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SUMMARY

Circular RNAs (circRNAs) are a large class of animal
RNAs. To investigate possible circRNA functions,
it is important to understand circRNA biogenesis.
Besides human ALU repeats, sequence features
that promote exon circularization are largely un-
known. We experimentally identified circRNAs in
C. elegans. Reverse complementary sequences be-
tween introns bracketing circRNAs were significantly
enriched in comparison to linear controls. By scoring
the presence of reverse complementary sequences
in human introns, we predicted and experimentally
validated circRNAs. We show that introns bracketing
circRNAs are highly enriched in RNA editing or hy-
perediting events. Knockdown of the double-strand
RNA-editing enzyme ADAR1 significantly and specif-
ically upregulated circRNA expression. Together, our
data support a model of animal circRNA biogenesis
in which competing RNA-RNA interactions of introns
form larger structures that promote circularization
of embedded exons, whereas ADAR1 antagonizes
circRNA expression bymelting stemswithin these in-
teractions.

INTRODUCTION

Recently, several studies have revealed that the transcriptome of

animals contains many single-stranded exonic circular RNAs

(circRNAs) (Jeck et al., 2013; Jeck and Sharpless, 2014; Mem-

czak et al., 2013; Salzman et al., 2012; Wang et al., 2014).

Although circRNAs have tissue- and stage-specific expression

(Memczak et al., 2013), the function of circRNAs is altogether un-

known. The human circRNA CDR1as (Hansen et al., 2011;) can

act as a miRNA sponge (Hansen et al., 2013; Memczak et al.,

2013). However, we and others have proposed that generally

circRNAs might function in assembly of complexes, in transport,
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in trans (Memczak et al., 2013), by competing with linear splicing,

or as regulators of the local concentration of RNA-binding pro-

teins (Ashwal-Fluss et al., 2014). In vitro studies (Braun et al.,

1996; Pasman et al., 1996) and a recent in vivo study (Ashwal-

Fluss et al., 2014) provided evidence that circRNAs are often

generated cotranscriptionally by ‘‘head-to-tail’’ splicing. In hu-

mans, circularized exons are typically bracketed by unusually

long introns (Jeck et al., 2013). Moreover, the circRNA SRY

(Capel et al., 1993) is bracketed by very long (�15,000 nt), almost

perfectly complementary intronic sequences, and these reverse

complementary matches (RCMs) are required for SRY circulari-

zation (Dubin et al., 1995). Therefore, it has been proposed that

RCMs promote hairpin formation of the transcript. This would

explain how the 50 and 30 ends of an exon can be in spatial

proximity, perhaps thereby inducing ‘‘head-to-tail’’ splicing (Fig-

ure 1A). Jeck et al. (2013) reported that in humans, introns brack-

eting circRNAs are highly enriched in ALU repeats. The fact that

ALU repeats contain RCMs supports this model; however, ALU

repeats are specific to a small branch of vertebrates, and thus

the widespread existence of circRNAs in other animals remains

to be explained.

Caenorhabditis elegans, a well-annotated genome that is

not rich in repeats, offers the possibility of identifying conserved

features of circRNA biogenesis outside of vertebrates. We first

sequenced RNA from several life stages of C. elegans and

were able to boost the number of annotated exonic circRNAs

from �300 (Memczak et al., 2013) to �1,100. Computational

analysis of the bracketing introns revealed that these circRNAs

are significantly enriched for RCMs. We developed a simple

model for scoring circRNA biogenesis from intronic sequence

analysis and asked whether our model could predict novel hu-

man circRNAs. We successfully validated the predicted human

circRNAs.

The RNA-editing factor ADAR binds double-stranded RNA.

