a representation x = a, + . + a,,, 
y=b, + ... + b, with ai, bje [0, u], by Proposition 3.1(i). Now the con- 
clusion follows from (3). 

Claim 3. ;1. preserves v over G +, i.e., 2(x v J) = R(x) v n(y) for all 
x, yeG+. 

Indeed, using the full strength of Proposition 3.1(i) we can write 
x=u,+ ... +a,, y=b,+ ... + b, with all u’s and b’s in [0, u], and with 
the additional property that a,@~,+ 1 = a, and bi@ hi+ 1 = bi for each 
j = l,..., n - 1 and i = l,..., m - 1. Appending zeros, if necessary, we can 
assume n = m without loss of generality. 

Writing throughout z’ for p(z) whenever z E [0, u], we obtain 

u;@u;+, =a; and b;@bj+, =b;, (5) 
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since ~1 preserves all MV operations. Recalling Lemma 2.7(ii) we get 

A(x v y)=l((a, v b,)+ ‘.’ +(a, v 6,)) by Proposition 3.l(ii), 

=qa, v b,)+ ... +A(u,, v b,) by Claim 2, 

=p(a, v b,)+ ... +@(a, v h,) by (3) and Claim 1, 

= (a; v h; ) + .. . + (a:, v b:,) because p preserves v 
over [0, u]. 

On the other hand, A(x) v A(y) = A(u, + ... + a,,) v %(6, + ... + h,) = 
(u~+~~~+u~)v(b~+~~~+6~)=(u’,v6~)+~~~+(u~vh~,) by Claim2, 
(5) and Proposition 3.l(ii). This settles Claim 3. 

Using Claims l-3 we can apply [2, 1.451 to the effect that there exists 
exactly one I-homomorphism (which we also denote by A) from G into G’ 
extending A. By (3) i is unital since p(u) = u’. By definition of I-, p = r(A). 
This completes the proof of the proposition. 1 

3.6. Remark. From [ 11; and 20, 1.51 it follows that if f is an order 
preserving map from [0, u] into G’ such that f(x + 11) =f(x) +f(y) 
whenever x + YE [0, u], then f uniquely extends to an order preserving 
group homomorphism 7: G + G’. This holds in the general context of par- 
tially ordered groups with order unit. 

In the present context of I-groups, the stronger assumption that p preser- 
ves the MV structure over [0, u] is used in Proposition 3.5 to prove that 
the (unique) extension A of p also preserves the lattice structure. 

In [S, Lemma 61 Chang proved the following result: 

3.7. PROPOSITION. Let A = (A, 0, ., *, 0, 1) be a totally ordered MV 
algebra. Then there is a totally ordered abeliun group G with order unit u, 
such that A rT(G, u). Furthermore, the cardinality card G of G obeys the 
following inequality: card G 6 max(w, card A). 

The following is a generalization of Chang’s result (see also 
[22, Propositions 5 and 61): 

3.8. THEOREM. Let A = (A, 0, ., *, 0, 1) be an MV algebra. Then there 
exists an l-group G with order unit u, such that Arf(G, u). Furthermore, 
card G < max(w, card A ). 

Proof: By Theorem 2.3(ii) we can represent A as a subdirect product of 
totally ordered MV algebras, A in IE, Ai. Using Proposition 3.7 we may 
regard each Ai as the MV algebra Ai= T(Gi, Us) on the unit interval 
[O,, ui] of some totally ordered abelian group Gi with order unit u,. We 
then have the canonical inclusions 
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Each element x E Hi,, G, will be written ix,},, ,, with X, E G, the ith coor- 
dinate of x. In each Ai= f(G,, u,), the MV operations have the following 
form, for all r, s E A, 

r@s=min(ui, r+s) 

r*=u,-r (7) 

r~~=(r*O~*)*=~,-min(u,,ui-r++u,-.s)=max(O,,r+s-~i), 

where, of course, + and - are the group operations on G,. In the light of 
(6) we define G as follows: 

G = lattice group generated by A in n G,, 
IEI 

(8) 

and we let u=uG‘= {u,},,,. 
We shall prove that (G, U) obeys the requirements of our theorem. 

Evidently, G is a lattice ordered abelian group; to see that u is an order 
unit for G, let x E G; then x is obtained from a finite number of elements of 
A by a finite number of applications of the lattice and group operations. By 
induction on the number of such operations one easily proves that there 
exists IZEO such that x dnu. Thus u is an order unit for G. 

We must now prove that Azf(G, u): this will be done in 3.8.1-3.8.5 
below. First, given a sequence (a, ,..., a,,) of elements of n,, , Gi let us agree 
to say that the sequence is good iff a, ,..., a,, E A and a,,, 0 a,,,+, = u,,, 
(m = l,..., n - 1 ). 

3.8.1. LEMMA. (i) Every good sequence is decreasing with respect to the 
MV order on A. 

(ii) rf, in addition, A is totally ordered, and (a, ,..., a,,) is good, then for 

all except possibly one rn = l,..., n, we have that a,,, is a member of the set 

(0, I>. 

Proof (i) a,=a,@a,+,>a,+, by [4, 1.101. 
(ii) By [4,3.13],sinceO@a,,=a,+,@a,,ifO@u,#l (i.e.,a,#l) 

then O=a,+,. Now by (i) we get the desired conclusion. 

After the proof of Lemma 3.8.1 we define A + c_ G by 

A + = {x E G / x = a, + + u,, for some good sequence (a, ,..., a,,)}, (9) 

where + denotes addition on the group j-J;, , G,. 
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3.8.2. LEMMA. For all x, y E A + , x + y E A ’ 

Proqf We first consider the case x = a E A, y = h E A. 

Claim 1. The sequence (a@b,a.b) is good, and (a@b)+(a.b)= 
x + y. 

Indeed, write a= {ar}rsl, h= {h,),,, and examine AjcG,. Since G, is 
totally ordered two cases are possible: 

Case 1. a,+h,du,. Then (a,@bi)~(a;b,)=a,@b,~Oi by (7); 
moreover, (ai@ hi) + (a,. hi) = ai + h, =x, + y,, again by (7) which settles 
the case under consideration. 

Case 2. a,+b,>u,. Then (ai@b,)~(ai~bi)=ui@(a,~b,)=u,= 
a,@bi by (7). Moreover, (ai@hi)+(aj.h,)=u,+max(O,, a,+h,-u;)= 
a,+ h, =x,+ y,. Since our claim holds in every coordinate G,, then the 
claim is proved. 

We now consider the general case x= (a, + ... + a,,), y= 
(h, + ... + h,), with both (a, ,..., a,,) and (h, ,..., h,,) good sequences. We 
may limit attention to the case m = 1, i.e., y = h E A. We define 
4 , ai,..., 4, + I E A as follows: 

a;=a,Ob 

a>=az@a,.h 

a;=a30a2.a, .h 

a:,=a,,@a,,-,.a,,- 2’ ... .a,.h 

4, I =O@a,;a,,- , . ... ‘h, .h. 

Then, in the light of our claim, we have 

a’,=a,+b-a,.b 

a;=a,+a,.h-a,.a,.b 

a;=a,+a,.a,.h-a,.a,.a,.h 

aL=a,,+a,-,.a,?+,. ... .a,.h+a;a+,. ... .a,.h 

al+] =O+a; ... .a,.b-0. 

This immediately shows that a; + ... +a:,+, =a, + ... +a,+b=x+ y. 

Claim 2. (a’, ,..., a;+ ,) is a good sequence. 
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Indeed, by definition, a’, ,..., a’,,+, E A. Now, ah@a:,+, = a,,,+, @a,,,@ 
a,-,. ... ‘a,.b@a; ... a,. b. Applying now Claim 1 to the pair 
(a,@a,-,. ... .a,.b, a; ... .a,.b), we obtain aL@a>+,=a,+,@ 
a,@a,_,. ... .a,.b=a,@a,-,. ... .a,.b=ak, which settles our 
second claim, and completes the proof of Lemma 3.8.2. 

3.8.3 LEMMA. For all XE A +, x A UE A. 

Proof Write x = a, + .. . + a,,, with (a, ,..., a,2) good. 

Claim. x A u=a,. 
Indeed, write x= (x~}~~~, a,= {a,,},t,, a2= (a,,},E ,,..., and examine 

Ai c Gi. Three cases are possible: 

Case 1. a,, = ui. Then x, >, ui, hence xi A ui= u, = a,,. 

Case 2. a,j=O,. Then a,,=aji= . ..a.,=Oi by Lemma3.8.l(ii), 
hence xi= 0,, whence xi A ui = Oi = a,,. 

Case 3. a,i#O,, ui. Then a,,= ... =ani=Oj by Lemma3.%l(ii), 
hence x, A U, = a,i A ui = a,,. 

Having proved our claim in each coordinate G,, the lemma is proved. 
Note that the MV lattice operations are defined in terms of the MV 
algebraic operations, and the lattice group operations on G; agree with the 
MV lattice operations on A, = Z(G,, u,) by Theorem 2.5. Hence, the lattice 
operations on G agree with those on A. 

Following common usage we let X, be short for x v 0. 

3.8.4 LEMMA. Zf x, y  E A + then (x - y) + E A + 

Proof. Claim 1. If a,bEA then (a-b)+ =a.b*EA. 
As a matter of fact, in A, s G, we have: ai. b,? = (a,* oh**)* = 

uj-min(u,, u,-ai+ bi)=max(O,, a,-bi)=(ai- hi) v Oi. Since Claim 1 
holds in each coordinate, then it holds in A. 

Claim 2. Assume (a, ,..., a,) good, and b E A. Then 

(a,+a,+ ... +a,p-b)+ =(a,-b), +a,+ ... +a,. 

As a matter of fact, let us examine A,. Three cases are possible: 

Case 1. a,i=u,. Then a,;>bh,, and hence, (ali-bi)+ +a,,+ ... + 
a,i=aIi-bb,+a2i+ ... +ani=(a,,+ ... +a,i-b,)+. 

Case 2. a,,= 0,. Then by Lemma 3.8.1(i), (ii) we have ali= ... = 
a,i=Oj and (a,,-bbi)+ +a,,+ ... +ant= (-b, v Oj)+a,,+ ... +a,,= 0,. 
On the other hand, (a,,+ ... + a,,; - b,) + = -b, v Oi = Oi. 
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Case 3. aii#O,, ui. Then by Lemma3.8.l(ii) we have u2;= ‘.. = 
ani=Oi and (au-b,)+ +a,,+ ... + atii = (ai, - bi) + . On the other hand, 
(U,i+ "' +U,i-bj)+ =(U,jHbj)+. The proof of Claim 2 is complete. 

Claim 3. For every x E fli,, G, and 6, ,..., b,, E A we have 

(x-b1 - ‘.. -b,)+ =(...((x-b,)+ -b2)+- ... -b,)+. 

