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Abstract

We study certain closure operations on Z2, with the aim of showing that they can provide
a suitable framework for solving problems of digital topology. The Khalimsky topology on Z2,
which is commonly used as a basic structure in digital topology nowadays, can be obtained as a
special case of the closure operations studied. By proving an analogy of the Jordan curve theorem
for these closure operations, we show that they provide a convenient model of the real plane
and can therefore be used for studying topological and geometric properties of digital images.
We also discuss some advantages of the closure operations investigated over the Khalimsky
topology.
? 2003 Elsevier B.V. All rights reserved.
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0. Introduction

In the classical approach to digital topology, graph-theoretic methods are used to
obtain a structure on Z2 suitable for studying topological and geometric properties
of digital images see [7,8] and [10–12]. Such a structure is usually given by an ad-
jacency relation between rectangular grid points (pixels) of Z2. The most frequently
used adjacencies are 4- and 8-adjacency (given a point z ∈Z2, the 4-adjacent points
to z are just the four nearest points to z in the Euclidean metric restricted from R2

to Z2; analogously for 8-adjacency). However, neither 4- nor 8-adjacency provides a
satisfactory model of the real (Euclidean) plane because neither of the two adjacencies
ful?lls an analogy of the Jordan curve theorem (recall that the classical Jordan curve
theorem states that a simple closed curve separates the real plane into precisely two
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components). But it was shown by Rosenfeld [11] that such a model is obtained by
using a combination of the two adjacencies (one adjacency for digital simple closed
curves and the other for their complements). Most results in digital topology are based
on this fact.
It was only in 1990 that Khalimsky et al. [4] proposed a new, purely topological

approach to digital topology, which was then used also in [5] and [9]. They showed
that there is a topology on Z2, the so-called Khalimsky topology, which provides a
convenient model of the real plane and can therefore be used for solving problems of
digital topology. In the present paper, we generalize the topological approach to digital
topology from [4]. Our view is based on the idea that it is not necessary to have a topol-
ogy in the usual sense on Z2 when we want to study topological properties of digital
images. We will show that more general topological structures can be convenient too.
Topological structures which are more general than the usual topology occur in many

branches of mathematics and are utilized in numerous applications. Particularly, closure
operations ful?lling only some of the Kuratowski closure axioms proved to provide a
suitable framework for various approaches to digital topology—see [16]. The closure
operations employed in the present paper are obtained from the Kuratowski closure
operations by omitting the axioms of idempotency and additivity (but retaining the
axiom of monotony)—cf. [2]. We will take advantage of the fact that connectedness
with respect to quotient maps behaves somewhat better in the class of closure spaces
than in the class of topological spaces.
The paper is a continuation of [15] where closure operations associated with �-ary

relations (�¿ 1 an ordinal) were studied with a special emphasis upon those de?ned on
the set of integers Z. For the convenience of the reader, the relevant material from [15]
is repeated without proofs, which makes our exposition self-contained. For each natural
number n¿ 1, we de?ne a closure operation on Z×Z, which is obtained as a product
of two copies of a closure operation on Z associated with a special n-ary relation on
Z. In the particular case when n = 2, we get the Khalimsky topology. The closure
operations de?ned are studied and, as the main result, an analogue of the Jordan curve
theorem is formulated and proved for them. It means that these closure operations
can be used, as an alternative to the Khalimsky topology, for solving problems of
computer graphics and computer image processing. We also demonstrate that using
them has some advantages over using the Khalimsky topology.

1. Preliminaries

Given a set X , we denote by expX its power set, i.e., the set of all subsets of X . By
a closure operation u on a set X we mean a map u: expX → expX ful?lling u∅= ∅,
A ⊆ X ⇒ A ⊆ uA, and A ⊆ B ⊆ X ⇒ uA ⊆ uB. Such closure operations were studied
by $Cech in [1] (who called them topologies). A pair (X; u), where X is a set and u is a
closure operation on X , is called a closure space. Given a pair u; v of closure operations
on a set X , we put u6 v if uA ⊆ vA for each A ⊆ X . Clearly, 6 is a partial order
on the set of all closure operations on X . A closure operation u on a set X is called
additive (respectively, idempotent) if A; B ⊆ X ⇒ u(A ∪ B) = uA ∪ uB (respectively,
A ⊆ X ⇒ uuA = uA). A closure operation u on a set X which is both additive and
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idempotent is called a Kuratowski closure operation or brieKy a topology and the
pair (X; u) is called a topological space. According to [13], given a cardinal n¿ 1, a
closure operation u on a set X and the closure space (X; u) are called an Sn-closure
operation and an Sn-space, respectively, if the following condition is satis?ed:

A ⊆ X ⇒ uA=
⋃

{uB; B ⊆ A; card B¡n}:

S2-closure operations and S2-spaces are called quasi-discrete in [1]. S2-topological
spaces are often called Alexandro7 spaces—see e.g. [6]. Of course, any S2-closure
operation is additive, and any Sm-closure operation is an Sn-closure operation when-
ever m; n are cardinals with 1¡m¡n. Since any closure operation on a set X is
obviously an Sn-closure operation for each cardinal n with n¿ card X , there exists
a least cardinal n such that u is an Sn-closure operation. Such a cardinal is then an
important invariant of the closure operation u. Evidently, if n6ℵ0, then any additive
Sn-closure operation is an S2-closure operation.
We will work with some basic topological concepts naturally extended from topo-

logical spaces to closure ones. Given a closure space (X; u), a subset A ⊆ X is called
closed if uA=A, and it is called open if X −A is closed. A closure space (X; u) is said
to be a subspace of a closure space (Y; v) if X ⊆ Y and uA= vA ∩ X for each subset
A ⊆ X . We will speak brieKy about a subspace X of (Y; v). A closure space (X; u)
is said to be connected if ∅ and X are the only subsets of X which are both closed
and open. A subset X ⊆ Y is considered to be connected in a closure space (Y; v) if
the subspace X of (Y; v) is connected. A maximal connected subset of a closure space
is called a component of this space. All the basic properties of connected sets and
components in topological spaces (see e.g. [3]) are preserved also in closure spaces. A
closure space (X; u) is said to be a T0-space if for any points x; y∈X from x∈ u{y}
and y∈ u{x} it follows that x=y, and it is called a T1=2-space if each singleton subset
of X is closed or open. Given closure spaces (X; u) and (Y; v), a map ’ :X → Y is said
to be a continuous map of (X; u) into (Y; v) if f(uA) ⊆ vf(A) for each subset A ⊆ X .
If, moreover, ’ is a bijection and ’−1 :Y → X is a continuous map of (Y; v) into
(X; u), then ’ is called a homeomorphism of (X; u) onto (Y; v). We say that closure
spaces (X; u) and (Y; v) (and the closure operations u and v) are homeomorphic if there
exists a homeomorphism of (X; u) onto (Y; v).
If (Xj; uj), j∈ J , is a system of closure spaces, then the closure operation v on∏
j∈J Xj generated by the projections prj :

∏
j∈J Xj → Xj, j∈ J (i.e., the greatest—with

respect to6—closure operation v on
∏

j∈J Xj such that all projections prj : (
∏

j∈J Xj; v)
→ (Xj; uj), j∈ J , are continuous) is given by vA =

∏
j∈J uj prj(A) whenever A ⊆∏

j∈J Xj.
Let (X; u); (Y; v) be closure spaces and let f : (X; u) → (Y; v) be a surjective map.

Then f is a quotient map (i.e., v is the least—with respect to 6—closure operation on
Y such that the map f : (X; u) → (Y; v) is continuous) if and only if vB=f(uf−1(B))
for any B ⊆ Y .
Clearly, if (X; u); (Y; v) are closure spaces, f : (X; u) → (Y; v) is a continuous map

and B is a closed subset of (Y; v), then f−1(B) is closed in (X; u). For quotient maps
the following stronger statement obviously holds.
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Lemma 1.1. Let (X; u); (Y; v) be closure spaces, f : (X; u) → (Y; v) a quotient map
and B ⊆ Y a subset. Then B is closed in (Y; v) if and only if f−1(B) is closed in
(X; u).