Thus, the model of circRNA biogenesis predicts that circRNAs

should be flanked by intronic sequences that are enriched in

adenosine to inosine (A-to-I) editing. Moreover, it is known that

ALU elements are edited, often by ADAR1 (Athanasiadis et al.,

2004; Levanon et al., 2004; Osenberg et al., 2010; Ramaswami
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Figure 1. RCMs between or within Introns and circRNA Biogenesis

(A) Model for the possible influence of RCMs on circRNA biogenesis. RCMs

between different introns (lower panel) in competition with intron internal

RCMs (upper panel) may promote hairpin formation and circularization of the

embedded exon.

(B) Enrichment of RCMs and SMs in introns bracketing C. elegans circRNAs.

Left: distribution of RCM and SM counts per intron pair that flanks circRNAs

(green) and length-matched controls (gray). Right: ratio of the number of intron

pairs bracketing circRNAs that contain only RCMs but no SMs to the number

of intron pairs bracketing circRNAs with only SMs but no RCMs (p value:

Fisher’s exact test).

See also Figures S1, S4, and S5.
et al., 2012). Also inC. elegans, long inverse repeats are enriched

in A-to-I editing (Morse et al., 2002). Indeed, we discovered sig-

nificant A-to-I editing, including hyperediting (Carmi et al., 2011),

in introns bracketing circRNAs. To test whether ADAR1 and
C

ADAR2 knockdown in human cells affects circRNA expression,

we performed RNA sequencing (RNA-seq) and quantitative

RT-PCR (qRT-PCR). We observed a significant and specific

upregulation of most circRNAs, whereas their linear host tran-

scripts were less perturbed. Thus, our data reveal a surprising

function for ADAR as an antagonist of circRNA production. We

discuss the implications of these findings.

RESULTS

Identification and Characterization of circRNAs in
C. elegans

Recently, hundreds of circRNAs were reported in samples from

very early developmental stages of C. elegans (one/two-cell

embryo, oocytes, and sperm) (Memczak et al., 2013). To

include circRNAs expressed in later stages, we sequenced

ribosomal-depleted RNA from major life stages, including

adulthood (see Experimental Procedures). We computationally

identified circRNA candidates by applying our pipeline (Gla�zar

et al., 2014; Memczak et al., 2013; http://www.circbase.org)

and ensuring that the head-to-tail junctions precisely overlap-

ped the annotated canonical splice sites (Experimental Proce-

dures). This extended the published set of exonic circRNAs

from �300 to 1,111. Analogously to human circRNAs (Jeck

et al., 2013), the circRNA flanking introns were much longer

(median �10-fold) than all of the C. elegans introns (Figure S1A).

Therefore, we asked whether intron length alone is sufficient

for circularization or additional sequence features are needed.

More precisely, in C. elegans we tested the idea that RCMs be-

tween introns bracketing circRNAs may induce larger hairpin

structures that promote the circularization of embedded exons

(Figure 1A).

In C. elegans, Introns Bracketing circRNAs Are Highly
Enriched for RCMs
For each intron pair that flanked a circRNA, we aligned the

respective introns using Basic Local Alignment Search Tool

(BLAST; Experimental Procedures). RCMs were strongly en-

riched compared with length-matched introns (Figure 1B), with

a median of eight RCMs per intron pair (control pairs: one

RCM). We observed the same number and significance of

matches on the same strand (‘‘sense matches’’ [SMs]) of intron

pairs (Figure 1B). However, the exclusive occurrence of RCMs

on intron pairs bracketing circRNAs was significantly enriched

compared with the exclusive occurrence of SMs (Fisher’s exact

test, p value < 0.0004; Figures 1B and S1C). This result suggests

that exon circularization is promoted by RCMs that can induce

basepairing between flanking introns.