Proof By induction on n > 1. The case n = 1 is trivial. Now 
((...(x-bl)+ - ... -b,)+ -b,+,)+ = ((-x-b,- ..I -b,)+ -b,+,) v 
0 = ((x-b,- ... -b,+l ) v (O-b,+,)) v 0 = (x-b,- ... -b,+,)+. 
This completes the proof of Claim 3. 

We now conclude the proof of Lemma 3.8.4 as follows: Given x, y E A + 
write ~=a,+ ... +a,, y=b,+ ... +b,, with (a ,,..., a,) and (b ,,..., b,) 
both being good sequences, and t=n without loss of generality. By 
Claim3 we have (x-y)+ =(...((X-b,)+ -6,). - ... -b,)+. Note 
that (x-b,)+ =(a,-6,). +a,+ ..* +u,=u,~b~+u,+ ... +a,, by 
Claims 2 and 1. Therefore, (x - b,) + E A + by Lemma 3.8.2. Let 
x,=(x-b,)+. By the same argument we obtain (x1 - b2)+ E A+. 
Iterating this for n times we finally see that (x - y) + E A +. 

3.8.5. End of Proof of Theorem 3.8. The set H= A + -A i- = 
{ g E G ) g = x - y for some x, y E A + > is a subgroup of G, by Lemma 3.8.2. 
Moreover, gE H implies g, E H, by Lemma 3.8.4. By [2, 2.1.21, H is an I- 
subgroup of G, whence H = G by definition (8) of G. Since G = A + - A + , 
Lemma 3.8.4 also shows that G + = A +. Thus if g E G and 0 < g d U, then 
gEA+, and hence g A u = g E A by Lemma 3.8.3. Therefore, recalling (7) at 
the beginning of the proof of Theorem 3.8, we have A = T(G, u). The final 
statement in Theorem 3.8 concerning the cardinality of G is an immediate 
consequence of G being generated by A. i 

3.9. THEOREM. The finctor T’ is an equivalence between the category of I- 
groups with order unit, and the category of MV algebras. 

Proof In the light of [23, IV Theorem 1 J, it suffices to prove that r is 
full, faithful, and that every MV algebra is isomorphic to some MV algebra 
in the range of K This is done in Proposition 3.5, Proposition 3.4, and 
Theorem 3.8, respectively. 1 

As an immediate consequence of Theorem 3.9 we have the following 

3.10. COROLLARY. The functor T from l-groups with order unit to MV 
algebras has the following property: For every MV algebra A there exists un 
l-group G with order unit u such that A z F(G, u); (G, u) is uniquely deter- 
mined by A, up to isomorphism. 
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The results of Section 1 now motivate the following 

3.11. DEFINITION. We define the map p from AF C*-algebras with lat- 
tice ordered K, into MV algebras, by writing F(a) = Z(K#l), [ 1 a,]), for 
any such C*-algebra 9I. 

3.12. THEOREM. (i) For every AF C*-algebra ‘?l with lattice ordered 
K,, r(9.l) is a countable MV algebra. 

(ii) Given any two such AF P-algebras ‘9l and 8, we have 

32% iff F(2I)zF(23). 

(iii) For every countable MV algebra A there is an AF P-algebra $3 
with lattice ordered K,, such that AE F(a). 

Proof. (i) By Elliott’s theorem (see 1.1 and 1.2) together with 
Theorem 2.5. 

(ii) One side of the bi-implication is trivial. The other side follows 
from Theorems 1.2(ii) and Corollary 3.10. 

(iii) By Theorem 3.8 and Theorem 1.2(i). 1 

The above theorem only deals with AF C*-algebras with lattice-ordered 
KO. Using Theorem 1.3 we can apply MV algebras to the whole class of 
AF C*-algebras, as follows: Given an AF C*-algebra ‘u, let 
(G, u) = (K,,(‘$l), [la]). Following Section 1, let G, be the free lattice- 
ordered group over G, let g: G + G, be the natural embedding, and 
u, = v(u). The triplet ((G, u), q, (G,, u,)) is uniquely determined by 2l. Let 
A = T(G,, u,) = (A, 0, ., *,O, l), and let B=u(G)nA. 

3.13. PROPOSITION. Adopt the above notation: then we have 

(i) BLA,OEB, l=u,~B. 

(ii) B has the Riesz interpolation property with respect to the MV 
order on A. 

(iii) Zf x E B then x* E B. 

(iv) Zf w, ,..., W,,E B and aE A, with aw(w, ,..., w,), then aE B (see 3.2 
for the definition qf - ). 

Proof (i) Immediate, since q is an ordered group homomorphism 
which preserves order units. 

(ii) By Elliott’s theorem (see Sect. I), (G, u) has the Riesz inter- 
polation property; by Theorem 2.5, the MV order on A agrees with the 
group order on G,. 
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(iii) I 
mmediate, since r](G) is closed under the group operations of 

G 1, 
(iv) By 3.3, if (w ,,..., W~)NU then w1 + ..’ +~,=a, where + is 

addition in G[. Now q(G) is closed under + , and a E A, whence a E B. 1 

3.14. THEOREM. Adopt the above notation. Then the map sending each 
AF C*-algebra ‘?I into the pair (B, A) has the following properties: 

(i) A = p(%,), and B is a subset of A containing 0, 1, closed under *, 
and having the Riesz interpolation property with respect to the MV order on 
A. 

(ii) For any two AF C*-algebras 2I and ‘%’ we have: 9l~2I’ iff there is 
an MV isomorphism 4 of A onto A’ such that d(B) = B’. 

Proof: (i) By Theorem 1.3 we get A=f(G,, u,)~~((&(%))~,[i~],)~ 
Z(K,,(‘?I,), [ 1 pl,]) = p(%,). By Proposition 3.13, B has the required 
properties. 

(ii) If ‘?Ig‘$I’ then (G, U) and (G’, u’) are isomorphic as ordered 
groups with order unit; let $ be an isomorphism. We can identify G with a 
subgroup of G,, and identify G’ with a subgroup of G;. Let $,: G, + G; be 
the induced I-isomorphism [34, 2.101. Clearly, rl// preserves order units, 
and $[( G) = G’. Therefore, the MV isomorphism Z($,) obeys the 
requirements of the theorem. Conversely,. let ((G, u), q, (G,, u,)) be the 
triplet, where r) is the order-embedding of (G, U) = (&#I), [llu]) into 
(G,, u,), with u[= g(u), as given by the Weinberg theorem. Let (H, u,) 
denote the partially ordered group with order unit u,, generated in G, by 
B = q(G) n [0, u,], with the order induced from G,. Since the Riesz decom- 
position property holds for q(G), and u, is an order unit for G,, then each 
element of (q(G)) + is a sum of elements of B. Moreover, each element 
XE~(G) has the form x = y-z for some y, z E (q(G)) +, because q(G) is 
directed. We have just proved the first identity in the following line: 

(K q)= (v(G), u,)z(G u)= (K,WI), Cl’~tl). (10) 

Let now 4: A -+ A’ be the assumed MV isomorphism with d(B) = B’, where 
A = T(G,, uI) = [0, u,]. Then by Theorem 3.9, 4 can be uniquely extended 
to an I-isomorphism 6: G, + G;. Since d(B) = B’, the restriction of 4 to H is 
an isomorphism of the partially ordered groups H and H’, where 
H’ = group generated by B’ in G;. Therefore, (H, u,) E (H’, u;), whence by 
(10) we get (K,,(g), [lpI])~(K0(21’), [lcLI,]). By Theorem 1.2 we have 
2lz2l’. 1 

(3.15) Recall [4] that an ideal in an MV algebra A is a subset Zc A 
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such that (i) OEZ, (ii) x, y~Z+x@y~l, and (iii)xEZ, y~:A+x.y~l. 
Equivalently, (iii) may be replaced by (iii’) x E Z, x 2 y E A -+ y E I. Follow- 
ing common usage, we say that an ideal Z is proper iff I# A. The quotient 
A/Z is now defined in the usual way [4, 4.31. Instead of A/Z we may write 
AIR, where R is the congruence relation associated with Z [4, p. 4841. 
Explicitly, R E A2 is defined by xRy iff x* . y@x. y* E I. 

3.16. COROLLARY. Let A, be the free MV algebra with a denumerable 
set of free generators. Then for every AF C*-algebra ‘9I with lattice ordered 
K,, there is a proper ideal ZC A, such that p(B) 2 AJZ. Conversely, for 
every proper ideal ZC A, there is an AF C*-algebra Cu with lattice ordered 
K,, such that r((lu) z A,/Z. Moreover, ‘u is uniquely determined by Z, up to 
isomorphism. 

Proof: Immediate from Theorem 3.12. 1 

(3.17) The involutive map sending each BE A into B* = {x* 1 x E B} 
induces a canonical bijection between ideals and filters: in detail, a,fifter in 
an MV algebra A is a subset Fc A such that (i) 1 E F, (ii) x, ye F-+ 
x. y E F, and (iii) x E F, y E A + x @ y E F. Equivalently, (iii) may be 
replaced by (iii’): x E F, x < y E A -+ y E F. For any filter F we shall write 
A/F* to denote the quotient of A by the ideal Z= F* = {x* 1 x E F}. For any 
subset B of A, the filter F, generated by B is the intersection of all filters on 
A containing B. 

3.18. LEMMA. ZfB=@,thenF,={l}.Zf@#B~-A,thenF,istheset 
of those x E A such that y, ’ . . y, <x for suitable y, ,..., y,, E B. 

Proof. The first assertion is obvious. If @ # B, then F, must contain 
the set H = {x E A ( jy , ,..., y, E B with y, . . . . . yn d x}. Conversely, 1 E H, 
since B # 0. Moreover, if x, y E H then x. y E H by [4, 1.81. Finally, x E H, 
x 6 y E A implies y E H by definition of H. Thus H is a filter, hence H r> F,, 
whence H = F,. 1 

4. LINDENBAUM ALGEBRAS OF LUKASIEWICZ LOGIC 

(4.1) This subsection is devoted to a presentation of the tukasiewicz 
X,-valued sentential calculus [33, 31,4]: the latter will provide an efficient 
tool for applying Corollary 3.10 to AF C*-algebras. 

Stripping away inessentials, we let ,Y be the four element set 
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We say that C, N, X and 1 are the symbols of the alphcibet C; we denote by 
C* the set of all words over 2, i.e., the set of all finite strings of symbols of 
C. Words of the form X, XI, XII,... are called sentential variables [33, p. 391 
(“statement” variables in [4, p. 4721). C and N are called the implication 
and negation symbol, respectively. Following [33, p. 393 we define the set S 
of sentences to be the smallest subset of C* having the following properties: 

(i) each sentential variable belongs to S, 
(ii) ifp,qES, then CpqESand NpES, 

where, e.g., Cpq denotes the word over C obtained by juxtaposing symbol 
C, word p, and word q, in the given order. Sentences are called “formulas” 
in [4]. For any p E S we denote by )I piI the length of p, i.e., the number of 
occurrences of symbols of Z in p. 