We will need the following:

Lemma 1.2. Let (X; u); (Y; v) be closure spaces, let v be idempotent and let f : (X; u)
→ (Y; v) be a continuous surjection. Then f is a quotient map if and only if
f(uf−1(B)) is closed in (Y; v) for each B ⊆ Y .

Proof. If f : (X; u) → (Y; v) is a quotient map, then f(uf−1(B))=vB and, as v is idem-
potent, f(uf−1(B)) is closed in (Y; v) for each B ⊆ Y . Conversely, let f(uf−1(B)) be
closed in (Y; v) whenever B ⊆ Y . Since B ⊆ f(uf−1(B)), we get vB ⊆ f(uf−1(B)). As
the inverse inclusion clearly holds (because f is continuous), we have f(uf−1(B)) =
vB. Therefore, f : (X; u) → (Y; v) is a quotient map.

Corollary 1.3. Let (X; u); (Y; v) be closure spaces, let v be idempotent and let f : (X; u)
→ (Y; v) be a quotient map. Then the restriction f |f−1(B) :f−1(B) → B is a quo-
tient map for each subset B of (Y; v).

Proof. Let B be a subset of (Y; v). Clearly, f |f−1(B) :f−1(B) → B is a continuous
surjection. Let C ⊆ B be an arbitrary subset. As f |f−1(C) = vC and v is idempo-
tent, f(uf−1(C)) is closed in (Y; v) and we clearly have f(uf−1(C) ∩ f−1(B)) =
f(uf−1(C))∩ B. Consequently, f(uf−1(C)∩f−1(B)) is closed in the subspace B of
(Y; v) (because, given a subspace T of a closure space (Z; w) and a subset A ⊆ Z ,
A ∩ T is closed in the subspace T whenever A is closed in (Z; w)). Thus, by Lemma
1.2, f |f−1(B) is a quotient map.

As usual, given a map f :X → Y , a :bre of f is any set f−1(y) with y∈Y .
If all ?bres of f are connected, then we say that f has connected ?bres. For
closure spaces, the following analogy of a theorem known for topological spaces
is valid.

Proposition 1.4. Let (X; u); (Y; v) be closure spaces, let v be idempotent and let
f : (X; u) → (Y; v) be a quotient map having connected :bres. Then (X; u) is con-
nected if and only if (Y; v) is connected.

Proof. If (X; u) is connected, then (Y; v) is connected because f is continuous. Let
(Y; v) be connected. Let X =X1∪X2 where X1; X2 are disjoint closed subsets of (X; u).
Put Yi = f(Xi) for i = 1; 2. As f has connected ?bres, Y1 ∩ Y2 = ∅ (because for each
connected subset C ⊆ X we clearly have C∩X1=∅ or C∩X2=∅) and thus Xi=f−1(Yi)
for i=1; 2. Since f is a quotient map, we have Y1∪Y2=Y and, by Lemma 1.1, Y1 and
Y2 are closed. Therefore, Y1 or Y2 is empty, hence X1 or X2 is empty. Consequently,
(X; u) is connected.
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Corollary 1.5. Let (X; u); (Y; v) be closure spaces, let v be idempotent and let f : (X; u)
→ (Y; v) be a quotient map having connected :bres. Then a subset B ⊆ Y is connected
in (Y; v) if and only if f−1(B) is connected in (X; u).

Proof. The statement follows from Corollary 1.3 and Proposition 1.4.

Remark 1.6. Recall that for topological spaces (and topological quotient maps) Propo-
sition 1.4 and Corollary 1.5 are not valid in general. The Corollary is valid provided
that B is open or closed (see e.g. [3]).

From now on, n is understood to be a natural number with n¿ 1. As natural num-
bers are understand to be ?nite cardinals, we always have n= {0; 1; : : : ; n− 1}. Given
a set X , we denote by X n the set of all maps of n into X , i.e., ordered n-tuples
(xi| i¡n) consisting of elements of X . Ordered n-tuples will be sometimes referred
to as ?nite sequences. Any subset R ⊆ X n is called an n-ary relation on X and
the pair (X; R) is called an n-ary relational system. An n-ary relation on a set X
is said to be re;exive if it contains all constant n-tuples consisting of elements of
the set X . Given n-ary relational systems (X; R) and (Y; S), a map ’ :X → Y is
called a homomorphism of (X; R) into (Y; S) if the implication (xi| i¡n)∈R ⇒
(’(xi)| i¡n)∈ S is valid. If Rj is an n-ary relation on a set Xj for each j∈ J ,
then the product of the system Rj, j∈ J , is the n-ary relation

∏
j∈J Rj on the Carte-

sian product
∏

j∈J Xj generated by the projections prj :
∏

i∈J Xi → Xj, j∈ J (i.e.,
the greatest—with respect to the set inclusion—n-ary relation R on

∏
j∈J Xj such

that all projections prj : (
∏

i∈J Xi; R) → (Xj; Rj), j∈ J , are homomorphisms). Clearly,∏
j∈J Rj = {(xi| i¡n)∈ (

∏
j∈J Xj)n; (prj(xi)| i¡n)∈Rj for each j∈ J}. Analogous

to the Cartesian product of sets, also the product of a pair R; S of n-ary relations will
be usually denoted by R× S.
Let (X; R); (Y; S) be n-ary relational systems and f : (X; R) → (Y; S) a surjective map.

Then f is a quotient map (i.e., S is the least—with respect to the set inclusion—n-ary
relation on Y such that f : (X; R) → (Y; S) is a homomorphism) if and only if, whenever
(yi| i¡n)∈Y n, we have (yi| i¡n)∈ S ⇔ ∀i¡n ∃xi ∈f−1(yi): (xi| i¡n)∈R. It
is obvious that relational systems are quotient-productive, i.e., if (Xi; Ri); (Yi; Si) are
n-ary relational systems and fi : (Xi; Ri) → (Y; Si) is a quotient map for each i∈ I , then
also the map

∏
i∈I fi :

∏
i∈I (Xi; Ri) →

∏
i∈I (Yi; Si) is quotient.

2. Closure operations associated with relations

Most results and de?nitions of this paragraph are taken from [14] and [15] (where
all proofs not presented here can be found).
Let X be a set and R an n-ary relation on X . Then, we de?ne a map uR : expX →

expX as follows:

uRA= A ∪ {x∈X ; there exist (xi| i¡n)∈R and i0; 0¡i0 ¡n; such that

x = xi0 and xi ∈A for all i¡ i0}:



236 J. 'Slapal / Discrete Applied Mathematics 139 (2004) 231–251

Clearly, uR is a closure operation on X .
It can be shown that uR is idempotent if and only if (X; uR) is an AlexandroM

topological space. Of course, uR is not additive in general, but, on the other hand, the
union of a system of closed subsets of (X; uR) is a closed subset of (X; uR).

Obviously, we have

Proposition 2.1. For any n-ary relation R on a set X , (X; uR) is an Sn-space.

We will need the following assertion.

Proposition 2.2. Let (X; R), (Y; S) be n-ary relational systems and let f : (X; R) →
(Y; S) be a quotient map. Then f : (X; uR) → (Y; uS) is a quotient map.

Proof. Let B ⊆ Y , y∈Y and suppose that y∈ uSB. Then there exist (yi| i¡n)∈ S and
a natural number i0, 0¡i0 ¡n, such that y=yi0 and yi ∈B for all i¡ i0. Further, for
each i¡n there exists xi ∈f−1(yi) such that (xi| i¡n)∈R. Now we have y=f(xi0 )
and xi0 ∈ uR{xi| i¡ i0} ⊆ uRf−1(B). Hence y∈f(uRf−1(B)).
Conversely, suppose that y∈f(uRf−1(B)). Then there is x∈ uRf−1(B) such that

f(x) = y. Next, there exist (xi| i¡n)∈R and a natural number i0, 0¡i0 ¡n, such
that x = xi0 and xi ∈f−1(B) for each i¡ i0. Since (f(xi)| i¡n)∈ S, we have y =
f(xi0 )∈ uS{f(xi); i¡ i0} ⊆ uSB (because {f(xi); i¡ i0} ⊆ B). Thus, vB=f(uf−1(B))
and the proof is complete.