Predicting circRNAs from RCMs
We asked whether the occurrence of RCMs between circRNA

flanking introns is significant enough to predict circularized

exons. Therefore, we developed a simple probabilistic score H

to capture the likelihood that introns will basepair via RCMs

(Supplemental Experimental Procedures) and therefore promote

hairpin formation. Competition between RCMs is naturally taken

into account by this model. For each intron pair in a transcript

that contained one of the 1,111 circRNAs, we computed H.
ell Reports 10, 170–177, January 13, 2015 ª2015 The Authors 171
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B Figure 2. Prediction of circRNAs Based on

Sequence Analysis of Introns

(A) C. elegans. The matrix represents the average

circularization scores for intron pairs of circRNA

producing genes. (0,0) coordinates correspond to

circRNA flanking introns. Upstream and down-

stream introns are enumerated with decreasing

and increasing numbers, respectively (with 0 be-

ing directly adjacent, �1/+1 being the preceding/

next intron, etc.; see Supplemental Experimental

Procedures).

(B) C. elegans. Different prediction methods are

used. The x axis is the fraction of all introns pairs

per gene sorted by H scores. Small (high) x values

denote intron pairs with high (low) scores for

bracketing a circRNA. The y axis is the fraction of

1,111 exonic circRNAs recovered by H score.

(C and D) Analyses for human circRNAs (Memczak

et al., 2013), analogous to (A) and (B).

See also Figures S4 and S5, and Tables S1, S2,

and S3.
The resulting symmetric matrix (Figure 2A; Supplemental Exper-

imental Procedures) shows that the intron pairs flanking circular-

ized exons stood out from all intron pairs. This was not the case

for the intron length-matched control transcripts (Figure 2A).

We then ranked, genome wide, all intron pairs of all transcripts

annotated in C. elegans by H and calculated the cumulative

fraction of known circRNAs as a function of intron-pair rank (Fig-

ure 2B). The top 4,200 (top �1%) of C. elegans intron pairs pre-

cisely bracketed 430 (�38%) of the already annotated circRNAs,

a highly statistically significant enrichment (hypergeometric test,

p value < 2.2 3 10�16). Together, these results suggest that

RCMs provide highly significantly improved accuracy in predict-

ing circRNAs compared with intron length. However, we note

that (for C. elegans) the top BLAST score of RCMs in a pair of

introns yielded similar results.

To determine whether the presence of RCMs is a conserved

feature of circRNA formation, we next asked whether we could

predict circRNAs in human by intron sequence analysis.

The Presence of RCMs in Introns Flanking circRNAs Is a
Conserved Feature of circRNA Biogenesis
For human circRNAs, we used 1,067 exons overlapping circR-

NAs (Memczak et al., 2013). As in C. elegans, RCMs were highly

significantly enriched (Fisher’s exact test, p value < 4 3 10�6;
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Figures S1B and S1C). Again, the number

of intron pairs flanking circularized exons

that contained only SM elements was

much lower compared with intron pairs

containing only RCMs (Figure S1C). The

median length of human RCMs was 20-

fold higher than that ofC. elegans (Figures

S1D and S1E). We found that 88% of

the top-scoring RCMs overlapped with

ALU elements, 4.5% of RCMs overlapped

with L1/L2 repeats, and the remaining

RCMs did not overlap any annotated re-
petitive element and had the highest sequence conservation

(Figure S1F).

Further, we analyzed circRNA biogenesis conservation be-

tweenmouse and human.Wedefined71 circRNAs that are circu-

larized in human and mouse (‘‘conserved circular expression,’’

Figure S1G). Since repetitive sequences such as ALU elements

are rapidly evolving, it is difficult to align them between species.

To circumvent this problem, we computed H scores by indepen-

dently scoring the human and mouse introns (Figure S1G). As

controls, we defined (1) circRNAs that are circularized in humans

but have not been annotated as circular in mouse (‘‘noncon-

served circRNAs’’), and (2) randomly selected exons that have

a similar bracketing intron length as human circRNAs, and have

positive H scores. Mouse H scores for conserved circRNAs

were significantly higher (p value < 2.2 3 10�16) compared with

the scores for exons that circularize only in human or the

length-matched controls (Figure S1G). Thus, the set of circRNAs

that are conserved between mouse and human are also

conserved in their biogenesis as quantified by H.