An assignment is a map h: o + [0, l] n Q, where w  = (0, I,...}. For any 
p E S, the truth value of p under h, in symbols, p(h), is defined by induction 
on the length of p as follows: 

(i) ifp is XI ... lntlmes, then p(h)=h(n), nEu; 

(ii) if p is Cqr, th en p(h)=min(l, 1 -q(h)+r(h)); 

(iii) if p is Nq, then p(h) = 1 -q(h). 

By induction on lIpJl one easily shows that if all the sentential variables 
occurring in p belong to the set {X, XI,...,XI .. . I,,, ,lmes} and h, k are two 
assignments such that h(0) = k(O),..., h(m) = k(m), then p(h) = p(k): indeed, 
p(h) only depends on the restriction of the map h to the set of those i E w 
such that XI . . . I I ,imes occurs in p. 

A sentence p E S is valid iff p(h) = 1 for all assignments h [4, p. 4871. 

4.2. PROPOSITION. The following are valid sentences, for all p, q E S: 

(0 CPP; 
(ii) CpCqq. 

Proof: (i) For every assignment k we have: (Cpp)(k)= min(1, 
1 -p(k) + p(k)) = 1. (ii) (CpCqq)(k) = min( 1, 1 -p(k) + (Cqq)(k)) = 
min(1, 1 -p(k)+ l)=l, for every k. 1 

The following theorem goes back to Lindenbaum [33, p. 481: 

4.3. THEOREM. Let us call generalized assignment any map 
h: o + [0, 11. For every p E S define the truth value p(h) precisely as is done 
in (4.1) for assignments. Then for every q E S, q is valid iff q(k) = 1 for all 
generalized assignments k. 
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Proof One direction is trivial, because every assignment is a 
generalized assignment. In the other direction, assume q(k) # 1 for some 
generalized assignment k: o -+ [0, 11. Let n E w  be such that the set 
R= {x3 XI,..., 4 ... Intimes} contains the set of variables occurring in q. As 
already noted for assignments, even for generalized assignments we have 
that whenever k”: o -+ [0, I] satisfies k”(0) = k(O),..., k”(n) = k(n), then 
q(k”) = q(k). Equip [0, 11”” with the natural product topology, and con- 
sider for each p E S the function p: [0, 11”’ ’ --+ [0, l] defined by 
b(x,,..., x,) = (common) truth value p(h) of p under any generalized 
assignment h such that h(0) =x0,..., h(n) = x,. 

By induction on 11 pI[ one easily proves that fi is continuous. Turning to 
our q(k) # 1, we have &k(O),..., k(n)) < 1, hence by continuity of the map 4, 
there exists an open neighborhood NG [0, I]“+’ of (k(O),..., k(n)) such 
that &x0,..., x,) < 1 for all (x0,..., x,) E N. Now, N contains some point 
(Y O,..., y,) with y. ,..., y, E Q, hence, letting K: w  -+ [0, l] n Q be the 
assignment defined by h”(0) = yO,..., h”(n) = y,, and h”((m) =0 for all m > n, 
we conclude that q(h”) # 1, whence q is not valid. 1 

4.4. COROLLARY. For all p, qE S we have that p(k) = q(k) for each 
assignment k iffp(h) = q(h) f or each generalized assignment h. 

Proof: One direction is trivial. The other is proved by the continuity 
argument used above. 1 

It turns out that generalized assignments are more useful in topological 
contexts (see 4.13-4.17 below) while assignments are useful in proof- 
theoretic and in recursion-theoretic applications, as in the following well- 
known result, whose proof is included here for the sake of completeness. 
We refer to [26] and to [6] for all notions of mathematical logic used in 
the rest of this paper. 

4.5. THEOREM. The set of valid sentences is a recursive subset of C*. 

Proof The celebrated completeness theorem for the tukasiewicz N,- 
valued sentential calculus [31,4, 51 immediately implies that the set V of 
valid sentences is recursively enumerable (r.e.). It is also evident from the 
definition, that the set S of sentences is a recursive subset of C*. Thus for 
the proof of the theorem it suffices to show that S\V is r.e. We now 
describe a Turing machine M yielding the desired recursive enumeration of 
sjv: A4 enumerates all triplets (p, R, j), where p E S, R = 

ix9 -VT...~ 4 “’ Intimes} is such that all the variables occurring in p belong to 
R, and jj = ( yO,..., y,) is an element of the set (Qn [0, 11)““. For any 
such triplet, M computes fi( yo,..., y,), where fi is the function introduced in 
the proof of Theorem 4.3; note that I( yO,..., y,) E Q and that the restriction 
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OfI to Q”+l is recursive. Finally, M outputs p iff fi( yO,..., y,) # 1 for some 
triplet (p, R, 7). The set of sentences { p E SI M outputs p> coincides with 
s\V, and is r.e.: indeed, p is not valid iff p(h) # 1 for some assignment h, iff 
B(Yo,..., y,) # 1 for some rational ( yO,..., y,). 1 

4.6. PROPOSITION. On the set S of sentences define the binary relation = 
by stipulating that p G q holds iff both Cpq and Cqp are valid sentences. It 
follows that 

(i) for all p, qE S, p = q iff p(h) = q(h) for each (generalized) 
assignment h; 

(ii) = is an equivalence relation on S; any two valid sentences are 
= -equivalent, 

Proof As in [4, 5.21, in the light of Corollary 4.4 we may limit atten- 
tion to generalized assignments. Now we have 

P’4 iff (Cpq)(h) = 1 = (Cqp)(h) for all h: o -+ [0, 11, 

iff min( 1, 1 -p(h) + q(h)) = 1 = min( 1, 1 -q(h) + p(h)) for all h, 

iff q(h) - p(h) 2 0 and p(h) - q(h) 2 0 for all h, 

iff q(h) = p(h) for all h. 

This proves (i); (ii) is now immediate. 1 

In the light of Proposition 4.6, we shall denote by [p] the equivalence 
class of the sentence p E S with respect to E ; by S/Z we shall denote the 
set of all such equivalence classes. 

4.7. THEOREM. Over the set S/E we define operations 0, ., *, and con- 
stant elements 0 and 1, as follows: 

1= [CXX] 

0 = [NCXX] and for all p, q E S, 

[PI 0 Cql = CCNpql 

[PI. Cql = CNCP%l 

IPI* = CNPI. 

Then the algebra L = (S/G, 0, ‘, *, 0, 1) is a countable MV algebra. Indeed, 
L is the free MV algebra with the set of free generators {[Xl, [Xl], 
[Xl/],...}. For every AF C*-algebra ‘$I with lattice ordered K,, there is a 

proper ideal I c L such that p(a) g L/I. Conversely, for every proper ideal 
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IE L there is a (unique, up to isomorphism) AF C*-algebra c21 with lattice 
ordered KO, such that F’(a) E L/I. 

Proof Freeness of L is well known [4, 51. The last two assertions are 
an immediate consequence of Corollary 3.16. m 

4.8. Remarks. (i) The above MV algebra L is known under the name 
of Lindenbaum algebra of the &,-valued sentential calculus [ 171. 

(ii) By Proposition 4.6(ii), the valid sentence CXX in the definition of 
1 in L may be equivalently replaced by any other valid sentence. 

4.9. PROPOSITION. (i) [NNp] = [p]; (ii) [Cpq] = [p]*@ [q]; (iii) 

[CNN%l= [Cqpl; (iv) if [PI = [P’I then CCqpl = CCqp’l. 

ProoJ (i) Immediate from 4.7. (ii) By 4.7, [p]* @ [q] = [Np] @ 
[q] = [CNNpq]. Thus it suffices to show that [CiVNpq] = [Cpq]. 
For every assignment h: o + [0, l] we have: (CNNpq)(h) = 
min(l, 1 - (NNp)(h) + q(h)) = min( 1, 1 -p(h) + q(h)) = (Cpq)(h). By 4.6 
and 4.7 we conclude that CNNpq E Cpq, as required. (iii) [CNpNq] = 
[p] 0 [Nq] by definition. On the other hand, [Cqp] = [q]* @ [p] = 
[Nq] 0 [p] by (ii). (iv) For every h: o + [0, 11, (Cpq)(h)= 
min( 1, 1 - q(h) + p(h)) = min( 1, 1 -q(h) + p’(h)) = (Cqp’)(h); now recall 
4.6. 1 

4.10. PROPOSITION. For all p, q E S the following are equivalent: 

(i) [p] < [q] in the MV order on L (Definition 2.2); 

(ii) p(h) < q(h) for every ( generalized) assignment h; 

(iii) Cpq is valid. 

Proof. (iii)++ (ii). Cpq valid iff (Cpq)(h) = 1 for every h, iff 
1 = min( 1, 1 - p(h) + q(h)) f or every h, iff 0 6 q(h) - p(h) for every h. 

(iii) ++ (i). 

c PI s IISI iff [p]*@[q]=l [4, 1.131andTheorem4.7, 

iff [Cpq] = [CXX], by 4.9(ii), 

iff (Cpq)(h) = 1 for all h, by 4.6 and 4.2, 

iff Cpq is valid. u 

4.11. PROPOSITION. For any q ,,..., q,,, PES we have Cq,Cq,...Cq,,p is 
valid iff [q,]. ... . [q,,] < Cpl. 

Proof. By induction on n > 1. The case n = 1 is contained in 
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Proposition 4.10. Assuming now the proposition to hold up to n, we shall 
prove it for n -t- 1. To this purpose we need the following abbreviation. For 
all q, r E S we let Lqr be short for NCqNr, whence 

Chrl = [I91. [rl. (11) 

Claim. Cq, ... cq,p= CLq,Lq, ..‘Q, -lqnp (n32). 

Proof oj’ Claim. By induction on n. Basis, n = 2: 

c~~9,9,Pl=c~9,9~1*ocPl by 4.9(ii), 

= (C9II. c9,1)*0 [PIT by(llL 

= c9,1*0 cs21*0 [PI, by ,4x6’ in 2.1, 

= c9,1*@(c921*0 [PI) 

= [411*0 CC9,Pl by 4.9( ii), 

= cc91 c9* PI? again by 4.9(ii). 