De$nition 2.3. An n-ary relation R on a set X is said to be terse provided that it is
reKexive and ful?lls the following condition: If (xi| i¡n)∈R, (yi| i¡n)∈R, and
there are natural numbers i0; i1 ¡n, i0 �= i1, such that x0 = yi0 and x1 = yi1 , then
(xi| i¡n) = (yi| i¡n).

Thus, an n-ary relation R is terse if and only if R is reKexive and any nonconstant
n-tuple (xi| i¡n)∈R is injective (as a map) and is the only n-tuple belonging to R
which contains the elements x0 and x1. So, a binary relation is terse if and only if it
is reKexive and antisymmetric.

Proposition 2.4. Let R be a terse n-ary relation on a set X . Then (X; uR) is a T0-space
and R is a minimal element (with respect to the set inclusion) of the set of all re;exive
n-ary relations S on X ful:lling uR = uS .

Proposition 2.5. For terse n-ary relations the correspondence R �→ uR is one-to-one.

De$nition 2.6. A closure operation u on a set X and the closure space (X; u) are called
an S∗

n -closure operation and an S∗
n -space, respectively, if there is a terse n-ary relation

R on X such that u= uR. This (unique) relation R will be denoted by Ru.
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Clearly, the (relational) product of a system of terse n-ary relations is a terse n-ary
relation. This fact, together with Proposition 2.5, enables us to de?ne:

De$nition 2.7. Let (Xj; uj), j∈ J , be a system of S∗
n -spaces. By the product of this

system we understand the S∗
n -space (

∏
j∈J Xj; uR) where R=

∏
j∈J Ruj .

The product of a pair (X; u); (Y; v) of S∗
n -spaces will be denoted by (X; u)× (Y; v).

Remark 2.8. Let (Xj; uj), j∈ J , be a system of S∗
n -spaces and let v be the closure oper-

ation on
∏

j∈J Xj generated by the projections prj :
∏

j∈J Xj → Xj, j∈ J . If (
∏

j∈J Xj; u)
is the product of the system de?ned in 2.7, then it can easily be seen that u6 v. The
equality u= v is valid, in general, only for n= 2.

De$nition 2.9. Let R be an n-ary relation on a set X and let p be a natural number
with 1¡p6 n. An ordered p-tuple (yi| i¡p) of points of X is called a connected
element in (X; uR) if there is an n-tuple (xi| i¡n)∈R such that yi = xi for all i¡p
or yi = xp−1−i for all i¡p.

Clearly, each connected element is a connected set. We will need the following
observation which immediately follows from De?nition 2.9.

Lemma 2.10. Let (yi| i¡p) be a connected element in (X; uR) and let (xi| i¡n)∈R
be an n-tuple with yi = xi for all i¡p or yi = xp−1−i for all i¡p. If i0 ¡p is a
natural number, then either (yi0−i| i6 i0) or (yi| i06 i¡p) is a connected element
in (X; uR) with the :rst member yi0 and the last one x0.

De$nition 2.11. Let R be an n-ary relation on a set X . A ?nite nonempty sequence
C=(xi| i¡m) of points of X is called a path in (X; uR) if, whenever m¿ 1, there is a
?nite increasing sequence (jk | k ¡p) of natural numbers with j0 =0 and jp−1 =m−1
such that (xj| jk 6 j6 jk+1) is a connected element in (X; uR) for each natural number
k ¡p− 1.

Clearly, each path is a connected set and each connected element is a path. If
(xi| i¡m) is a path, then also its inversion, i.e., the sequence (yi| i¡m) where
yi = xm−1−i for all i¡m, is a path. Further, if (xi| i¡m), (yi| i¡p) are paths such
that xm−1=y0, then also their union, i.e., the sequence (zi| i¡m+p−1) where zi=xi
for all i¡n and zi = yi−m+1 for all i with m6 i¡p, is a path.
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Theorem 2.12. Let R be an n-ary relation on a set X and A ⊆ X be a subset. Then
A is connected in (X; uR) if and only if any two points of A can be joined by a path
in (X; uR) contained in A.

Lemma 2.13. Let (X0; R0), (X1; R1) be re;exive n-ary relational systems and let (yj
i |

i¡pj) be a connected element in (Xj; uRj) for each j = 0; 1. Then {y0
i ; i¡p0} ×

{y1
i ; i¡p1} is a connected set in (X0; uR0 )× (X1; uR1 ).

Proof. For each j = 0; 1, there is an n-tuple (xji | i¡n)∈Rj such that yj
i = xji for all

i¡pj or yj
i = xjpj−1−i for all i¡pj. Let y∈{y0

i ; i¡p0} × {y1
i ; i¡p1} be an

arbitrary element. Then there are natural numbers i0; i1 with i0 ¡p0; i1 ¡p1 such
that y = (y0

i0 ; y
1
i1 ). By Lemma 2.10, (y0

i0−i| i6 i0) or (y0
i | i06 i¡p0) is a connected

element in (X0; uR0 ) with the ?rst member y0
i0 and the last one x00. Denote this connected

element by (z0i | i¡q0) and put C0 = ((z0i ; y
1
i1 )| i¡q0). As (X1; R1) is reKexive, C0

is a connected element in (X0; uR0 ) × (X1; uR1 ) whose last member equals (x00 ; y
1
i1 ).

Further, by Lemma 2.10, (y1
i1−i| i6 i1) or (y1

i | i16 i¡p1) is a connected element in
(X1; uR1 ) with the ?rst member y1

0 and the last one x10. Denote this connected element by
(z1i | i¡q1) and put C1=((z0q0−1; z

1
i )| i¡q1). As (X0; R0) is reKexive, C1 is a connected

element in (X0; uR0 )× (X1; uR1 ) whose ?rst member equals (x00 ; y
1
i1 ). Now, the union of

the connected elements C0 and C1 is a connected element in (X0; uR0 )× (X1; uR1 ) with
the ?rst member (y0

i0 ; y
1
i1 ) = y and the last one (x00 ; x

1
1). We have shown that any point

y∈{y0
i ; i¡p0}×{y1

i ; i¡p1} can be joined with the point (x00 ; x
1
0)∈{y0

i ; i¡p0}×
{y1

i ; i¡p1} by a path contained in {y0
i ; i¡p0}×{y1

i ; i¡p1}. Now the statement
follows from Theorem 2.12.

Lemma 2.14. Let (X0; R0), (X1; R1) be re;exive n-ary relational systems and let Cj =
(xji | i¡pj) be a path in (Xj; uRj) for each j=0; 1. Then {x0i ; i¡p0}×{x1i ; i¡p1}
is a connected set in (X0; uR0 )× (X1; uR1 ).

Proof. If C0 or C1 contains only one member, then the assertion is trivial because
(X0; R0) and (X1; R1) are reKexive. So, suppose that both C0 and C1 contain more than
one member. By De?nition 2.11, for each j=0; 1 there is a ?nite increasing sequence
(ijk | k ¡qj) of natural numbers with ij0=0 and ijqj−1=pj−1 such that (xji | ijk 6 i6 ijk+1)
is a connected element in (Xj; uRj) for each natural number k ¡qj − 1. For each
j = 0; 1, putting Cj

k = {xji ; ijk 6 i6 ijk+1}, we get {xji ; i¡pj} =
⋃

k¡qj−1 C
j
k . Thus,

{x0i ; i¡p0} × {x1i ; i¡p1}=
⋃

k0¡q0−1

⋃
k1¡q1−1(C

0
k0 × C1

k1 ) where C0
k0 × C1

k1 is con-
nected in (X0; uR0 ) × (X1; uR1 ) for any k0 ¡q0 − 1 and any k1 ¡q1 − 1 by Lemma
2.13. Thus, whenever k0 ¡q0 − 1, (C0

k0 × C1
k1 | k1 ¡qm−1 − 1) is a ?nite sequence

of connected sets such that any two consecutive members of it have nonempty in-
tersection. Therefore, the set Dk0 =

⋃
k1¡q1−1(C

0
k0 × C1

k1 ) is a connected set. We have
{x0i ; i¡p0} × {x1i ; i¡p1} =

⋃
k0¡q0−1 Dk0 . This proves the statement because any

two consecutive members of the ?nite sequence (Dk0 | k0 ¡q0 − 1) have nonempty
intersection.