Human circRNAs Can Be Predicted Based on the
Sequence Composition of Their Flanking Introns
To predict circRNAs on a genome-wide level, we computed H

for all possible intron pairs in the UCSC RefSeq database



(Experimental Procedures). As a control, we used transcripts

with introns matched in length (Figure 2C; Supplemental Exper-

imental Procedures) or predictions using the intron length or

simply the top BLAST score between intron pairs (Figure 2D).

For high-ranking intron pairs, the enrichment in circRNAs was

highest when the H score was used, followed by BLAST and

intron length. The top 20,000 (�1% of all) predictions comprised

610 (�9%) exonic circRNAs cataloged in the Memczak et al.

(2013), Jeck et al. (2013), and Zhang et al. (2014) data sets, a

highly significant enrichment (hypergeometric test, p value < 2.2

3 10�16). Predictions based on sequences associated with ALU

repeats yielded similar results (data not shown), showing that in

humans, ALU elements have likely contributed dominantly to

circRNA formation (Experimental Procedures). We note that

the number of false positives is very difficult to estimate because

many human circRNAs have not yet been reported. For example,

when we restricted the circRNA predictions to well-expressed

mRNAs in HEK293 cells, the success rate of our predictions

was much higher (Figure S1H). Therefore, experimental valida-

tion of predictions seems to be a better way to estimate false-

positive rates.

Predicted circRNAs Are Experimentally Validated in
HEK293 Cells
Since the circRNA predictions were not informed by expression

data, we expected that we could only validate circRNAs that are

isoforms of expressed transcripts. To test our predictions, we

considered the top 1% (H ranked) predicted circRNAs and

grouped them into three bins based on the expression of the

linear host transcripts in HEK293 cells (top 1% expressed,

medium, and bottom 50%). For experimental validation, we

randomly selected six, ten, and five circRNAs from the high-,

medium-, and low-expression bins, respectively. As negative

controls, we used three well-expressed linear mRNAs and two

exons that are well expressed in HEK293 cells and have flanking

introns but an H score of 0. The linear controls were not circular-

ized (RNase R negative) and the two exons with an H score of

0 could not be amplified with divergent primers. However, 12

out of 16 circRNAs with top H scores and high/medium expres-

sion of the host transcripts were (1) resistant to RNase R and (2)

had the predicted head-to-tail junctions, as validated by Sanger

sequencing (Experimental Procedures; Figure 3), suggesting

that these 12 circRNAs exist in circularized form in HEK293

cells. Five candidates with decent H scores that we could

not confirm were, as expected, from the third, low-expression

bin. The predicted head-to-tail splicing of ten (out of 12) of

the RNase R-resistant circRNAs was validated by Sanger

sequencing (Experimental Procedures). We found that two

circRNA candidates were circularized (by RNase R assay) but

had an additional exon incorporated (as observed in Sanger

sequencing; Figure 3A). We note that five of the tested circRNAs

had reasonable expression (1%–10% of VCL expression; Exper-

imental Procedures).

RNA Editing of Introns Flanking circRNAs
ADAR is a highly conserved RNA-editing enzyme that binds dou-

ble-stranded RNA (Nishikura, 2010) and deaminates adenosine

bases to inosine. In humans, ADAR1 and ADAR2 interact with
C

double-stranded ALU repeats (Athanasiadis et al., 2004; Leva-

non et al., 2004; Nishikura, 2010; Ramaswami et al., 2012). We

compared A-to-I conversions (Ramaswami and Li, 2014) in

1,500 bp regions flanking circRNA splice sites with (1) other

splice sites in transcripts that produce circRNAs, and (2)

length-matched introns (Figure 4A). A-to-I conversions nearby

circRNA splice sites were enriched compared with controls. In

general, ALU repeats in circRNAs flanking introns were edited

significantly higher compared with expression- and length-

matched controls (Figures S2A and S2B). Since A-to-I editing

is a hallmark of basepaired RNA, we asked whether RCMs are

preferentially located at sites of editing. We compared the posi-

tion of the RCMs (defined as the nearest RCMs that match be-

tween the pair of introns bracketing circRNA) with the same con-

trols as before (Figure 4B). These results suggest that indeed A-

to-I editing preferentially occurs at regions that are basepaired

and proximal (upstream and downstream 200–600 nt) to the

splice sites of circularized exons.