Induction step. In the light of Proposition 4.9(iv) we have 

s ccl, CL92 L93 ’ . Lq,, 4,, + I P induction hypothesis 

3 CL9, L9, . . . L9,,9, + I P (bycasen=2), 

which settles our claim. 
Now we have Cq,... Cq,p is valid iff CLq, ..’ Lq,- ,q,,p is valid 

(Claim, 4.6) iff [Lq, . ..Lq.-,q,l6 [PI (by 4.10) iff Cq,I. ... * Cq,J 
< [p], by repeated application of (11) together with associativity of mul- 
tiplication. 1 

4.12. COROLLARY. (i) Cq,CqJ... Cq, r is valid ijf Cql Cq, . . Cq, NNr 
is valid, 

(ii) Cq,Cqz”. Cq, r valid implies Cq, . . Cq, Cq, + , r valid; 

(iii) If v is valid, then Cq, Cq, . . . Cq,,r is valid iff Cq, Cq, . . ’ Cq,Cvr 
is valid. 

Prooj (i) Immediate from Propositions 4.11 and 4.9(i). 

(ii) Immediate from Proposition 4.11, noting that [ql]. [qJ . . . . 

c9,13 c9*1. Cs*l ..’ . [q,] . [q, + i] by monotony of multiplication [4, 
1.8, or 1.101. 
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(iii) Using Proposition 4.11 and Remarks 4.8 we have that 
cq, ..a Cq,Cur is valid iff [qI]. ... . C4J. Co1 G [Irl iff Csll. ... . Cq,l G 
[r] iff Cq, ... Cq,r is valid. 1 

In the rest of this section we deal with the McNaughton representation 
of the free MV algebra L. This representation will not be used until Sec- 
tion 8. We let [0, 11” and [IO, 11” denote the product of n (resp., 
denumerably many) copies of the real unit interval with the product 
topology. Elements of the Hilbert cube [0, 11” are nothing else but our 
generalized assignments of Theorem 4.3 and, accordingly, will be denoted 
by h, k,... . As usual, Iw denotes the set of real numbers. 

4.13. DEFINITION [25, p. 21. A function f: [0, 1 ]” + IL! is called a 
McNuughton function over [0, 11” iff f obeys the following conditions: 

(i) f is continuous, and 
(ii) there are a finite number of distinct polynomials a1 ,..., a,,,, each 

aj=bjfayx,+ ... + a,x,, where all a’s and b’s are integers, such that for 
every (xi,..., x,) E [0, 11” there is ic {l,..., m} with f(x ,,..., x,)= 
@i(Xl ,-, X,1. I 

In his original definition McNaughton also required that 
range(f) c [0, 11. Compare with Theorem 4.15 below. 

4.14. PROPOSITION. Call a function g: [0, 11” + Iw a McNaughton 
function over [0, 11” iff f or some integer n > 1 there is a McNaughton 
function f over [0, 11” such that for all hE [0, 11” we have 
g(h) = f(h(O),..., h(n - 1)). Th en the McNaughton functions over [0, 11” 
with pointwise operations form an l-group M of continuous functions, in 
which the constant 1 is an order unit. 

4.15. THEOREM. Up to isomorphism, (M, 1) is the only f-group with order 
unit such that LZ T(M, 1). 

Proof McNaughton [25, Theorem 21 proved that L is isomorphic to 
the MV algebra A given by those McNaughton functions over [0, 11” 
whose range is contained in [0, 11, with pointwise MV operations. Now, 
A = r(M, 1). Uniqueness of (M, 1) follows from Corollary 3.10. 1 

4.16. COROLLARY. (i) There is a denumerabfe set Y c f(M, 1) such 
that Yu { 1) generates M, and for every l-group G with order unit u, and 
every map A: Y + CO,, u] there is a unital i-homomorphism 
1: (M, 1) + (G, u) extending I.. 

(ii) Property (i) charucterizes (M, 1) up to isomorphism. 
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(iii) H is a countable l-group with order unit w  iff (H, w)g (M/J, l/J) 
for some I-ideal J of M. 

Proof (i) For each io o let the canonical projection pi: [O, 11” + 
[0, l] be defined by p,(h) = h( ‘) f z or all h E [0, 11”. Identify r(M, 1) and L 
using Theorem 4.15. The set Y = { pO, p, ,... } is a free generating set in the 
free MV algebra L [4, 51. Therefore i can be uniquely extended to an MV 
homomorphism 1: L -+ T(G, u). By Theorem 3.9 there is a unital l- 
homomorphism 1: (M, 1) -+ (G, U) with r(x) = 2. Since Y generates the MV 
algebra L, and the MV operations are definable in terms of the order unit 1 
together with the I-group operations of M, it follows that Yu (1 } 
generates the I-group M. 

(ii) The usual proof of uniqueness of free algebras [ 16, p. 1631 can 
be easily adapted to (M, 1) using the equivalence r (3.9). 

(iii) This is immediate from (i). 1 

The I-group (A4, 1) of McNaughton functions over the Hilbert cube 
“separates points” in the following strong sense: 

4.17. PROPOSITION. Let U c CO, I]‘” be open, and k E U. Then there is an 
f EMsuch thatf(k)=O andf(h)= 1 for all hE [0, l]“\U. 

Proof: Assume U={hE[O, l]“/m/n<h(O)<p/q} for some 
m, n, p, q E o. Then since k E U we have m/n c k(0) <p/q and there exist 
m’, n’, p’, and q’ E w  such that m/n < ml/n’ < k(0) -C p’/q’ < p/q. Let 
v: R + R be the function defined by v(x) = m’ -.n’x. Then there is a natural 
number c such that cv(x) 2 1 for all x 6 m/n and cv(x) < 0 for all x 2 m’/rz’. 
Similarly, letting w(x) = -p’ + q’x, there exists dE o such that dw(x) 2 1 
for all x2 p/q and dw(x) < 0 for all x < p’/q’. Let r: [0, l] -+ R be the 
restriction to [0, I] of the function ((cu v 0) A 1) v (dw v 0) A 1). Then r 
is a McNaughton function over [0, 11. In addition we have 

r(W)) = 0, r(z) 2 0 for all ZE [0, 11, 

and 

r(x) = 1 for all x with x d m/n or x Z p/q. 

The McNaughton function f over [0, 11”’ defined by f(h) = r(h(0)) for all 
h E [0, 1 I”, has the required properties. 

In case U= {h E CO, 11” I mh, < h(O) < po/qo,..., w/n, <h(t) < dq,) 
for some mo, no, po, qo,..., m,, n,, P,, qtEw since kc U, then 
m,/n, < k(i) -C pi/q; for all i = O,..., t. Arguing as we have done in the first 
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case, we exhibit McNaughton functions Y,,,..., Y, over [0, l] obeying the 
following conditions, for all i = O,..., t: 

r,(k(i)) = 0, ri(z) 2 0 for all z E [IO, 11, 

and 

ri(x) = 1 for all x with x d m,/n, or x 3 piyi. 

Define the function s: [0, 11” + R by 

s(h)=r,(h(O))+r,(h(l))+ ... +r,(h(t)) for all h E [0, 1 ]I”, 

Then s is a McNaughton function over [0, 11’” having the following 
properties 

s(k) = C r,(k(i)) = 0, s(h)>,0 for all h E [0, 1 I”‘, 

and 

s(h) 3 1 whenever h E [0, 1 I’“\, U. 

The functionS= 1 A s has the required properties to settle the proposition 
in the case under discussion. In general, every open u’ C_ [0, 11” will con- 
tain a basic opn U of the form given above (second case), with k E U. The 
function f constructed for V will be good for U’, too. This completes the 
proof of our proposition. a 

5. LINDENBAUM ALGEBRAS OF THEORIES 
IN LUKASIEWICZ LOGIC 

5.1. Following model-theoretic usage [6, 261 we call theory of L any 
subset of S. Given theory 0 c S, in case 0 # a, the set 6 of (syntactic) 
consequences of 0 is defined by: 

g={p~S( i’q,,...,q,EO such that Cq,Cq,~~.Cqnp is valid}. 

In case 0 = 0, then we let G = set of all valid sentences. For any theory 0 
we denote by O/E the subset of L given by 

O/E = {[P]EL 1 PEG}, 

and we let F, denote the filter generated by O/z according to 3.17, 
Lemma 3.18. Dually, the ideal Ze is defined by IQ = Fs = 
{[PIELI [p]*~F~}=([pl~Ll [Np]~F,‘,.Foranytheory@,theLin- 
denbaum algebra of 0 is the quotient L/I, of L by the ideal I, (compare 
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with [6] for the 2-valued case). Note that I, is a proper ideal iff 0 # 1 in 
LIZ,. 

5.2. PROPOSITION. Given any two theories 0 and @ we have: 
(i) each valid sentence belongs to 8; 

(ii) @C&i; 

(iii) 6 = &; in particular, 2 = B = all valid sentences; 

(iv) @GO implies $G&. 

Proof: (i) If 0 = @ then the conclusion immediately follows from the 
definition of @. If 0 # @ then let p E 0; for every valid sentence t E S we 
have: Cpt is valid iff [p] < [t] iff [p] 6 1, using Proposition 4.10 and 
Remarks 4.8. Hence Cpt is valid, whence t E 6. 

(ii) To avoid trivialities assume 0 # Qr and let PE 0. Then p E 6 
because Cpp is valid (Proposition 4.2). 

(iii) Assume first 0 = 0: then PE 2 iff Cq, ... Cq,p is valid for 
suitable q, ,..., q,, E B = set of valid sentences, iff [q,] . ‘. . . [q,] 6 [p], iff 
1 6 [p], iff p is valid, by 4.11, 4.8, and 4.10. Thus, 6 = B, as required. If 
B # 0 then, in the light of (ii), it is sufficient to show that 8 c G. To this 
purpose, first note that by (i), 6 # 0 whence, by (ii), 6 # 0. If p E 8 then 
Cq, ... Cq,p is valid, for suitable q, ,..., qn E 6; therefore, by 4.1 I, 
[q,] . .. . . [q,,] < [p]. For each qi (i = l,..., n) there are q{ ,..., qLci, E 0 such 
that Cq; ... Cq&ijqi is valid, i.e., by 4.11, [q’j]. ... . [qLci,] < [qi]. In con- 
clusion, using monotony of multiplication [4, 1.101 we obtain: 

which shows that p E 8, by another application of 4.11. (iv) Obvious. 1 

5.3. PROPOSITION. For every p E S and 0 ES the following are 
equivalent: 

(i) [PI EF@; 
6) [PI EFB; 

(iii) PE 43. 