J. 'Slapal / Discrete Applied Mathematics 139 (2004) 231–251 239

Theorem 2.15. Let (X0; R0), (X1; R1) be re;exive n-ary relational systems and let
Yj ⊆ Xj be a subset for each j = 0; 1. Then Yj is connected in (Xj; uRj) for each
j = 0; 1 if and only if Y0 × Y1 is connected in (X0; uR0 )× (X1; uR1 ).

Proof. Let Yj be connected in (Xj; uRj) for each j=0; 1 and let (x0; x1); (y0; y1)∈Y0×Y1

be arbitrary points. Then, for each j = 0; 1, there is a path (zji | i¡pj) in (X0; uR0 )×
(X1; uR1 ) joining the points xj and yj which is contained in Yj. As {z0i ; i¡p0} ×
{z1i ; i¡p1} contains the points (x0; x1); (y0; y1) and is connected in (X0; uR0 )×(X1; uR1 )
by Lemma 2.14, there is a path in (X0; uR0 )× (X1; uR1 ) joining the points (x0; x1) and
(y0; y1) which is contained in {z0i ; i¡p0}×{z1i ; i¡p1}. Thus, Y0×Y1 is connected
in (X0; uR0 )× (X1; uR1 ) because {z0i | i¡p0} × {z1i | i¡p1} ⊆ Y0 × Y1.
Conversely, let Y0 × Y1 be connected in (X0; uR0 ) × (X1; uR1 ) and let v denote the

closure operation on X0 × X1 generated by the projections prj :X0 × X1 → Xj, j=0; 1.
By Remark 2.8, u6 v. Thus, as the projections prj : (X0 × X1; v) → (Xj; uRj), j = 0; 1,
are continuous, also the projections prj : (X0; uR0 ) × (X1; uR1 ) → (Xj; uRj), j = 0; 1,
are continuous. Consequently, Yj = prj(Y0 × Y1) is connected in (Xj; uRj) for each
j = 0; 1.

3. n-ary digital plane

We de?ne an n-ary relation Rn on the set Z of integers as follows:

Rn = {(xi| i¡n)∈Zn; (xi| i¡n) is constant or there exists an odd

number l∈Z ful?lling either xi = l(n− 1) + i for all i¡n or xi

=l(n− 1)− i for all i¡n}:

The relation Rn is demonstrated in the following ?gure where the nonconstant n-tuples
of Rn are represented as arrows (oriented from the ?rst to the last members of the
sequences):

It is evident that Rn is terse so that uRn is an S∗
n -closure operation on Z. Instead of

uRn we will write brieKy un. The closure operation u2 coincides with the Khalimsky
topology on Z generated by the subbase {{2k − 1; 2k; 2k + 1}; k ∈Z}—cf. [6]. The
relation R−1

2 is nothing more than the so-called specialization order of u2. Clearly, un

is additive if and only if n= 2.
By $Slapal [15], we have:

Proposition 3.1. (Z; un) is a connected S∗
n -space in which the points l(n − 1), l∈Z

odd, are open, while all the other points are closed (so that un is a T1=2-closure
operation).
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Let R̃n be the n-ary relation on Z given as follows:

R̃n = {(xi| i¡n)∈Zn; (xi| i¡n) is a constant n-tuple or xn−1 ∈Z is an

even number with either xi = xn−1 − 1 for all i¡n− 1 or xi

=xn−1 + 1 for all i¡n− 1}:
Further, let fn :Z→ Z be the surjection de?ned by
fn(l(n− 1)) = l for each even number l∈Z,
fn(l(n− 1) + i) = l for each odd number l∈Z and each i∈Z with |i|¡n− 1.

Theorem 3.2. fn : (Z; Rn) → (Z; R̃n) is a quotient map.

Proof. Let (yi| i¡n)∈ R̃n. If (yi| i¡n) is constant, say yi = y for all i¡n, we
can choose an arbitrary element x∈f−1

n (y). Then, putting xi = x for all i¡n, we get
(xi| i¡n)∈Rn. Let (yi| i¡n) be not constant. Then yn−1 ∈Z is even and yi=yn−1−1
for all i¡n− 1 or yi = yn−1 + 1 for all i¡n− 1. Suppose that yi = yn−1 − 1 for all
i¡n− 1 and put xi =(yn−1− 1)(n− 1)+ i for all i¡n. Then (xi| i¡n)∈Rn and we
have f−1

n (yn−1) = {yn−1(n− 1)}= {xn−1}, and xi ∈{(yn−1 − 1)(n− 1) + i; i¡n} ⊆
f−1

n (yn−1 − 1) = f−1
n (yi) for any i¡n − 1. Further, suppose that yi = yn−1 + 1

for all i¡n − 1 and put xi = (yn−1 + 1)(n − 1) − i. Again, (xi| i¡n)∈Rn and we
have f−1

n (yn−1) = {yn−1(n− 1)}= {xn−1}, and xi ∈{(yn−1 + 1)(n− 1)− i; i¡n} ⊆
f−1

n (yn−1 + 1) = f−1
n (yi) for any i¡n− 1.

Conversely, let (yi| i¡n)∈Zn and for each i¡n let there exist xi ∈f−1
n (yi)

such that (xi| i¡n)∈Rn. If (yi| i¡n) is constant, then clearly (yi| i¡n)∈ R̃n. Let
(yi| i¡n) be not constant. Then there exists an even number l with xn−1 = l(n− 1).
Thus, yn−1 = l. Since xi = (l− 1)(n− 1)+ i for all i¡n− 1 or xi = (l+1)(n− 1)− i
for all i¡n− 1, we have yi = l− 1 for all i¡n− 1 or yi = l+ 1 for all i¡n− 1.
Therefore, (yi| i¡n)∈ R̃n.

Theorem 3.3. uR̃n
= u2.

Proof. Let A ⊆ Z and x∈ uR̃n
A. If x∈A, then x∈ u2A. Suppose that x �∈ A. Then there

exist (xi| i¡n)∈ R̃n and i0, 0¡i0 ¡n, such that x=xi0 and xi ∈A for all i¡ i0. Since
xn−1 is even and xn−2 = xn−1− 1 or xn−2 = xn−1 + 1, we have xn−2R2xn−1. As clearly
i0 = n− 1, we get x∈ u2A. We have shown that uR̃n

6 u2.
Conversely, let x∈ u2A. If x∈A, then x∈ uR̃n

A. Suppose that x �∈ A. Then there exists
y∈A such that x∈ u2{y}. Consequently, yR2x and thus x is even and y = x − 1 or
y = x + 1. Now, putting xi = y for all i¡n− 1 and xn−1 = x, we get (xi| i¡n)∈ R̃n

and xi ∈A for each i¡n−1. Therefore, x∈ uR̃n
A. We have shown that u26 uR̃n

which
completes the proof.

Corollary 3.4. fn : (Z; un) → (Z; u2) is a quotient map.

Proof. The statement follows from Theorems 3.2, 3.3 and Proposition 2.2.
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We put (Z2; vn) = (Z; un) × (Z; un), so that vn = uRn×Rn . The closure space (Z2; vn)
will be called the n-ary digital plane. Clearly, the product (Z; u2) × (Z; u2) coincides
with the usual topological product and so the binary digital plane coincides with the
Khalimsky plane (cf. [6]). As a consequence of 3.1 we get:

Proposition 3.5. (Z2; vn) is a connected S∗
n -space in which a point z = (z1; z2)∈Z2 is

open if and only if z1 = k(n − 1) and z2 = l(n − 1) where k; l∈Z are odd, and it is
closed if and only if z1 �= k(n − 1) for all odd numbers k ∈Z and z2 �= l(n − 1) for
all odd numbers l∈Z.

