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It is not tissuemicrostructure or functional capability that sets

the human brain apart from other organs and systems, but its

organisational complexity, and to understand the brain at this

level remains one of the great scientific challenges of our age.

There is no doubt that computation will prove central to the

endeavour, both as a framework for understanding, and a

medium for simulating, cognition and its myriad disorders.

The power and interconnectedness of modern computing

hardware are now being exploited in some of the largest and

most ambitious studies of cognition ever undertaken [‘Head

Start’ (Editorial comment) Nature, 2013]. The availability of

supercomputing power also opens up the related possibility of

exploiting novel information sources that are too large and

complex to be captured, organised or analysed using con-

ventional approaches e a resource that, over recent years, has

come to be known as ‘big data’. The McKinsey Global In-

stitute’s 2011 report on this phenomenon is entitled Big data:

The next frontier for innovation, competition, and productivity

(Manyika et al., 2011). The authors showhowbig data generate

value in healthcare, public services, retail andmanufacturing.

Among our ambitions for this Cortex special issue is that it will

help to make the case for cognitive neuroscience to be added

to the list.

How might big data contribute to the goals of under-

standing healthy and disordered brains in ways that span

Marr’s three ‘levels of analysis’? (Marr, 1982) (See also Pog-

gio’s recent update on this framework, which is available in

full at: http://cbcl.mit.edu/publications/ps/MIT-CSAIL-TR-

2012-014.pdf.) In a world dominated by digital technology,
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people contribute to the store of big data simply by going

about their daily lives. The focus of interest in the resulting,

and constantly growing, body of information will naturally

vary: for the business community the behaviour, choices and

preferences of users and customers will be critical to the goal

of maximising profits, while government and the public

sector must aim to formulate indices of economic value and

social outcome in order to maximise the efficient use of

limited resources. Meanwhile, science has both benefited

from and pioneered the understanding of huge datasets and

data streams, including those related to particle physics,

genomics and climate science e fields that generate quanti-

tites of data measured in petabytes (�1015 bytes) per year

(Doctorow, 2008).

It is inevitable that the information people generate as they

go about their daily lives will hold some value for cognitive

neuroscientists, particularly those who emphasise the

importance of ‘ecological validity’ in the interpretation of

behavioural data (Cohen, 1996; Neisser, 1991). We have no

interest in reopening any of the wounds inflicted (by both

sides) in the debate on the relativemerits of everydaymemory

and traditional laboratory research. Yet few people with a

scientific interest in learning and memory would dismiss out

of hand a detailed and cumulative record of (for example) all

the movements, interactions and web searches carried out by

large populations of individuals over a number of years.

Although the level of intrusion that would be required to

generate such a dataset on private citizens is hardly desirable,

there is less cause for squeamishness when one considers the
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benefits that could accrue to closed communities, be they real

(e.g., work environments or care homes) or virtual (e.g., pa-

tient groups with internet connections and/or access to clin-

ical care via a telemedicine programme). Yet there is much

practical and ethical ground tomove before such data become

relevant and usable.

Fewer limitations apply to language data in the form of

naturally produced samples of spoken or written language:

collection and recording have been taking place for hundreds

of years in the form of handwritten and printed texts, audio

recording, and most recently the hundreds of millions of

digital communications (blogs, tweets, emails and text mes-

sages) that are produced each day by an ever more digitally

interconnected public. Many of these sources are the product

of undirected and spontaneous cognitive activity in single

individuals, often with the intention of public communica-

tion. In addition, there is a sizeable body of clinical data rep-

resenting the output of more focused neurocognitive activity

in various clinically defined groups (of which, more later). All

can be considered in the light of a multitude of dimensions,

some of them simple, others reflecting more complex attri-

butes of the symbolic systems in which they are represented.

The widespread availability of fast, high capacity, desktop

computers means that large volumes can be represented and

stored in a digital text format.