To test whether ADAR proteins are involved in circRNA

biogenesis, we codepleted ADAR1 and ADAR2 in HEK293 cells

using RNAi (Supplemental Experimental Procedures). We used

two controls: untreated total RNA and codepletion of three

proteins of the APOBEC family (APOBEC3B, APOBEC3C, and

APOBEC3F), which are known to bind mRNAs (Baltz et al.,

2012). APOBEC enzymes are known to edit single-stranded

DNA or RNA (Vasudevan et al., 2013), but not double-stranded

RNA. The efficacy of the different knockdowns (KDs) was vali-

dated by western blotting and qRT-PCR (Figure S2C). Total

RNA extracted from the different experiments was depleted

from rRNAs and sequenced (Supplemental Experimental Proce-

dures). We reproducibly observed that ADAR depletion resulted

in significantly higher (p value < 2.23 10�16) circRNA expression

compared with controls (Figure S2D), whereas the linear host

transcripts were less strongly affected (Figure 4C). For example,

84 circRNAs and 11 linear hosts were upregulated more than 2-

fold (Fisher’s exact test, p value 5.7 3 10�13). This effect was

seen in independent biological replicates, as well as in a compar-

ison of ADAR1/2 KD with APOBEC3 KD (Figures S2E and S2F).

We set out to validate these observations in independently

carried out ADAR1 and ADAR2 KD experiments (using the pre-

vious and an independent small interfering RNAs [siRNAs]

against ADAR1) followed by qRT-PCR assays (Experimental

Procedures; Figures 4D, 4E, and S2G). CircRNA candidates

were selected based on the increased fold changes observed

in sequencing data sets. circRNA expression was compared

with the expression of the respective linear host gene. Four

out of eight circRNAs (UBAC2, SMARCA, SPECC1, and

HIPK2) were upregulated upon ADAR1 depletion, whereas

the linear host RNAs did not show consistent expression

changes. PUM1 and CREBBP circRNA were upregulated to

the same level as their linear host transcripts. Consistent

with sequencing data, CDR1as was expressed 4-fold higher

in ADAR1 KD samples compared with control. Two circRNAs

(GAPVD1 and PDS5B) did not show the expression changes

observed in the sequencing data (Figures 4E and S2G). Based

on these findings, we conclude that ADAR1 depletion can

induce upregulation of circRNAs independently of the expres-

sion level of the linear host circRNA.
ell Reports 10, 170–177, January 13, 2015 ª2015 The Authors 173



A

B

Figure 3. Experimental Validation of Human circRNAs Predicted by RCM Analyses

(A) CircRNA candidates fromhigh-,medium-, and low-expression setswere assayedby qPCRwith divergent primers andRNaseR treatment. Linear control: VCL,

GAPDH, TFRC; positive control: a known circRNA (Memczak et al., 2013). Sanger sequencing of amplicons confirmed in all tested cases the predicted head-to-tail

junctions (candidates9 and11contained anadditional exon:markedwith *).CircRNAcandidates thatwere>10-fold resistant toRNaseR treatment comparedwith

Vinculin were counted as positive (+). As negative controls, we selected exons from highly expressed genes with H score = 0. Error bars, SEM; n = 4.

(B) The chromatogram of a Sanger sequencing experiment confirms the presence of the predicted head-to-tail junction of the candidate circRNA from the

PTGES3 gene locus.