We denote by Fn : (Z2; vn) → (Z2; v2) the map Fn=fn×fn. Clearly, if k; l∈Z, then
F−1
n equals the singleton {(k(n − 1); l(n − 1))} whenever k; l are even, the “square”

{(x; y)∈Z2; |x − k|¡n − 1; |y − l|¡n − 1} of (2n − 3)2 points whenever k; l are
odd, the “abscissa” {(x; y)∈Z2; |x − k|¡n− 1; y = l} of 2n− 3 points whenever k
is odd and l is even, and the “abscissa” {(x; y)∈Z2; x= k; |y− l|¡n− 1} of 2n− 3
points whenever k is even and l is odd.

Theorem 3.6. Fn : (Z2; vn) → (Z2; v2) is a quotient map with connected :bres.

Proof. Fn is a quotient map because of Theorems 3.2, 3.3, Proposition 2.2, De?nition
2.7 and the fact that relational systems are quotient productive. Let (x; y)∈Z2 be a
point. Then F−1

n (x; y) = f−1
n (x) × f−1

n (y) and both the sets f−1
n (x) and f−1

n (y) are
connected in (Z; vn) (as each of them is a singleton or the union of two connected
elements in (Z; vn) having a common member). Thus, F−1

n (x; y) is connected in (Z2; vn)
by Theorem 2.15.

Let J ⊆ Z2 be a subset and z ∈ J a point. Then we put

Jz = {(zi| i¡n)∈Rn × Rn; (zi| i¡n) is a non-constant n-tuple

with z ∈{zi; i¡n} ⊆ J}:

De$nition 3.7. A simple closed curve in (Z2; vn) is a ?nite connected set J ⊆ Z2 that
satis?es the following two conditions:

(1) For any point z ∈ J there exists an n-tuple (zi| i¡n)∈ Jz with z0=(k(n−1); l(n−
1)), k; l∈Z.

(2) If z ∈ J is a point with z = (k(n− 1); l(n− 1)), k; l∈Z, then card Jz = 2.

For n¿ 2, simple closed curves in the n-ary digital plane are precisely circles in the
graph (a portion of which is) shown in the following ?gure; the vertices of the graph
are all points of Z2 but only the points (k(n − 1); l(n − 1)), k; l∈Z, are marked in
the ?gure and thus, on any edge connecting a pair of points, there are another n − 2
points:



242 J. 'Slapal / Discrete Applied Mathematics 139 (2004) 231–251

Note that for n = 2, condition (1) of 3.7 is always satis?ed and the simple closed
curves with at least four points coincide with the COTS-Jordan curves from [4]. So,
by Khalimsky et al. [4] we have

Theorem 3.8. Any simple closed curve J in (Z2; v2) having at least four points sep-
arates (Z2; v2) into precisely two components (i.e., the subspace Z2 − J of (Z2; v2)
consists of precisely two components).

Corollary 1.5 and Theorems 3.6 and 3.8 result in

Theorem 3.9. Let J ⊆ Z2 be a set such that Fn(J ) is a simple closed curve in (Z2; v2)
having at least four points. If F−1

n (Fn(J ))=J , then J separates (Z2; vn) into precisely
two components.

The sets J from Theorem 3.9 need not be simple closed curves in (Z2; vn) in general
and so this theorem is not a satisfactory analogy of the classical Jordan curve theorem.
In what follows we will give a criterion under which a given simple closed curve in
the space (Z2; vn) separates this space into precisely two components.

De$nition 3.10. A simple closed curve J in (Z2; vn) is said to be a Jordan curve
provided that for any point z ∈ J with z = (k(n − 1); l(n − 1)), k; l∈Z odd, from
{((xi; yi)| i¡n); ((x′i ; y

′
i)| i¡n)}= Jz it follows that |xn−1 − x′n−1|= |yn−1 − y′

n−1|=
2(n− 1).

Clearly, if (zi| i¡n)∈Rn × Rn and z = (k(n− 1); l(n− 1))∈Z2 where k; l∈Z are
odd, then from z ∈{zi; i¡n} it follows that z = z0. Thus, the condition in De?nition
3.10 means that J can turn only at the points (k(n−1); l(n−1)) for which k; l∈Z are
even. It immediately follows that Fn(J ) has at least six points for any Jordan curve
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J in (Z2; vn). For n¿ 2, Jordan curves are nothing else than circles in the graph (a
portion of which is) shown in the following ?gure; the vertices of the graph are all
points of Z2 but only the points (k(n− 1); l(n− 1)), k; l∈Z even, are marked in the
?gure and thus, on any edge connecting a pair of points, there are another 2n − 3
points:

Theorem 3.11. Let J be a simple closed curve in (Z2; vn) and let for any k; l∈Z from
(k(n − 1); l(n − 1))∈ J it follows that k or l is even. Then J is a Jordan curve in
(Z2; vn) which separates (Z2; vn) into precisely two components.

Proof. Clearly, J is a Jordan curve in (Z2; vn), Fn(J ) is a Jordan curve in (Z2; v2)
having at least eight points and F−1

n (Fn(J )) = J . Thus, the statement follows from
Corollary 1.5 and Theorems 3.6 and 3.8.

The Jordan curves from Theorem 3.11 are said to be rectangular because they are
just the circles in the graph (a portion of which is) shown in the following ?gure; again,
the vertices of the graph are all points of Z2 but only the points (k(n− 1); l(n− 1)),
k; l∈Z even, are marked in the ?gure and thus, on any edge connecting a pair of
points, there are another 2n− 3 points:
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De$nition 3.12. Let n¿ 2 and let k; l∈Z be odd numbers. Then we set

A1(k; l) = F−1
n ({(k − 1; l− 1); (k; l− 1); (k + 1; l− 1)});

A2(k; l) = F−1
n ({(k − 1; l+ 1); (k; l+ 1); (k + 1; l+ 1)});

B1(k; l) = F−1
n ({(k − 1; l− 1); (k − 1; l); (k − 1; l+ 1)});

B2(k; l) = F−1
n ({(k + 1; l− 1); (k + 1; l); (k + 1; l+ 1)});

%1(k; l) = {(x; y)∈Z2; |x − k(n− 1)|¡n− 1; y = l(n− 1)− x + k(n− 1)};
%2(k; l) = {(x; y)∈Z2; |x − k(n− 1)|¡n− 1; y = l(n− 1) + x − k(n− 1)};
T1(k; l) = {(x; y)∈Z2; |x − k(n− 1)|¡n− 1; (l− 1)(n− 1)

¡y¡l(n− 1)− x + k(n− 1)};
T2(k; l) = {(x; y)∈Z2; |x − k(n− 1)|¡n− 1; l(n− 1)

+ x − k(n− 1)¡y¡ (l+ 1)(n− 1)};
T3(k; l) = {(x; y)∈Z2; |x − k(n− 1)|¡n− 1; (l− 1)(n− 1)

¡y¡l(n− 1) + x − k(n− 1)};
T4(k; l) = {(x; y)∈Z2; |x − k(n− 1)|¡n− 1; l(n− 1)

− x + k(n− 1)¡y¡ (l+ 1)(n− 1)}:
Graphically, the sets A1(k; l), A2(k; l), B1(k; l) and B2(k; l) are the lower, upper, left

and right sides of the square F−1
n (k; l), respectively, which do not meet this square.

The sets %1(k; l) and %2(k; l) are the increasing and decreasing diagonals of the square
F−1
n (which are contained in the square). Finally, T1(k; l) and T4(k; l) are the left lower

and right upper triangles, respectively, obtained by separating the square F−1
n by the

decreasing diagonal %1(k; l) (which are included in the square but do not meet the
diagonal). Similarly, T2(k; l) and T3(k; l) are the left upper and right lower triangles,
respectively, obtained by separating the square F−1

n by the increasing diagonal %2(k; l)
(which are included in the square but do not meet the diagonal).

Lemma 3.13. Let n¿ 2 and let k; l be odd numbers. Then each of the 10 sets intro-
duced in De:nition 3.12 is connected in (Z2; vn).