Proof: In case 0 = @ then 6 = all valid sentences, O/z = 0, 
F, = { 1) E L (Lemma 3.18). Also, F& is the filter generated by the set of all 
[p] such that p is valid, i.e., the filter generated by the element 1 EL, by 
4.8. Therefore, F, = FB = { 1 }, and [p] E ( 1) iff [p] = 1 iff p is valid iff 
p&j. 
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Now consider the case 0 #a. (i) + (ii) holds by 5.2. (iii) -+ (ii) holds, 
i.e., p E 6 implies [p] E Fg , as Cpp is a valid sentence (4.2). We now prove 
(i) c, (iii): 

[PI EF~ iff [p] belongs to the filter generated by O/ =, 

iff [p]>y,. ... y,, for suitable y, E O/E, 

iff [IpI> [qll. ... . [q,], for suitable q, E 0, 

iff Cq, ... Cq, p is valid (4.11), iff p E &. 

(ii)+(iii). [~]EF~ iff [q,]. ..* . [q,] d [p] for suitable qie g (arguing 
as in the above proof of (i)- (iii)). It follows that for all i= l,..., n, there 
exist qje 0, as in the proof of 5.2(iii), such that [q;] . ... [qkci,] d [q;]. 
Using monotony of multiplication [4, 1.101 we finally obtain 

which shows that p E G, again by 4.11. 1 

5.4. COROLLARY. For every 0 c S, I, = I@. 

5.5. PROPOSITION. Let D be a filter of L. Then there is a theory 0 E: S 
such that D = F,. Furthermore, 0 may be so chosen that 0 = &. 

Proof Define @=(p~Sl [PIED}. Note that O#@ since LED, 
whence, say, CXX E 0. We claim that F, = D. For every p E S we have by 
Proposition 5.3, 

CPIEFB iff pEO. (12) 

On the other hand, by definition of 0 we have 

[PIED iff pE:O. (13) 

Thus, to prove our claim it is sufficient to prove that 0 = 8’; since 0 G ai, 
by Proposition 5.2, then it is sufficient to prove 6 c 0. To this purpose, for 
every p E S we have 

PEG implies [ql]. ... [q,] d [p], for suitable qi E 0, by 4.11, 

implies y,. ... . y n < [p], for suitable y, E D, by (13), 

implies y < [p], for some y E D, 
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since D is closed under products (3.12). A fortiori, [p] ED, hence p E 0 by 
(13). I 

5.6. COROLLARY. Let I be an ideal of L. Then there is a theory 0 ES 
such that Io = I and 0 = 6. 

The following result states that Lindenbaum algebras of theories in L 
yield the most general countable MV algebra. 

5.7. COROLLARY. For every countable MV algebra A there is a theory 
0 c S such that A s L/I,. 

Proof: By Corollary 5.6 and Theorem 4.7. 1 

5.8. DEFINITION. Given a countable MV algebra A, we let T(A) be 
defined by T(A) = { 0 c Sj As L/Z,}. We also let 8 be the map which 
associates with each AF P-algebra ‘9I with lattice ordered K,, the set 
6((u) = T(F((clr)). 

5.9. THEOREM. The map 8 has the following properties: 

(i) For every AF (Y-algebra 2I with lattice ordered K,, t3(2I) is a 
nonempty set of theories in the Eukasiewicz X,-valued sentential calculus. For 
every theory 0 G S, we have 