See also Figure S5 and Tables S1, S2, and S3.
To explore whether circRNA flanking introns undergo exten-

sive hyperediting (Carmi et al., 2011), we applied a computa-

tional pipeline that detects hyperediting events in the RNA

sequencing data sets used by Memczak et al. (2013) to predict

circRNAs, as well as in ADAR KD and control data sets. This

analysis (for details, see Porath et al. 2014) identified �165,000

unique hyperediting sites in the human genome (�72.000,

�49.000, �45.000, and �11.000 in Memczak et al. [2013] and

two control and ADAR KD samples, respectively). Notably, the

number of hyperedited sites identified in the ADAR KD sample

was 4- to 5-fold smaller compared with controls. We found

that 25% (19%) of circRNA upstream (downstream) introns

had at least one conversion, whereas only 6% of other introns

from the same genes had conversions. The number of conver-

sions per base was also found to be elevated for the upstream
174 Cell Reports 10, 170–177, January 13, 2015 ª2015 The Authors
(downstream) introns (Figures S3A–S3C). A similar highly sig-

nificant enrichment of hyperediting events was detected for

C. elegans circRNA upstream introns (Supplemental Experi-

mental Procedures; Figure S3D). Together, our data suggest

that A-to-I editing by ADAR is a ‘‘universal’’ hallmark of circRNA

biogenesis in animals.

DISCUSSION

Our analyses support a model in which RCMs between introns

that bracket an exon promote the circularization of that exon.

We note that this model is powerful enough to enable us to suc-

cessfully predict and experimentally validate circRNAs. Our data

suggest that this model of circRNA biogenesis is conserved

across animals.
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Figure 4. ADAR Antagonizes circRNA

Expression

(A) Normalized distribution of A-to-I conversions

upstream/downstream of the head/tail splice sites

of circRNAs (Memczak et al., 2013). As controls,

we selected length-matched introns and introns

from the same genes that produce circRNAs. In-

trons smaller than 1.5 kb were removed from the

analysis. The curves were smoothed within ±10 bp

at each position and normalized to the total num-

ber of analyzed introns.

(B) Position of the nearest RCMs (or SMs) around

circRNA splice sites. For each intron pair, we

selected the top-scoring RCMs within the 1.5 kb

region around the splice site. The curves were

smoothed within a ±20 bp window and normalized

to the total number of analyzed intron pairs.

(C) Comparison of the differential expression

(ADAR1 and ADAR2 codepletion against un-

treated control) of linear RNA and circRNA in two

independent replicates (merged). The y axis is the

log2 fold change of the reads (+5) supporting the

head-to-tail splice sites. The x axis is log2 fold

change of the reads supporting linear splice sites

of circRNA host genes. For the analysis, we

selected only circRNAs with at least ten reads in

ADAR1/2 KD or control samples. The numbers

tally the count of circRNAs/corresponding linear

hosts in each segment of the graph.

(D) Depletion of ADAR1 by RNAi. ADAR1 was

depleted from HEK293 cells for 96 hr using two

different siRNAs and compared with untreated

and ADAR2-depleted cells. Upper panel: qRT-

PCR of ADAR1 and ADAR2 transcripts, as well as

GAPDH and SNCA as controls. Lower panel:

western blot using ADAR1- and ADAR2-specific

antibodies. Error bars, SD; n = 3.

(E) Quantification of circRNAs and host transcript

levels. Using circRNA-specific primers (upper

panel) or exon-spanning primers that were not part

of the circRNA (lower panel), we quantified RNA

abundances relative to untreated cells by qRT-

PCR (Delta-Delta Ct values were normalized to

C. elegans spike-in). Error bars, SD; n = 3.

See also Figures S2, S3, and S5, and Tables S1,

S2, and S3.
An immediate follow-up question is, do RCMs have

sequence specificity? In general, our data do not support

sequence specificity in C. elegans, since the most prevalent

motif in RCMs between introns bracketing circRNAs was

clearly present in only 11% of all such RCMs. The equivalent

motif analysis in humans yielded (perhaps as expected) the

ALU element. For mouse circRNAs, we also found an ALU-

like element. Sequence alignment between these motifs (Fig-

ure S4) suggests that there may be an ancient RNA sequence
Cell Reports 10, 170–177
that promotes circularization. This motif

awaits experimental testing.