Proof. The sets A1(k; l), A2(k; l), B1(k; l) and B2(k; l) are inverse images under Fn of
connected sets in (Z2; v2). Thus, they are connected by Corollary 1.5 and Theorem
3.6. It is evident that also the sets %1(k; l) and %2(k; l) are connected because each of
them is the union of a pair of connected elements having a common member. Now,
consider the set T1(k; l). Then, for each x∈Z with (k − 1)(n − 1)¡x¡k(n − 1),
the set Cx = {(x; y)∈Z2; (l− 1)(n− 1)¡y¡l(n− 1)− x + k(n− 1)} is connected
(as it is formed by a connected element in the case x = k(n − 1) − 1 or is a union



J. 'Slapal / Discrete Applied Mathematics 139 (2004) 231–251 245

of a pair of connected elements having a common member otherwise). Similarly, for
each y∈Z with (l− 1)(n− 1)¡y¡l(n− 1), the set Dy = {(x; y)∈Z2; (k − 1)(n−
1)¡x¡l(n−1)−y+k(n−1)} is connected (as it is formed by a connected element
in the case y = l(n − 1) − 1 or is a union of a pair of connected elements having
a common member otherwise). Clearly, T1(k; l) =

⋃{Cx; (k − 1)(n− 1)¡x¡k(n−
1)} ∪⋃{Dy; (l − 1)(n − 1)¡y¡l(n − 1)}. For each natural number i¡n − 2 put
C′

i=C(k−1)(n−1)+1+i, D′
i=D(l−1)(n−1)+1+i and Ei=C′

i∪D′
i . Then (C′

i | i¡n−2)=(Cx| (k−
1)(n−1)¡x¡k(n−1)) and (D′

i | i¡n−2)=(Dy| (l−1)(n−1)¡y¡l(n−1)). Thus,
T1(k; l)=

⋃
i¡n−2 Ei where Ei is a connected set for each i¡n− 2 (because C′

i ∩D′
i =

{(x(k−1)(n−1)+1+i ; y(l−1)(n−1)+1+i)}). Since D′
i ∩ C′

0 = {(x(k−1)(n−1)+1; y(l−1)(n−1)+1+i)}
for each i¡n− 2, we have Ei ∩ E0 �= ∅ for each i¡n− 2. Consequently, T1(k; l) is
connected in (Z2; vn). For T2(k; l), T3(k; l) and T4(k; l) the proofs are analogous.

We will need the following, quite obvious statement.

Lemma 3.14. Let J be a simple closed curve in (Z2; v2) having at least four points
and let k; l∈Z be odd numbers with (k; l)∈ J . If (k−1; l−1)∈ J and (k+1; l+1)∈ J ,
then the points (k − 1; l) and (k; l+ 1) belong to one component of Z2 − J while the
points (k; l− 1) and (k + 1; l) belong to the other. Similarly, if (k − 1; l+ 1)∈ J and
(k +1; l− 1)∈ J , then the points (k; l− 1) and (k − 1; l) belong to one component of
Z2 − J while the points (k; l+ 1) and (k + 1; l) belong to the other.

Theorem 3.15. Let J be a Jordan curve in (Z2; vn) satisfying the condition that,
whenever there are odd numbers k; l∈Z such that (k(n− 1); l(n− 1))∈ J , J contains
just two of the four points ((k ± 1)(n− 1); (l± 1)(n− 1)). Then J separates (Z2; vn)
into precisely two components.

Proof. Clearly, the condition from Theorem 3.15 is necessary and suRcient for Fn(J )
to be a simple closed curve in (Z2; v2) (having at least six points). For n = 2, the
statement immediately follows from Theorem 3.8. Suppose that n¿ 2. If (k(n−1); l(n−
1)) �∈ J whenever k; l∈Z are odd, then J is rectangular and the statement follows from
Theorem 3.11. So, let there be odd numbers k; l∈Z with (k(n− 1); l(n− 1))∈ J and
put J ′=F−1

n (Fn(J )). By Corollary 1.5 and Theorems 3.6 and 3.8, J ′ separates (Z2; vn)
into precisely two components and J ⊆ J ′, J �= J ′. Clearly, J contains just one of
the sets %1(k; l), %2(k; l). We will assume, without loss of generality, that %1(k; l) ⊆
J . Then F−1

n (k − 1; l + 1) ∪ F−1
n (k + 1; l − 1) ⊆ J , thus (k − 1; l + 1)∈Fn(J ) and

(k+1; l−1)∈Fn(J ). Clearly, for any (x; y)∈%1(k; l) we have F−1
n (Fn(x; y))=T1(k; l)∪

%1(k; l)∪T4(k; l). The condition from Theorem 3.15 implies that F−1
n (k−1; l−1)∩J=∅

and F−1
n (k + 1; l + 1) ∩ J = ∅. Consequently, F−1

n (k; l− 1) ∩ J = F−1
n (k; l + 1) ∩ J =

F−1
n (k − 1; l) ∩ J = F−1

n (k + 1; l) ∩ J = ∅. Put z1 = (k(n− 1)− 1; (l− 1)(n− 1)) and
z2 = (k(n− 1)+1; (l+1)(n− 1)). Then z1 ∈F−1

n (k; l− 1) and z2 ∈F−1
n (k; l+1), hence

z1 �∈ J ′ and z2 �∈ J ′. Let E1; E2 be the components of Z2 − J with z1 ∈E1 and z2 ∈E2.
By Corollary 1.5, Theorem 3.6 and Lemma 3.14, E1 and E2 are diMerent. Clearly, we
have z1 ∈ vnT1(k; l) and z2 ∈ vnT4(k; l). Thus, as T1(k; l) and T4(k; l) are connected by
Lemma 3.13, the sets E1 ∪ T1(k; l) and E2 ∪ T4(k; l) are connected in the subspace
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Z2 − J1 of (Z2; vn) where J1 = J ′ − (T1(k; l) ∪ T4(k; l)). Obviously, E1 ∪ T1(k; l) and
E2 ∪ T4(k; l) are disjoint and E1 ∪ T1(k; l) ∪ E2 ∪ T4(k; l) = Z2 − J1. As Z2 − J1 is not
connected (because Fn(Z2− J1)=Z2−Fn(J1)=Z2−Fn(J ) is not connected), the sets
E1 ∪ T1(k; l) and E2 ∪ T4(k; l) are components of Z2 − J1. Consequently, J1 separates
(Z2; vn) into precisely two components. Now, if there are odd numbers k1; l1 ∈Z such
that (k1(n − 1); l1(n − 1))∈ J , in the next step we repeat the previous considerations
for k1; l1 and J1 instead of k; l and J . In this way, we obtain a set J2 which separates
(Z2; vn) into precisely two components. After a ?nite number m of steps we will get
a set Jm which separates (Z2; vn) into precisely two components and contains no point
(k(n− 1); l(n− 1)) with k; l∈Z odd. Clearly, Jm = J which proves the statement.

The Jordan curves J in (Z2; vn) satisfying the condition from Theorem 3.15 are
said to be without acute angles. Thus, every rectangular Jordan curve is without acute
angles.
Whenever n¿ 2, each Jordan curve J in (Z2; vn) clearly satis?es card J¿ 6(n− 1).

The shortest Jordan curves J in (Z2; vn), i.e., those satisfying card J=6(n−1), are said
to be elementary. Of course, if J is an elementary Jordan curve in (Z2; vn), then there
are odd numbers k; l∈Z such that J is the union of one of the sets A1(k; l); A2(k; l),
one of the sets B1(k; l); B2(k; l), and one of the sets %1(k; l); %1(k; l).

Theorem 3.16. Let n¿ 2 and let J be an elementary Jordan curve in (Z2; vn). Then
J separates (Z2; vn) into precisely two components.