0 E f3(2l) iff &JI)gL/Zo 

(ii) For any two AF C*-algebras ‘2l and 23 with lattice ordered &, 
~~~iffe(~)=e(~)iffe(~)ne(~)~125. 

(iii) For every consistent theory 0 E S (i.e., I, #L) there is a (unique, 
up to isomorphism) AF C*-algebra ‘$I with lattice-ordered K,, such that 
0 E t@l). 

ProoJ Immediate from Corollary 5.7 and Theorem 4.7. fl 

5.10. We now study concrete representations of L/I,. Note that each 
element of L/I, is an equivalence class of elements of L, each element of L 
being itself an equivalence class of sentences. We shall represent elements of 
L/Z, as equivalence classes of sentences. To this purpose, for every theory 
0 E S we define the binary relation = e between sentences p, q E S, as 
follows: 

p-s4 iff Cpq E G and cqp E G. 
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If @=a then =@ coincides with =. Thus, unless otherwise stated, we 
shall assume 0 # 0. 

5.11. PROPOSITION. For every theory 0 s S, the following hold: 

(i) --8 is an equivalence relation on S; 

(ii) z 8 is coarser than = (i.e., p 2 q implies p =.8 q); 

(iii) = 8 preserves the negation symbol N (p --B q --f Np =@ Nq); 

(iv) z e preserves the implication symbol C (p sB p’ and 
q =@ q’ + cpq =@ Cp’q’). 

ProoJ: (i) p --8 p holds, because Cpp is valid (4.2), hence, given q E 0, 
GqCpp is valid (4.2). Trivially, 2 e is symmetric. To prove transitivity, 
assume p =8 q and q ze r. Using 4.11 and 4.9(ii) we obtain 

CWII. “. ‘cw,l~ccPql=[IPl*olIql for suitable W, E 0, 

and 

Cull. ... . [v,] G [+I = Csl* 0 Crl for suitable U/E 0. 

By monotony of the product [4, 1.101, [4, 3.1 J, 4.9(ii), and Ax3’ in 2.1, we 
have the following inequalities: [WI,]. ... .[w,,].[D,]. ... .[u,,,]< 
CCPql~CCqrl = (Cql* 0 C~l)~(CPl*O[1~1) G [PI* 0 ((Cql*@Crl)~ 
Csl) d [IpI* 0 Crl 0 [ql Cql* = [PI* 0 [rl = CCprI, which shows 
that Cpr E a; using the hypotheses that Crq, Cqp E & one similarly proves 
that Crp E 6; therefore p 3 e r. 

(ii) p-q iff C pq and Cqp are both valid; letting r E 0 we have a for- 
tiori, CrCpq and CrCqp both valid (by 4.11, or 4.12(iii)), whence p z8 q. 

(iii) By 5.3, (C pq, Cqp}sG if and only if ([Cpq], [Cqp]}EFG. 
But by 4.W), { CCPql, CQPI} = (CCW%l}, [ICWNPI 1. 

(iv) By hypothesis and 4.11, together with 4.9(ii) we can write, for 
suitable vi ,..., v,, w1 ,..., w,, r1 ,..., rz, sI ,..., S,E 0: 

cull’ .” ~[I~,l~c~PP’l=cP1*ocP’l (14) 

CWII . ... . Cw,l d CCP’PI = cP’I* 0 CPI (15) 

[rl]. ... . [r,] Q [Cqq’l= [ql*O Cdl (16) 

[s,] . ‘. . [s,] d CCq’ql = cq’l* 0 [Iql. (17) 



INTERPRETATION OF AF P-ALGEBRAS 47 

Now 

ccmwq’l= cw1* 0 CCP’dl 
=~c~l*oc~l~*o~~‘l*oc~‘l, by 4.9(ii), 

= [PI. LI41* 0 WI* 0 C4’1, by Ax6, 7 in 2.1, 

~c~1*~~c~loc~‘l*~oc~‘l~ c4, 3.1 I, 

~~c41*oc4’1~~~cPIocP’l*~~ by C4, 3.11, 

6 [WI]. ... . [w,]. [r,]. ... . [r,] by(2),(3)and[4,1.10], 

which shows that CCpqCp’q’ E 8 in the light of 4.11. One similarly proves 
that CCp’q’Cpq E 8 using (14) and (17). 1 

5.12. Given a theory 0 c S, for every p E S let us denote by (p) the 
equivalence class of p with respect to = @. The fact that = 8 is coarser than 
- (Proposition 5.1 l(ii)) may be equivalently restated as follows: 

Therefore we can define the equivalence relation z on L by the following 
stipulation 

i-PI = Cql iff (p) = (q) (i.e., iff p --8 q), (19) 

for any p, q E S. We can also define the (quotient) map a: L/z + S/ = e by 

[PI/= WP>? (20) 

for any p E S, where [ p]/ x = ( [q] ) [q] z [ p] } is the x-equivalence class 
of [p]. Recall from 3.15 the definition of the congruence relation 
associated with an ideal. See 5.1 for the definition of the ideal I,. 

5.13. PROPOSITION. For any theory 0 G S, let Re be the congruence 
relation on L associated with the ideal I@. Let z be the above equivalence 
relation. Then R@ coincides with z. 

Proof: If O=@ then 1@=(O) and R, is the equality relation on L, 
since [PI R,Cql holds iff [PI*. CqlO [pl . [ql* =O iff [PI= Cql, by C4, 
3.141. On the other hand, when 0 = 0, then Eq. (19) becomes [p] z [q] 
iff p E q iff [p] = [q], because = 8 then coincides with z. Thus, z = R,. 
We now deal with the case 0 # 0. For arbitrary p, q E S we have 

[PI &Cql iff [PI*. CslO [PI. Cql* EZe 
iff Cpl*.Cql~Z~ and Cpl*[ql*~I,; 

58Of65:1-4 
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indeed, the -+-direction holds because of the monotony of addition [4, 
1.101, ideals being closed under minorants (3.15); the c-direction holds 
because ideals are closed under addition. Letting now F, = Z,$ (5.1.), we 
can write 

[PI %I31 ifUCpI*~ C~l)*~f’~anW.O Cd*)*EFs 
iff[IplOCql*EFsand CPI*OC~I~F~ by Ax7,6’ in 2.1, 

iffCCpqlEF,and CHIEF,, by 4.9(ii), 

iff Cpq E & and Cqp E 6, by Proposition 5.3, 

iff pzsq 

iffCpI=[c41. I 

5.14. PROPOSITION. Given a theory 0 z S define on S/E 8 operations 
0, ‘2 * and elements O,, 1, as follows: 

l,= (CXX) 

o,= (NCXX) 

(P)O (4) = (CNpq) 

(P> ’ (4) = <NCpNq) 

(P>* = (NP). 

Then (S/G@, 0, ., *, O,, 1,) is an MV algebra. 

Proof. First note that 0, and * are well defined, by 
Proposition 5.1 l(iii), (iv). Also notice that replacement of CXX by any 
other valid sentence t would result in the same definition of l,, since 
[t]= [CXX] (4.8) whence (t)= (CXX) by 5.11(ii). To verify that 
(S/z @, O,...) is an MV algebra we have to check the axioms given in 2.1: 
we limit ourselves to Ax2, since no new ideas are used in checking the 
remaining axioms. 

Claim. (p)0((q)0(r))=((p)O(q))O(r). Indeed, (P)@ 
((q)@(r))=(p)@(CNqr)=(CNpCNqr). On the other hand, 
((p)@(q))@(r)=(CNpq)@(r)=(CNCNpqr).Since =.iscoarser 
than E, it suffices now to prove that [CNpCNqr] = [CNCNpqr], i.e., 
going backwards through the definition of L (4.7), we have to show that 
[p]@([q]@[r])=([p]+[q])@[r]. But this is a consequence of L 
being an MV algebra (4.7). 1 

5.15. THEOREM. For every theory 0 % S, the map CI dttfined in Eq. (20) is 
an MV isomorphism of LIZ, onto (S/z@, 0, ., *, 09, Is). 
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ProoJ: If 0 = 0 than - 8 = s and we have nothing to prove. Assume 
0 # 0. As in [4, p. 4841 we shall use L/I, and LJR, interchangeably, 
where Re is the congruence relation associated with I, (3.15). For the 
same of readability we shall write R instead of R, in the rest of this proof. 
By Proposition 5.13, R coincides with the equivalence relation % defined in 
Eq. (19). Elements of L/Z, will be denoted [ p]/R, where p ranges over sen- 
tences. Thus, CplIR={Cd~Ll CqI~:c~l~=~C~1~~I~-~~~. BY 
definition, the map a sends [p]/R into (p) = /J { [q] E L ) q --8 p}. This 
shows in particular that c( maps L/Z, one-one onto S/= @, recalling that 

’ coarser than = 
;x,,‘&, - - ^ 

(5.1l(ii)). The quotient MV algebra 
*, 0, 1) is defined as follows [4,4.3]: 

I= [CXX]/R, where [CXX] is the unit in L, 

d = [ NCXX]/R 

C PI/R 6 [41/R = ( [PI 0 [ql I/R = CCNpqllR 

CP~I~~C~~I~=~CP~~C~~~I~=C~~~~~~I~ 

(CPIIN^*= CPI*IR= CNPIIR. 

The proof that this is indeed an MV algebra is in [4,4.3]. The proof that 
(S/r @,...) is an MV algebra is in Proposition 5.14. The proof that c1 is an 
MV isomorphism of L/Z, onto S/F 8 is now a particular instance of the 
second isomorphism theorem in universal algebra [ 161. However, we can 
easily give a self-contained proof. Let us show, for example, that a preser- 
ves addition: 

4CpllR 6 Cql/W = dCCNpql/R) by definition of 6, 

= (CNpq), by definition of r, Eq. (20), 

=(p)@(q) by definition of S/ = 8 

in Proposition 5.14. A similar proof shows that c( preserves the other 
operations and distinguished elements in L/Z,. The proof of the theorem is 
now complete. 1 

6. APPLICATIONS: INCOMPLETENESS, 
AXIOMATIZABILITY, SIMPLICITY 

6.1. THEOREM. Let ‘2l be an AF F-algebra with lattice ordered K,,. 
Assume there exists a theory 0 E 8(‘2I) such that the set & of consequences of 
0 is recursively enumerable but not recursive. Then ‘3 is not simple. 
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Before proving the theorem we shall characterize those theories Y’ such 
that p is recursively enumerable, by an adaptation of Craig’s well-known 
result [7] for the 2-valued case: 

6.2. THEOREM. For every theory Y c S the following are equivalent: 

(i) p is recursively enumerable; 

(ii) there is a recursive theory @ES such that 8 = 9 (stated 
otherwise, !P is recursively axiomatizable). 

Proof of 6.2. (ii) + (i). Let P(p) be the predicate “p E p.” Then P(p) 
holds iff 3q, . . q, (q, ,..., q,, E @ and Cq, . . Cq,, p is valid). By Theorem 4.5 
the predicate “Cq, ... Cq, p is valid” is recursively enumerable (indeed, it is 
recursive). Therefore, the predicate P(p) is recursively enumerable. 

(i) -+ (ii) In case !P= @, then by Definition 5.1, letting @ = @ we are 
done. Assume now Y # 0. By hypothesis there is a recursive predicate 
W(n, p) (n E O, p E S) such that p E 9 iff 3n W(n, p). Let @ c S be given by 
the following definition: 

IIYII IIYII ll~ll c IIYII 
qE@ iff 3 nEu 3 rnEf3 3 rES(W(n,r)andq=NNNN...NNr). 

0 0 +2m N-S-+ 

(21) 

Note that @ # 0, since p# 0. Now by (21) we have: q E @ implies 
q = NN NN + . NNr for some r E p, i.e., for some r such that Ct , . . . Ct, r is 
valid (for suitable t , ,..., t, E Y), which implies Ct, . . Ct,q is valid, by 
Corollary 4.12(i), whence q E p. Thus, @ z !?? 

Conversely, if r E p then W(n, r) holds, for some n E o by definition of 
W. Consider now the following sequence of sentences: 

r, NNr, NNNNr ,..., NN NN . . . NNr ,... 
+-2i MS--+ 

By Corollary 4.12(i), each sentence in the above list belongs to !?? For 
suitably large i E o we have 

// NN . NNrI\ 2 n. 
t2i MS-, 

Let m be the least such i E o. Then the sentence 

q=NNNN...NNr 
t2m N’s+ 

has the following properties: /q\[ > m, llqll b n, and /(q\j > I( t-11. Since W(n, r) 
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holds then by (21), q E @. Since Cqq is valid by Proposition 4.2, then Cqr is 
valid by Corollary 4.12(i), hence r E 8, by definition of $, since q E @. We 
have thus proved that PC 5, which completes the proof of 
Theorem 6.2. u 

6.3. Proofof6.1. Assume !!l to be simple, and 0 l 0(2I) to be a theory 
such that & is recursively enumerable (r.e.). We shall prove that & is recur- 
sive. In the light of Theorem 4.5 and definition of B (5.1), we may safely 
limit attention to the case 0 #a. Recalling the well-known correspon- 
dence between ideals of ‘$I and ideals of (G, U) = (K,(‘%), [ lz] ), [9, p. 221 
we see that (G, U) is simple, whence every g E G with g > 0 is an order unit 
for G [ 10, p, 389; 14, p.1961. Let T(G, U) = (A, 0, ., *, 0, 1) as in 
Definition 2.4. Then for every x E A we have 

x>o iff +z(n>Oandx@ ... Ox= 1). (22) 
tn x’s -+ 

Indeed, the c-direction is trivial; the j-direction follows from 2.9, since 
x > 0 is an order unit for G. As a consequence, for each J? E A exactly one of 
the following cases may occur: either 

y= 1 or y*>O, i.e., 3nEo(n>Oand y*@ ..* @y*=l). (23) 