Nonetheless, the problem of how to make large datasets

tractable, to organise and use them in informative ways re-

mains common to all the enterprises e scientific, technical

and commercial e that we have considered so far. Previous

attempts to extract meaning from huge datasets have relied

on a diverse range of ‘data mining’ techniques, including

dimension reduction, information theory, and statistical ma-

chine learninge approaches that are represented in a number

of the contributions to this special issue. Even simple ap-

proaches such as proportional word-counts, however, can

produce strikingly informative results, particularly when

applied to very large datasets. A leading source of both data

and analytical tools is Google: Google Books contains digitally

encoded texts of a large (and ever increasing) proportion of all

the books ever published; the Google n-gram viewer https://

books.google.com/ngrams will plot the change in propor-

tional frequency of any word (unigram) or phrase (n-gram) in

books published between the years 1800 and 2000. In a series

of fascinating explorations of the data, Michel et al. (2011)

reported a selection of instances in which social and cultural

evolution and major historical events were reflected in lexical

frequency trends. The approach offers limitless possibilities

for further exploration, and it is to be hoped that the inter-

disciplinary nature of cognitive neuroscience will prompt ex-

perts from disciplines such as statistics and computer science

to modify and add to the analytical armamentarium.

Even if the ‘what?’ and ‘how?’ of large scale language

analysis could be fully addressed, we would still be left with

the question that even the most rarefied scientific disciplines

must nowadays address: ‘to what end?’ We contend that the

contributions to this special issue provide a wealth of justifi-

cations, predominantly clinical, but also theoretical. Among

the latter are the contributions of Montemurro (2014) and

Voorspoels et al. (2014). The former advances the idea that the

inherent order detectable in the long range co-occurrence of
words in texts written in different languages (relative entropy)

should be considered a candidate for a quantitative linguistic

universale a bold and testable hypothesis. The latter explores

the pitfalls and limitations of the clusteringmethod in arguing

for distorted semantic structure in cognitive neuropsy-

chology. Valle-Lisboa, Pomi, Cabana, Elvevåg, and Mizraji

(2014) adopt a neurocomputational modelling approach to

explore the links between matrix associative memory models

and language processing and production, creating a system

for exploring how disruptions in connectivity between the

underlying representations of concepts can result in various

forms of disorganized speech.

Clinically based studies draw on a wide-ranging series of

data associated with language change over the course of

normal ageing (Ferguson et al., 2014) and tenure of political

office (Garrard, Rentoumi, Lambert, & Owen, 2014), as well as

linguistic features of cerebral functional disorders including

Alzheimer’s disease, primary progressive aphasia (Garrard,

Rentoumi, Gesierich, Miller, & Gorno-Tempini, 2014), and

schizophrenia. These studies are made possible by the fact

that communication is a high-level neurocognitive function

providing a rich and extemporaneous dataset that reflects the

state of numerous interacting neural and cognitive processes.

If assayed appropriately, therefore, communication affords a

unique and sensitive window into a person’s state of mental

and cognitive health.

As authors, we welcome exposure of our research to the

more than usually diverse readership that the interdisci-

plinary theme of this special issue will attract. As editors, we

were struck by the multiplicity of ways in which computer-

assisted analysis of large language datasets could contribute

to the understanding of brain disorders. Pakhomov and

Hemmy (2014) took a large database of verbal fluency re-

sponses collected as part of the Wisconsin Nun Study

(Snowdon et al., 1996) and interrogated the data for response

clusters and switching behaviours using an automated mea-

sure of relatedness derived from latent semantic analysis

(LSA). Originally conceived as a statistical approach to the

acquisition and representation of meaning (Landauer &

Dumais, 1997), LSA uses a vector space representation of the

words and contexts occurring in large numbers of digitised

texts, such that the distance between vectors can be used as a

metric of the semantic similarity between the words and/or

contexts. This property allows a number of robust measure-

ments to be made in novel text or discourse samples,

including those obtained from different patient groups.

Hoffman, Meteyard, and Patterson (2014) use the neigh-

bourhood density of items in a semantic space to derive a

measure of ‘semantic diversity’ characterising the vocabulary

of patients with conceptual degradation (semantic dementia).