Proof. We will suppose, without loss of generality, that J=A1(k; l)∪B1(k; l)∪%1(k; l).
Put J ′ = A1(k; l) ∪ B1(k; l) ∪ A2(k; l) ∪ B2(k; l). Then Fn(J ′) = {(x; y)∈Z2; max{|x −
k|; |y− l|}=1} is a simple closed curve in (Z2; v2) with card Fn(J ′)=8. Thus, Fn(J ′)
separates (Z2; v2) into precisely two components by Theorem 3.8. As J ′=F−1

n (Fn(J ′)),
J ′ separates (Z2; vn) into precisely two components by Corollary 1.5 and Theorem 3.6.
Clearly, one of these components is the set C=F−1

n (k; l)=T1(k; l)∪T4(k; l)∪%1(k; l),
hence the other is the set Z2−(C∪J ′). By Lemma 3.13, T1(k; l) is connected in (Z2; vn)
and thus it is connected also in the subspace Z2 − J of (Z2; vn) because T1(k; l) ⊆
Z2 − J . We have Z2 − (J ∪ T1(k; l)) = (Z2 − (C ∪ J ′))∪ (A2(k; l)− {z1})∪ (B2(k; l)−
{z2}) ∪ T4(k; l) where {z1}= F−1

n (k − 1; l+ 1) and {z2}= F−1
n (k + 1; l− 1). Clearly,

Z2 − (C ∪ J ′) ⊆ Z2 − J and (A2(k; l)− {z1}) ∪ (B2(k; l)− {z2}) ⊆ vn(Z2 − (C ∪ J ′)).
Thus, (Z2 − (C ∪ J ′))∪ (A2(k; l)−{z1})∪ (B2(k; l)−{z2}) is connected in Z2 − J . Let
z0=((k+1)(n−1); l(n−1)+1). Then z0 ∈ (B2(k; l)−{z2})∩vnT4(k; l). Consequently, as
T4(k; l) is connected in Z2− J by Lemma 3.13, the set Z2− (J ∪T1(k; l)) is connected
in Z2 − J too. As any path in (Z2; vn) connecting a point of T1(k; l) with another one
of Z2 − (J ∪ T1(k; l)) clearly contains a point of J , the sets Z2 − (J ∪ T1(k; l)) and
T1(k; l) are components of the subspace Z2 − J of (Z2; vn).

Lemma 3.17. Let n¿ 2 and let k; l∈Z be odd numbers. Put A=T1(k; l)∪F−1
n ({(k−

1; l); (k − 1; l+ 1)})∪%1(k; l) and W = T4(k − 2; l)∪ F−1
n (k − 2; l+ 1)∪ T3(k − 1; l−

1)∪F−1
n (k−1; l+2)∪T1(k; l+2)∪F−1

n (k; l+1)∪T4(k; l). Let B ⊇ A be a connected
set in (Z2; vn) such that B ∩ F−1

n ({(k − 1; l − 1); (k; l − 1); (k + 1; l − 1)}) = ∅ and
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W ⊆ B. If F−1
n (k + 1; l) ⊆ B or F−1

n (k + 1; l) ∩ B= ∅, then B− A is a connected set
in (Z2; vn).

Proof. Note that A and W are disjoint. The sets F−1
n (k − 2; l+ 1), F−1

n (k − 1; l+ 2),
F−1
n (k; l + 1) and F−1

n (k + 1; l) are connected because Fn has connected ?bres. By
Lemma 3.13, also the sets T4(k − 2; l), T3(k − 1; l − 1), T1(k; l + 2) and T4(k; l) are
connected. We clearly have ((k−1)(n−1)−1; (l+1)(n−1))∈F−1

n (k−2; l+1)∩vnT4(k−
2; l)∩vnT3(k−1; l−1), ((k−1)(n−1); (l+1)(n−1)+1)∈F−1

n (k−1; l+2)∩vnT3(k−
1; l−1)∩vnT1(k; l+2), ((k−1)(n−1)+1; (l+1)(n−1))∈F−1

n (k; l+1)∩vnT1(k; l+2) and
(k(n−1)+1; (l+1)(n−1))∈F−1

n (k; l+1)∩vnT4(k; l). Consequently, W is a connected
set. Further, we clearly have ((k − 1)(n− 1)− 1; (l− 1)(n− 1) + 1)∈ vnT4(k − 2; l) ⊆
vnW . Therefore, W ∪ {((k − 1)(n − 1) − 1; (l − 1)(n − 1) + 1)} is connected. As
F−1
n (k + 1; l+ 1)∈ vnF−1

n (k; l+ 1)∈ vnW , also W ∪ F−1
n (k + 1; l) is connected.

We will show that for any path connecting two diMerent points of B − A which is
contained in B and meets A there is a path connecting these points which is contained in
B−A. To this end, let C=(zi| i¡m) be a path contained in B such that z0; zm−1 ∈B−A
and {zi; i¡m} ∩ A �= ∅. Then there is a ?nite increasing sequence (jk | k ¡p) of
natural numbers with j0 = 0 and jp−1 = m − 1 such that (zj| jk 6 j6 jk+1) is a
connected element for each k ¡p − 1. Let k1 ¡p − 1 be the least natural number
having the property that the connected element Ck1 = (zi| jk1 6 i6 jk1+1) meets A and
let k2 ¡p − 1 be the greatest natural number having the property that the connected
element Ck2 = (zi| jk2 6 i6 jk2+1) meets A. Then zjk1 ∈B − A, zjk2+1 ∈B − A and both
Ck1 and Ck2 meet A− T1(k; l).
First, suppose that Ck1∩%1(k; l)=∅=Ck2∩%1(k; l). Then it is evident that Ck1 ∈Rn×Rn,

Ck1∩A={zjk1+1} and zjk1+1−1 ∈W∪E where E=∅ if ((k−1)(n−1)−1; (l−1)(n−1)+1) �∈
B and E={((k−1)(n−1)−1; (l−1)(n−1)+1)} if ((k−1)(n−1)−1; (l−1)(n−1)+1)∈B.
Similarly, denoting the inversion of Ck2 by C−

k2 , we get C−
k2 ∈Rn ×Rn, Ck2 ∩A= {zjk2 }

and zjk2+1 ∈W ∪ E. Thus, C′
k1 = (zi| jk1 6 i¡ jk1+1) and C′

k2 = (zi| jk2 ¡i6 jk2+1) are
connected elements contained in B − A. As W ∪ E is connected, there is a path C′

connecting zjk1+1−1 and zjk2+1 which is contained in W ∪E ⊆ B−A. Consequently, the
union C′′ of the paths C′

k1 , C′ and C′
k2 is a path connecting zjk1 and zjk2+1 which is

contained in B−A. Now, the union of the paths (zi| i6 jk1 ), C
′′ and (zi| jk2+16 i¡m)

is a path connecting z0 and zm−1 which is contained in B− A.
Next, let Ck1 ∩ %1(k; l) �= ∅ or Ck2 ∩ %1(k; l) �= ∅. We can suppose, without loss of

generality, that Ck1∩%1(k; l) �= ∅ (because otherwise we can replace C by its inversion).
Then zjk1 ∈W ∪G∪H where G=∅ if F−1

n (k+1; l+1)∩B=∅ and G=F−1
n (k+1; l+1)

if F−1
n (k + 1; l+ 1) ⊆ B, and H = ∅ if F−1

n (k + 1; l)∩ B= ∅ and H = F−1
n (k + 1; l) if

F−1
n (k+1; l) ⊆ B. First, suppose that Ck2 ∩%1(k; l)=∅. Then C′

k2 =(zi| jk2 ¡i6 jk2+1)
is a connected element with zjk2+1 ∈W ∪ E which is contained in B − A and whose
inversion belongs to Rn ×Rn. Thus, there is a path C′ connecting zjk1 and zjk2+1 which
is contained in W ∪E ∪G ∪H ⊆ B−A. Hence, the union C′′ of the paths C′ and C′

k2
is a path connecting zjk1 and zjk2+1 which is contained in B−A. Now, the union of the
paths (zi| i6 jk1 ), C

′′ and (zi| jk2+16 i6m) is a path connecting z0 and zm−1 which is
contained in B−A. Finally, suppose that Ck2∩%1(k; l) �= ∅. Then zjk2+1 ∈W ∪G∪H , thus
there is a path C′ connecting zjk1 and zjk2+1 which is contained in W ∪G ∪H ⊆ B−A.
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Therefore, the union of the paths (zi| i6 jk1 ), C′ and (zi| jk2+16 i¡m) is a path
connecting z0 and zm−1 which is contained in B− A.