4-n y’s + 

By the definition of f3(%), which is made possible by Theorem 4.7 and 
Corollary 5.6, we can identify A = F(Yl) with the Lindenbaum algebra 
L/Z,; by Theorem 5.15 we can identify the latter with the MV algebra 
(S/-e, 0, ‘> *, 0 @, le). We are now in a position to equivalently state (23) 
as follows: for each p E S, 

(P)Zl, iff 3nEO (n>O and.l,= (P)*o ... 0 (P)*). (24) 
4-n p’s+ 

Claim. For every sentence r E S, (r ) = 1 e iff r E &. Indeed, 

<r) = 1, iffrr.CXX, 

iff CrCXXE & and CCXXr E 6, by definition of E @, 

iff CCXXr E 8, since CrCXX is valid (4.2) hence 

it belongs to a, by 5.2, 

iff 3w, .. . wk E 0 such that Cw, . . . Cw, CCXXr is valid, 

iff 3w, ... wk E 0 such that Cw, ... Cw,r is valid (4.12(iii)), 

iff rE63. 

This settles our claim. 
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The predicate P(p) defined “p E 6” is r.e., by hypothesis. To prove that 
P(p) is recursive it suffkes to show that its negation 1 P(p) is r.e. To this 
purpose, note that 1 P(p) holds iff p is a word over the alphabet Z such 
that p $ &. Since the set of sentences S is a recursive subset of C* (4.1) 
then it is enough to prove the recursive enumerability of the following 
predicate 

‘p is a sentence not belonging to 6.” (25) 

By our claim, (25) is equivalent to ( p) # 1 o ; the latter, by (24) is 
equivalent to 

3n~0 (n>O and l,=(p)*@ ... o(p)*), i.e., equivalent to (26) 
cn p’s+ 

3nEco (n>O and l,= (CNNpCNNp... CNNpNp)), (27) 
tn P’S + 

as can be seen in the light of Proposition 5.14. One more application of our 
claim shows that (27) is equivalent to 

In E o (n > 0 and CNNpCNNp . . . CNNpNp E a). (28) 
+n p’s+ 

Since the predicate Q(p) defined in (28) is r.e., then so is the predicate 
defined in (25), as well as the predicate “p $ g.” Therefore k? is a recursive 
set of sentences. This completes the proof of our theorem. 1 

6.4. EXAMPLE. Let X, be short for X 1 .. I,,. Let the theory 0, E S be 
defined by 

OS= {CCNX,X,X,, CX,CNX,X, / nEo}. 

Intuitively, the theory states that each variable X,, is (0, 1 }-valued. More 
precisely, in the MV algebra LB=L/ZeB we have (X,,)=(X,)@(X,), 
and hence, by [4, 1.71 the operations @ and . collapse to v and A , 
respectively. Moreover, (LB, v , A , *, 0, 1) is the free boolean algebra 
over denumerably many free generators. We can identify aB with the set of 
tautologies in the 2-valued sentential calculus. Let y be a Turing com- 
putable bijection onto o of the set of sentences of first-order logic in the 
language of Peano arithmetic (PA, for short), and let OpA G S be given by 
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QpA = {Xn 1 y-‘(n) is a theorem of PA} u (NX, 1 the negation of y -i(n) is 
a theorem of PA >. Also let 0 = 0, u O,,. Since the set of theorems of PA 
is r.e., then O,, is r.e. Therefore, & is r.e. We now claim that for every n E w  
we have 

XlIEQP, iff X,E&. (29) 

As a matter of fact, assume X, E 6, i.e., Cp, Cp, ... Cp,X,, is valid in the N,- 
valued sentential logic, for suitable p ,,..., p, E 0. Then there are 
ql,..., qr E Or, such that Cq, Cq2.. . Cq,X,, is valid in the 2-valued sentential 
logic, i.e., (ql A ... A qt) +X, is a tautology in this latter logic. Since for 
each i= l,..., t, qi is either a sentential variable or a negated sentential 
variable, an application of Craig’s interpolation theorem [6, 1.2.7, p. 171 
shows that X, = q, for some j = l,..., f-unless PA turns out to be incon- 
sistent, in which case replace PA by some other r.e. nonrecursive set of sen- 
tences, e.g., the valid sentences of first-order logic. It follows that X, E 0 PA. 
Since the converse implication in (29) is trivial, our claim is settled. 

We now note that b is not recursive, for otherwise the set &n {senten- 
tial variables} is recursive, whence by (29) so is the set O,, n (sentential 
variables}, thus contradicting the Giidel undecidability theorem for PA 
[26, 16.11. Let the AF C*-algebra %?IPA we defined by OE 0(%,,). In the 
terminology of the Introduction of this paper, ‘u,, is Godel incomplete. 
We shall now see that this incompleteness is irreparable. Since g is r.e. and 
not recursive, by Theorem 6.1 2I[,, is not simple. In view of the com- 
mutativity of 211PA, the effect of Theorem 6.1 is that the boolean space of 
maximal ideals of ‘$I,, is not a singleton. Moving through our gijdelization 
y, we can find a sentence tj in the language of Peano arithmetic such that 
neither II/, nor not-$ is a theorem of PA: this is Godel’s incompleteness 
theorem for PA [26, 16.2). Let now 23 be an arbitrary simple quotient of 
%!I rA. Thus, 23 z C. Trivially, there are infinitely many r.e. theories @ E 8(B) 
with @ not containing 0, and there are infinitely many non-r.e. theories 
,4 ~8(23) with n containing 0. However, we claim that there is no r.e. 
theory ‘Y~8(23) with Yz@. For otherwise, if Y were a counterexample, 
then by 6.1, Y would be recursive, and hence YZ OZ@,, would be a 
counterexample to the inseparability of PA [26, 16.11. Our second claim is 
settled. Intuitively, any completion process @~6(2Ir~) =--+ YE@‘%) 
paralleling the ideal-elimination process ‘?I,,++23 does not preserve recur- 
sive enumerability. 

6.5. EXAMPLE. We shall describe here a primitive, nonsimple, Gijdel 
complete AF C*-algebra. Let C be the MV algebra defined in [4, p. 4741, 
whose picture is 
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with obvious MV operations: thus for example, 3c@ 5c = 8c, 
(3c)* @ (5c)* = 1, 3c@ (5c)* = (2c)*, 5c@ (3c)* = 1. For all m, n E w, we 
have nc < (mc)*. Define the AF C*-algebra 23 by F(%)r C. Then ‘B is 
primitive and is not simple. We claim that ‘13 is Gijdel complete. As a mat- 
ter of fact, let 0 E e(B). Let q E S be such that (q) = c in the isomorphism 
CS L/Z, E r(d). For every p E S exactly one of the following alternatives 
holds: 

- either Np is a consequence of 0, 
- or Cqp is a consequence of 0. 

For, if (p) #O, then (p) > c= (q), i.e., Cqp is a consequence of 0. If in 
particular & is r.e., then the above argument yields a decision procedure for 
the predicate “( p ) = 08,” and hence, for the predicate “(r ) = le.” 
Therefore, a is recursive, and B is Godel complete, as claimed. 

7. EXAMPLE: AXIOMATIZING THE CAR ALGEBRA 

7.1. THEOREM. Let ‘9I be the canonical anticommutation relation (CAR) 
algebra defined in [3, p. 2271. Let 0 z S be the ,following set of sentences: 

CNXX 

CXCNXI X( CCNXI XI X 

CXI CNXII XII CCNXII XII 4 
CXII CNXIII XIII CCNXIII XIII XII 
. . . . . . . 

CXNX 

CNXl CXX( CCXXI NXI 

CNXII CXI XII CCXI XII NXll 
CWII CXII XIII CCXII XIII NXlll 

. . . . . . . . . 

Then 0 E 13(a). 
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ProoJ: Adopting the abbreviations X,, for X ) . . . Jn s,rokesr and Bpq for 
CNpq, we may equivalently write 0 = 0, v 0, v O,, where 

0, = { CNXX, CXNX} 

As shown in [9], (&(2l), [llrr]) is the group D of dyadic rationals with 
addition and natural order, and with 1 as an order unit. By Theorem 5.9(i) 
our theorem amounts to proving that f(D, l)zL/Z,. By Definition 2.4, 
T(D, 1) is the MV algebra (A, 0. ., *, 0, 1) given by 

A = dyadic rationals in [0, I] 

x * = 1 - x 

x@y=min(l,x+y) 

x. y = max(O, x + JJ - 1). 

By Theorem 5.15 we may identify L/I, with the MV algebra (S/E @,...) 
defined in Proposition 5.14. Elements of S/= o have the form (p), for 
p E S, where ( p) = {q E S 1 q =@ p >. To prove the theorem we prepare a 
number of lemmas. The following holds in every MV algebra: 

7.2. LEMMA. Write nx instead of x0 . . 0.~ (n times). Let 
i,j,mEu\{O}, with i+j=m+l. Zfx*=mx then (ix)*=j-x. 

Proof: Since x0x* = 1 then by hypothesis x@ mx = 1, whence 
1 =(m+ l)x=(i+j)x=(ix)**@jx. By [4, 1.131 we obtain 

(ix)* d jx. (30) 

With the help of (30) we prove the lemma by induction on i: Basis: i = 1. 
Trivial. 

Induction step: 

x* =mx= (i- 1)x@ jx, by hypothesis, 

>(ix)*@(i- 1)x, by (30) and [4, 1.101, 

=((x*)*@(i- l)x)*@(i- 1)x 

=(x*@((i-1)x)*)*0x*, by Lemma 2.6 (P8), 

2 x*, by [4, 1.10.1 
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Then we obtain in particular, 

jx@(i-l)x=(ix)*@(i-1)x. (31) 

Since ix > (i - 1 )x then an application of [4, 1.4( vi)] yields 

(ix)* <((i- 1)x)*. (32) 

By the induction hypothesis we have 

((i-l)x)*=(m+ 1 -(i-l))x=(j+ l)x3jx. (33) 

Applying [4, 1.141 to (31) in the light of (32) and (33) we can finally write 
jx = (ix)*, as required. 

7.3. LEMMA. Let PE S and p sk 8 NCXX. Then for some b, nEw with 
b>2 we have 

p-@ BX,BX;.. BX,X, (b many Xn’s). 

Proof. If p = X,,, then by suitably choosing axioms from 0, we can 
easily see that X, --8 BX, + , X, + 1, and we are done. 

To deal with p #X, we proceed by induction on (/ p((, by cases: 

Case 1. p = Bqr. Then by induction hypothesis, for suitable c, t, d, u E o 
we have 

and 

q-e BX,.BX,....BX,.X, (t many X,.‘s) 

r --8 BX,BX,.‘. BX,X, (U many X;s) 

(34) 

(unless either q or r is G .-equivalent to NCXX, in which case the proof 
becomes trivial). Assuming without loss of generality that c < d, by suitably 
choosing axioms from 0, we obtain, for some v E o, 

X,. - o BXJ BX, ’ . . BX, X, (0 many X;s). (35) 

Here, and in the rest of this paper, we shall use without explicit mention 
the fact that = B preserves N and C (5.1 l), whence = 8 preserves B. We are 
also using such well known facts [31] as the commutativity and 
associativity of B (BxByz - BBxyz, hence, a fortiori, BxByz E@ BBxyz, by 
5.11). 

In the light of (34) and (35) we have, for suitable w  E w: 
Bqr --B BX,BX,... BX,X, (w many Xis), as required to complete the 
proof of this case. 
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Case 2. p = Nq. By induction hypothesis we have, for suitable c, t E o, 
qz8 BX,.X c . ..BX.X. L (t many X,‘s) 

(unless q-e NCXX, in which case the proof is trivial). By suitably choos- 
ing axioms from 0, and O2 we have 

NX,.-,BX,.BX,,_,...BX,X. 

At this point, by suitably choosing axioms from 0, we obtain, for some 
UEO, 

NX,.z@ BX,.BX,.... BX,.X, (24 many X,.‘s), 

i.e., (X,) * = (X,.) @ . . @ (X,.) (U times). Applying now Lemma 7.2 to 
the MV algebra (S/E @,...) we conclude that 

pss N(BX,.BX,.... BX,,X,.) (t many Xc’s) 

--B BX,.BX,.... BXJ, (0 many X,.‘s) 

for suitable u E o, as required to complete the proof of the lemma. 
After the proof of Lemma 7.3 we define the map p: A -P S/z B by 

stipulating that for all XEA, 

p(x) = (CXJ3, if x= 1, 

= (NCXX), if x = 0, 

= (X, >> if x= 1/2”+‘(nEo), 

= (BX,BX;. . BX, X, ) (b many X,‘s), ifx=b/2”+‘, l<b<2”+‘; 

n, bEu. 

7.4. LEMMA. p is well defined, i.e., if x = b/2”+’ = ~/2~+ ’ then 

Bx, . . . BX,, X, (b many Xn’s) = 8 BX, . . . BX, X, (c many Xm’s). 

ProoJ Assuming without loss of generality m ,< n, by suitably choosing 
axioms from 0,) we have X,,, --8 BX,,,, 1X,+ I. Iterating this till n is 
reached, and recalling that B is preserved under = 8 and is commutative 