Several studies use LSA to examine the properties of discourse

samples obtained from patients with schizophrenia. Two pa-

pers (those by Holshausen, Harvey, Elvevåg, Foltz, & Bowie,

2014; Tagamets, Cortes, Griego, & Elvevåg, 2014) report corre-

lations between LSA derived measures of patient discourse

and other validated functional measures, namely clinical and

psychometric indices, and task-related fMRI patterns. A third

(Rosenstein, Diaz-Asper, Foltz, & Elvevåg, 2014) examines the

effect of a latent semantic variable and a syntactic charac-

teristic to examine the effects of these features on prose recall
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in patients, their unaffected siblings and healthy unrelated

controls. All offer genuine encouragement that statistical

features inherent in samples of spoken output could

contribute to a quantifiable disease metric for this most

elusive of clinical phenotypes. Finally, Nicodemus et al. (2014)

report findings that suggest not only clinical but also genetic

correlates for LSA derived indices, based on their association

with a subset of loci identified by a recent GWAS study of

schizophrenia. The potential utility of these simple yet

powerful text mining and computational tools for refining the

endophenotypic classification of schizophrenia, and with it

the significance of the genetic associations, is tantalising (see

also Cohen, Blatter, & Patel, 2008; Lyalina et al., 2013).

A final major methodological theme of the special issue is

the application of information theory andmachine learning to

the clinical classification of patients, using written texts, sets

of neurolinguistic features, or transcribed speech samples as

raw data. van Velzen, Nanetti, and de Deyn (2014) use the

type-token ratio to plot changes in lexical richness over the

careers of a selection of prolific English and Dutch authors,

and apply models of increasing complexity to describe the

resulting time series. They go on to select mathematically the

most parsimonious models, suggesting that the selected

models may map on to different patterns of cognitive ageing.

Wilson et al. (2010) have previously described the wealth of

information that can be extracted from samples of connected

speech in primary progressive aphasia. The methods used by

Fraser et al. (2014), overcome the time-consuming disadvan-

tage of the hand-scoring process by applying machine

learning classification to sets of features that can be auto-

matically extracted from digital transcripts. Meteyard, Quain,

and Patterson (2014) employ similar automated methodolo-

gies in pursuit of evidence from patients with semantic de-

mentia that both lexical retrieval and grammatical encoding

can be incorporated within a common constraint-satisfaction

model. Garrard, Rentoumi, Gesierich, et al. (2014) show that

machine learning algorithms can make at least one of these

classifications (that of semantic dementia with high reliability

on the strength of no more than the vocabulary of the speech

sample, even when no information about word-order is

available (the so-called ‘bag of words’ assumption)). The same

approach appeared also to have some traction on the more

difficult clinical distinction between right and left temporal

lobe predominant semantic dementia. Finally, Clark et al.

(2014) show how the performance of a machine learning

classifier in predicting cognitive decline can be enhanced by

using novel statistical methods to extract information from

verbal fluency task responses.

For all the analytical sophistication and volumes of

available data, we must acknowledge that none of the studies

presented in this special issue moves beyond the represen-

tation of language as text. Prosody, emotional and sociolin-

guistic connotation, and other ‘paralinguistic’ elements that

play such a critical role in verbal communication, are not

considered. Finding stable and reliable ways of incorporating

these features into data representations remains a major

challenge for the future. Even taking account of these limi-

tations, however, the contents of this special issue illustrate

the challenges of applying computational linguistics to the

cognitive neuroscience field, as well as the power of these
techniques to frame questions of theoretical interest and

define clinical groups of practical importance. The future of

digital written language sampling is inexorably in the direc-

tion of rapid growth in data, a movement that will obviate

many of the laborious acquisition steps. Similar progress in

the automated transcription of spoken language has been

slower, but the potential richness of recorded speech data

continues to justify the investment of pre-processing time,

with novel biological and clinical insights into neurological

and psychiatric illness as the ultimate payoff. Deployment of

clinically and biologically relevant assays on a large scale,

during the evolution of neurodegenerative and neuropsy-

chiatric conditions, can only enhance our ability to quantify

such elusive entities as disease risk, rate of progression,

prognosis and, in the case of psychiatric illness, relapse.
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computational language approach to modeling prose recall in
schizophrenia. Cortex. http://dx.doi.org/10.1016/
j.cortex.2014.01.021.

Snowdon, D. A., Kemper, S. J., Mortimer, J. A., Greiner, L. H.,
Wekstein, D. R., & Markesbery, W. R. (1996). Linguistic ability
in early life and cognitive function and Alzheimer’s disease in
late life. Findings from the Nun Study. JAMA, 275(7), 528e532.

Tagamets, M. A., Cortes, C. R., Griego, J. A., & Elvevåg, B. (2014).
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