RCMs can be generated by simple

random matches under neutral evolu-

tion. One possible scenario is that rela-

tively quickly evolving RCMs constantly
generate a pool of circRNAs that can subsequently be

selected for and fixed. Finding circRNAs that are under nega-

tive selection seems possible because, as we have shown,

RCMs between introns can be analyzed across species.

Thus, we think that cross-species comparisons of competing

RCMs will provide a way to find circRNAs that may be func-

tionally important. Indeed, our results show that our H score

is already able to link conserved circular expression to

conserved biogenesis.
, January 13, 2015 ª2015 The Authors 175



In humans, 88%of circRNAs have ALU repeats in their flanking

introns, which, as we have shown, likely promote circularization

by RCMs. Therefore, it is interesting to speculate about the

possible functions of circRNAs, since ALU repeats have

expanded relatively recently in vertebrate evolution. We noticed

that in fly, genes with neuronal functions often have long introns

and express circRNAs at relatively high levels (Ashwal-Fluss

et al., 2014). This also holds true for human brain tissues, where

dozens of circRNAs appear to be more highly expressed than

their (well-expressed) linear hosts (N.R., unpublished data). For

human circRNAs, we found that A-to-I editing events had a ten-

dency to occur at intronic positions that were proximal (upstream

and downstream 200–600 nt) to the splice sites of circularized

exons. These results link A-to-I editing to circRNA biogenesis

and predict that A-to-I editing events ‘‘melt’’ the stems that are

formed across introns that bracket a circRNA. Our KD experi-

ments showed that indeed ADAR1 antagonizes circRNA biogen-

esis. The upregulation of circRNAs was stronger compared with

upregulation of their linear host transcripts, suggesting that

ADAR1 has a specific effect on circRNA biogenesis. However,

we cannot rule out that indirect effects explain upregulation of

circRNAs upon ADAR1 KD.

It is very interesting to think about the implications of these find-

ings. As a class, circRNAs may become more important in sys-

tems where ADAR1 expression is temporarily low. For example,

ADAR1 expression decreases in human embryonic stem cells

that are differentiating into the neuronal lineage (Osenberg et al.,

2010). Since circRNAs are unusually stable, thismight be amech-

anism togeneratea long-term ‘‘memory’’ of past states.However,

one should not forget that other factors, such as muscleblind,

have been shown to promote the biogenesis of circRNAs

(Ashwal-Fluss et al., 2014). Therefore, circRNAs may also be

well expressed in systems in which ADAR1 expression is high.

Finally, it has been shown that circular splicing and linear splicing

cancompetewitheachother (Ashwal-Flusset al., 2014). Thus, it is

possible that regulation of circRNA biogenesis by ADAR1 serves

as a mechanism to regulate expression of the linear isoforms.

Note: while this paper was under review, two studies were

published describing RCM-dependent circularization in human

cells (Liang and Wilusz, 2014; Zhang et al., 2014). We also

acknowledge Starke et al. (2014), which presents related content

in this issue of Cell Reports.
CONCLUSIONS

In summary, in this work, we explored a specific model of

circRNA biogenesis and showed that this model seems to be

conserved across animals and is powerful enough to success-

fully predict circRNAs. Our data also link RNA editing to circRNA

biogenesis and suggest a function for ADAR1. These results

will enable the future detection and understanding of possible

circRNA functions, particularly in neuronal tissues.
EXPERIMENTAL PROCEDURES

Identification of C. elegans circRNAs

We first mapped worm sequencing data to rRNA to reduce the ribosomal

reads. The remaining reads were analyzed as described in Memczak et al.
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(2013) with the additional filtering step of requiring unique alignments for

both of the read anchors prior to extension. Thereafter, we retained circRNAs

that overlap annotated internal splice sites.