and associative, we obtain the desired conclusion by just noting that 
b/c=2”-*. 

7.5. LEMMA. p is l-l. 

Proof. In the light of Lemma 7.3 and 7.4 it suffices to settle the 
following: 

if l<b<c,<2”+’ then pb skep,, where pb=BX,,BX;.. 
BX,X, (b many X,‘s), and p‘ = BX,, BX, ... BX, X,(c many 
Xn’s). (36) 
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To this purpose, let k: o + [0, 1 ] be the assignment (4.1) defined by 
k(n) = 2 - (n+l), for all now. 

Claim 1. For allpEO,p(k)=l. 
This is a straightforward verification. We limit ourselves to verifying the 

claim for CNX, + i CX, X,, + , . Indeed, CNX, + , CX,, X, + i(k) = X, + ,(k) 0 
(NX,(k) @ X,,+,(k)) = 2-(“+*) @ (l-2-(“+‘)) @ 22’“+*) = 2.2 (n+2) 
+ 1 - 2-‘“fl’=l. 

Claim 2. h.2~‘“+“=p,(k)<p,.(k)=c.2~‘“+“. 
This claim is verified by a straightforward computation. 
Assume now pb=@ pr (absurdum hypothesis). It follows that there are 

Wl ,..a, w, E 0 such that Cw, . Cw,, Cpcph is valid. By 4.10 we have 
w,(k) < Cw, ... Cw,Cp~ pb(k). Iterating this for s times and using Claim 1 
we obtain 1 6 Cp,,pb(k), i.e., by 4.10, p,.(k) d p,(k), which contradicts 
Claim 2. Having thus settled (36) we have also completed the proof of 
Lemma 7.5. 

After proving that p maps A one-one into S/E o we immediately see that 
p is onto S/E@, by Lemma 7.3. To finally prove that p is an MV 
isomorphism, we assume p(x) = (p) and p(y) = (q); using Lemmas 7.2 
and 7.3 by an easy computation we obtain that (p)* = (Np) =p(x*), 
and (p)O(q)=(Bpq)=p(xOy).Theproofof7.1 iscomplete. 1 

7.6. Remark. By a quirk of fate, the two axioms in 0, above state that 
the sentential variable X is equivalent to its negation. This is not a con- 
tradiction in tukasiewicz logic, and may give an idea of the conceptual dif- 
ferences between classical and nonclassical physical systems. 

8. THE AF C*-ALGEBRA YJI CORRESPONDING 
TO (kf,t) AND L 

We refer to [9, Sects. 8, 9; 30; 21 for all the unexplained notions used in 
this section. Recall from Proposition 4.14 the definition of (M, 1). By 
Theorem 1.2(ii), up to isomorphism there is a unique AF C*-algebra %JI 
such that (K,,(‘$II), [ 1 w]) z (M, 1). Given any ideal 3 in !IR, upon identify- 
ing K,(3) with the image of 3 in M, the map 3 --t K,(3) is an isomorphism 
of the lattice of ideals of ‘!DI onto the lattice of order-ideals (directed convex 
subgroups) of M. Since in any I-group order-ideals coincide with I-ideals 
(1.4), it follows that under this isomorphism, primitive ideals of %R corres- 
pond to proper prime I-ideals of M, and essential ideals of ‘531 correspond 
to large ideals in M, i.e., those I-ideals having nonzero intersection with 
every nonzero l-ideal in M. Moreover, the space Prim(9.R) of primitive 
ideals of W with the Jacobson topology is homeomorphic to the space 
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Spec(M) of proper prime I-ideals of M equipped with the spectral topology 
of the zero-ring associated with M [2, Sect. IO]. Let Maxprim(%R)c 
Prim(m) be the space of maximal ideals of W with the subspace topology. 

8.1. LEMMA. Maxprim is homeomorphic to the Hilbert cube [0, 11”‘. 

ProoJ Let Maxspec(A4) c Spec(M) be the space of maximal I-ideals of 
M; then Maxspec(M) is homeomorphic to Maxprim( Let /z assign to 
each h E [0, 11”’ the I-ideal .I/, = (,f~ M 1 f(h) = 0). We shall prove that 1. is 
a homeomorphism of [0, 11’” onto Maxspec(M). Note that since 1 is an 
order unit in M, then every proper I-ideal can be extended to a maximal I- 
ideal. The separation property given by Proposition 4.17, together with the 
fact that each member of the l-group it4 is a continuous function over 
LO, 1 I”‘, are to the effect that 3. is a bijecton onto Maxspec(M). For every 
closed Xc Spec(M) there is an I-ideal J of M such that X= H(J) = 
{l~Spec(M) 1 IIJ}, by [2, 10.1.71. Accordingly, every closed set 
Yr Maxspec(M) can be written as Y = H(J) n Maxspec(M) for some f- 
ideal J of M. The set ,! l(Y)= (hE [0, 11”’ / J,zJj = fi {.I’ ‘(0) / J‘EJ} 
is closed. Thus, E, is a continuous bijection from [0, I]‘” onto the Hausdorff 
space [2, 10.1.111 Maxspec(M), whence % is a homeomorphism. 1 

8.2. Remark. As an alternative proof of Lemma 8.1, note that by 
[ 15, 3.21 in the archimedean f-group M the ordering is determined by a 
compact set of pure states, namely, the point states in [0, 11”‘. Now 
[ 1, II 2.11 together with Proposition 4.17 yields a homeomorphic 
embedding of [0, 11”’ onto the pure state space of M. 

8.3. COROLLARY. (i) fi Maxprim(‘JJ1) = i.0) 
(ii) Maxprim(%JI) is dense in Prim(%R). 

Proo$ (i) is an immediate consequence of Lemma 8.1. 

(ii) With reference to the proof of Lemma 8.1, it is suffkient to show 
that Maxspec(M) is dense in Spec(M). Let Xc Spec(M) be an open non- 
void subspace. By [2, 10.1.41 there exists f E M with f # 0 such that 
X?{J~spec(M) /S#J}. Let hE[O, 11’” be such thatf(h)#O, i.e., f$J,,. 
Then J,, E Maxspec( M) A X. 1 

8.4. THEOREM. Every primitive ideal in YII is essential. 

For the proof we prepare 

8.5. LEMMA. Let f E A4 and J be an l-ideal of M. Let 

VJ= (he [0, 1-J’” 1 JE Jh}. 

If f 1 U = 0 for some open set U with V, E U E [0, 1 Iw, then f E J. 
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Proof of Lemma 8.5. If J= M we are done. If not, then 1 is not in J and 
by Zorn’s lemma there is a maximal Z-ideal containing J, whence I/, # 0. 
Assumefg J. By [Z, 8.4.61 we have 

J= n {Ze Spec(M) ) I=, J}, 

upon identifying, if necessary, M with the zero-ring M0 associated with M. 
Thus, f If Z for some ZE Spec(M) with II J. Let now P E Maxspec(M) be 
the only maximal Z-ideal of M containing I: existence of P follows from 
Zorn’s lemma, since M has an order unit; uniqueness follows from [2, 
2.4.1(6)]. By Lemma 8.1 we can write P = J,, for a unique h E [0, 11”. Since 
P E Spec(M) and J g Z E P, then a fortiori h E V,. Since every prime Z-ideal 
contains a minimal prime Z-ideal, from [2, 10.5.31 together with the fact 
that f$ ZC P, and Z, P E Spec(M), we obtain 

(1) f$ vp = n {Q E Spec(M) 1 Q E P}, where vp is the germinal Z-ideal 
associated with P. By [2, 10.5.3(i)] we also have vP= {gEMIH(g) is a 
neighborhood of P), where, as usual, H(g) = {R E Spec(M) 1 g E R}. Thus 
from (1) we infer that H(f) is not a neighborhood of P, i.e., 

(2) for any open set V’ in Spec(M) with P E I/ there is Q E Spec(M) 
such that QE V’$Z(f). 

By 8.3(ii) Maxspec(M) is dense in Spec(M), and by [2, 10.1.41 the set 
qH(f) = Vn S(f) is open in Spec(M), where S(f) = {R E Spec(M) ( 
j-4 R}. From (2) it follows that 

(3) for any open set V in Spec(M) with PE V there is 
P’ E Maxspec(M) such that P’ E V and f 4 P’, that is, by definition of sub- 
space topology, 

(4) for any open set W in Maxspec(M) with PE W there is 
P’ E Maxspec(M) such that P’ E W and .f 4 P’. 

Recalling that P = J,, and using the homeomorphism given by Lemma 8.1, 
we can reformulate (4) as follows: 

(5) for any open set UC [0, 11’” with h E U there is h’ E [0, 11” such 
that h’~ U andf(h’)#O. 

Since h E V, we conclude from (5) that there is no open set U z [0, 11”’ 
containing V, and such that ,f(h’) = 0 for all h’ E U. This completes the 
proof of Lemma 8.5. 

8.6. End of Proof of Theorem 8.4. Recalling the introductory remarks in 
this section, it is sufficient to prove that every prime Z-ideal Z of M has non- 
zero intersection with each nonzero Z-ideal J of M. Given any such Z and J, 
by Lemma 8.1 there is exactly one maximal Z-ideal P?Z, and we can write 
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P= Jh for a unique h E [0, 11”. Moreover, the closed set Y= H(J) n 
Maxspec(M) is mapped by the homeomorphism A -’ (2 as in the proof of 
Lemma 8.1) one-one onto the closed set VJ= (k E [0, 1]“1 Jc J,}, in the 
notation of Lemma 8.5. If VJ were equal to [0, 11” then Jkz J for all k, 
whence by 8.3(i) it would follow that (0) # JG n (Jk)k~ [0, l]O} = {0}, 
a contradiction. Therefore, V, # [O, 11”. Thus the set S = [0, 1 I”\ VJ is 
open and nonempty. Since the closed singleton {h} is not an open set in 
the Hilbert cube, then there is a point h’# h with h’ E S. By Hausdorff 
separation, there are open sets V, WE [0, 11” such that 

(6) h’E VnS, hE W, Vn W=Qr, Vn V,=Qr. 

By regularity of the Hilbert cube there is an open set BE [0, 11” with 
the following properties: 

(7) h’ E B E BE V (where i? is the closure of B). 

By Proposition 4.17 there is fe M such that f(h’) = 0 and f(k) = 1 for all 
k $ B. The function g = 1 -f has the following properties: 

(8) g(h’) = 1, and g(k) = 0 for all k E [0, 1]“\8. 

Let U= [0, l]“\B. Then by (6) and (7) we have 

(9) Uz WV V, with U open. 

We now observe that letting V,= {ke [0, l]“IJ,zI}, then V,= {h}, 
since P is the only maximal I-ideal containing I. Now g(k) = 0 for all k E U, 
by (8), and U is open and contains W and V, by (6) and (9). Therefore, 
g E I by Lemma 8.5. Similarly, since the open set U contains VJ by (9), and 
g(k) = 0 in U by (8), it follows that g E J, by ,Lemma 8.5. To complete the 
proof of the theorem, we have only to note that 0 # g by (8). 1 

Following [ 121 we say that an AF C*-algebra !Il has comparability of 
projections (in the sense of Murray and von Neumann) iff given any two 
projections in ti, one of them is the support of a partial isometry whose 
range is contained in the other. This property is equivalent to K,,(a) being 
totally ordered. 

8.7. COROLLARY. For every unital AF C*-algebra ‘Ql with comparability 
of projections there is a primitive essential ideal 3 in 93 such that 9I z Y.Rm/3. 

Proo$ Let (G, u)= (&@I), [la]). Then G is totally ordered. An 
application of Corollary 4.16 together with [2, 2.4.31 yields a prime Z-ideal 
J of A4 such that (G, u)zz (M/J, l/J). The lattice isomorphism between 
ideals of YJI and Z-ideals of M discussed at the beginning of this section, 
now yields a primitive ideal 3 of fm such that ‘%%m/3. By Theorem 8.4, 3 
is essential. 1 
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For the application of essential ideals in extensions of AF C*-algebras, 
see [ 191. The following is a characterization of unital AF C*-algebras with 
totally ordered K,: 

8.8. COROLLARY. For every C*-algebra !B the following are equivalent: 

(i) %~‘3JI/2/3 ,for some primitive ideal 3 qf 9Jl. 

(ii) 23 zYJI/~ for some primitive essential ideal 3 of $%I. 

(iii) 23 is a unital AF C*-algebra with comparability of projections. 

Proof. The only implication still to be proved, namely (i) --f (iii), is well 
known [30, 3.13.2, 5.4.93. 1 

8.9. Remark. If we drop the comparability assumption, recalling 
Corollary 4.16(iii), Theorem 1.3, and the nice behaviour of K, on quotient 
C*-algebras [9, 191, we can still conclude that every (possibly nonunital) 
AF C*-algebra Cu is isomorphic to a C*-subalgebra of ‘552/g for some ideal 
3of9JL 
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