Intron Alignments

We carried out intron alignments using BLAST (Altschul et al., 1990) with

the parameters ‘‘-task blastn -word_size 6’’ for C. elegans and ‘‘-task

blastn -word_size 11’’ for human. For further analysis, we considered

only alignments that exceeded BLAST score cutoffs of 20 and 100 for

C. elegans and human, respectively. For each intron pair, we calculated

circularization H as a top BLAST score multiplied by the probability of

forming at least one stem around the exon (Supplemental Experimental

Procedures).

Nonrepetitive RCMs were defined as BLAST matches that did not overlap

with any sequence present in UCSC RepeatMasker. Putative circRNAs with

nonrepetitive RCMs are shown in Table S3.

Conservation Analysis

To determine homologous exon groups, we used UCSC liftOver with min-

Match = 0.1 option. We found that 71 out of 1,067 human circRNAs (Memczak

et al., 2013) overlapped annotated splice sites and were present in circular

form in mouse. We compared H score distributions using the Mann-Whitney

two-sided test.

qRT-PCR

We performed qPCR using the Maxima SYBR-Green/ROX qPCR master

mix (Thermo Scientific) and a StepOnePlus PCR system (Applied Bio-

systems). To detect putative head-to-tail junctions, we designed divergent

primers for each circRNA candidate. Ct values for mock/RNase R-treated

circRNAs were normalized to C. elegans spike-in RNA (for standard curves,

see Figures S5A–S5C and Table S2). Amplicons were gel or bead purified

(Zymoclean gel DNA recovery kit [Zymo Research]; Agencourt AMPure

XP [Beckman Coulter]) and subjected to Sanger sequencing by LGC Geno-

mics. Confirmed head-to-tail junctions are available in Figure S5D. A list of

the oligos is given in Table S1.

For more details, see the Supplemental Experimental Procedures.
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The data have been deposited in the NCBI Gene Expression Omnibus and are

available under accession numbers GSE63823 and SRP050149. circRNAs
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SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2014.12.019.

AUTHOR CONTRIBUTIONS

A.I. performed all computational analyses except hyperediting. S.M. contrib-

uted experimental validation assays. E.W. designed and carried out ADAR

RNAi, RNA-seq, and qPCR experiments and initial analysis of the RNA-seq

data. H.P. and E.L. performed hyperediting detection. F.T. collected and pre-

pared worm samples, carried out initial ADAR KDs, and helped in the design of

the validation experiments. M.O. annotated worm circRNAs. M.P. performed

an initial analysis of the RNA-seq data and was supervised by C.D. A.I. and

N.R. analyzed the data and wrote the paper with input from E.L.

ACKNOWLEDGMENTS

A.I. and N.R. thank Sebastian Kadener (Hebrew University), Albrecht Bindereif

(University of Giessen), and Marvin Jens (N.R. lab) for helpful discussions. We

thank all members of the N.R. lab for discussions and support. This work was

http://www.circbase.org
http://www.circbase.org
http://dx.doi.org/10.1016/j.celrep.2014.12.019


supported by German-Israeli-Foundation for Scientific Research and Devel-

opment (G.I.F) and German Ministry for Education and Research (SatNet

program).

Received: September 16, 2014

Revised: November 25, 2014

Accepted: December 9, 2014

Published: December 31, 2014

REFERENCES

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic

local alignment search tool. J. Mol. Biol. 215, 403–410.

Ashwal-Fluss, R., Meyer, M., Pamudurti, N.R., Ivanov, A., Bartok, O., Hanan,

M., Evantal, N., Memczak, S., Rajewsky, N., and Kadener, S. (2014). circRNA

biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66.

Athanasiadis, A., Rich, A., andMaas, S. (2004). Widespread A-to-I RNA editing

of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391.

Baltz, A.G., Munschauer, M., Schwanhäusser, B., Vasile, A., Murakawa, Y.,
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