Remark 3.18. Of course, statements analogous to Lemma 3.17 are valid also for A=
T4(k; l) ∪ F−1

n ({(k + 1; l − 1); (k + 1; l)}) ∪ %1(k; l), A = T2(k; l) ∪ F−1
n ({(k − 1; l −

1); (k − 1; l)}) ∪ %2(k; l), and A= T3(k; l) ∪ F−1
n ({(k + 1; l); (k + 1; l+ 1)}) ∪ %2(k; l).

The following digital analogy of the classical Jordan curve theorem shows that, for
any n¿ 1, the n-ary digital plane provides a structure suitable for solving problems of
digital image processing:

Theorem 3.19. Let J be a Jordan curve in (Z2; vn). Then J separates (Z2; vn) into
precisely two components.

Proof. For n= 2 the statement follows from Theorem 3.8. Let n¿ 2. If J is without
acute angles or elementary, then the statement follows from Theorem 3.15 or 3.16,
respectively. Suppose that J is neither without acute angles nor elementary. Then there
are odd numbers k1; l1 ∈Z such that %1(k1; l1) ⊆ J or %2(k1; l1) ⊆ J . We will suppose,
without loss of generality, that %1(k1; l1) ⊆ J (so that J ∩ %2(k1; l1) = ∅). Clearly,
J contains at least one of the sets A1(k1; l1); A2(k1; l1); B1(k1; l1); B2(k1; l1). We
will suppose, without loss of generality, that B1(k1; l1) ⊆ J . Obviously, A2(k1; l1) is
not a subset of J and, as J is not elementary, neither A1(k1; l1) is a subset of J .
Put J1 = (J − (B1(k1; l1) ∪ %1(k1; l1))) ∪ A1(k1; l1). Clearly, J1 is a Jordan curve in
(Z2; vn). Now, if J1 is neither without acute angles nor elementary, there are odd
numbers k2; l2 ∈Z such that %1(k2; l2) ⊆ J or %2(k2; l2) ⊆ J . In the next step, we
apply the previous considerations to J1 and (k2; l2) to obtain a new Jordan curve
J2 = (J1 − (B1(k2; l2) ∪ %1(k2; l2))) ∪ A1(k2; l2), and so on. After a ?nite number m of
steps we get a Jordan curve Jm =(Jm−1 − (B1(km; lm)∪%1(km; lm)))∪A1(km; lm) which
is without acute angles or elementary.
By Theorem 3.15 or 3.16, Jm separates (Z2; vn) into precisely two components.

Denote these components by Dm and Em. As T1(km; lm) is connected (by Lemma 3.13)
and T1(km; lm)∩ Jm = ∅, T1(km; lm) is contained in just one of the components Dm; Em.
We will suppose, without loss of generality, that T1(km; lm) ⊆ Em. Clearly, we have
Jm−1=(Jm−A1(km; lm))∪B1(km; lm)∪F−1

n (km+1; lm−1). Put Dm−1=Dm∪F−1
n (km; lm−

1) ∪ T1(km; lm) and Em−1 = Em − (T1(km; lm) ∪ F−1
n ({(km − 1; lm); (km − 1; lm + 1)}) ∪

%1(km; lm)). Then Dm−1∩Em−1=∅ and Dm−1∪Em−1=Z2−Jm−1. Evidently, T2(km; lm−
2) ⊆ Dm or T4(km; lm − 1) ⊆ Dm. We will suppose, without loss of generality, that
T2(km; lm − 2) ⊆ Dm. Then (km(n− 1)− 1; (lm − 1)(n− 1))∈ vnT2(km; lm − 2) ⊆ vnDm

and (km(n − 1) − 1; (lm − 1)(n − 1))∈F−1
n (km; lm − 1). As Fn has connected ?bres,

F−1
n (km; lm − 1) is connected and thus Dm ∪ F−1

n (km; lm − 1) is connected too. Further,
T1(km; lm) is connected by Lemma 3.13 and hence T1(km; lm) ∪ F−1

n (km; lm − 1) is
connected (because (km(n−1)−1; (lm−1)(n−1))∈ vnT1(km; lm)). Consequently, Dm−1

is connected. From Lemma 3.17 it follows that also Em−1 is connected.
Let (zi| i¡n)∈Rn × Rn be an n-tuple with z0 ∈Dm−1 and zi0 ∈Em−1 for some

i0; 0¡i0 ¡n. If z0 ∈Dm, then there is i1; 0¡i1 ¡i0, such that zi1 ∈ Jm−A1(km; lm) ⊆
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Jm−1 because Dm is closed in Z2 − Jm and any n-tuple of Rn ×Rn whose ?rst member
does not belong to A1(km; lm) can meet A1(km; lm) in the last member only. Let z0 �∈
Dm, i.e., let z0 ∈F−1

n (km; lm − 1) ∪ T1(km; lm). Then z0 ∈{(x; y)∈Z2; (km − 1)(n −
1)¡x¡km−1; y=lm−1}∪{(x; y)∈Z2; x=km(n−1); (lm−1)(n−1)¡y¡lm−1}.
Thus, there is i1; 0¡i1 ¡i0, such that zi1 ∈%1(km; lm) ⊆ Jm−1. Consequently, Dm−1

is closed in Z2 − Jm−1.
Similarly, let (zi| i¡n)∈Rn × Rn be an n-tuple with z0 ∈Em−1 and zi0 ∈Dm−1 for

some i0; 0¡i0 ¡n. If zi0 ∈Dm, then there is i1; 0¡i1 ¡i0, such that zi1 ∈ Jm −
A1(km; lm) ⊆ Jm−1 because Dm is closed in Z2 − Jm and any n-tuple of Rn × Rn whose
?rst member does not belong to A1(km; lm) can meet A1(km; lm) in the last member
only. Let zi0 �∈ Dm. Then z0 ∈{(x; y)∈Z2; x=km(n−1); lm(n−1)¡y¡ (lm+1)(n−
1)− 1} ∪ {(x; y)∈Z2; km(n− 1)¡x¡ (km + 1)(n− 1)− 1; y= lm(n− 1)}. But then
there is i1; 0¡i1 ¡i0, such that zi1 ∈%1(km; lm) ⊆ Jm−1. Consequently, Dm−1 is closed
in Z2 − Jm−1.
As both Dm−1 and Em−1 are closed in Z2−Jm−1, they are components of Z2−Jm−1,

i.e., Jm−1 separates (Z2; vn) into precisely two components. If m¿ 1, in the next step we
apply the previous considerations to Jm−1 instead of Jm and show that Jm−2 separates
(Z2; vn) into precisely two components Dm−2 and Em−2. After m steps we get a set
J0 which separates (Z2; vn) into precisely two components D0 and E0. As obviously
J0 = J , the proof is complete.

If n¿ 2, then Jordan curves in the n-ary digital plane can turn (at the points (k(n−
1); l(n− 1)) with k; l∈Z even) at all angles p*=4, p= 1; 2; 3. But this is not true for
n = 2 because COTS-Jordan curves in the Khalimsky plane cannot turn at the acute
angle *=4 (and at the so-called mixed points of Z2, i.e., the points one coordinate of
which is even and the second is odd, they can never turn). So, it can be useful to work
with an n-ary digital plane where n¿ 2. Particularly, for n = 3 the graph (segment)
placed after De?nition 3.10 has the following form:

Example 3.20. Consider the following (digital picture of a) triangle:
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While in the ternary digital plane the triangle ADE is a Jordan curve, in the Khalimsky
plane it is not even a COTS-Jordan curve. In order that this triangle be a COTS-Jordan
curve in the Khalimsky plane, we have to delete the points A, B, C and D (and then it
will become even a Jordan curve). But this will lead to a deformation of the triangle.

Theorem 3.21. Let J be a Jordan curve in (Z2; v2) and let D; E be the components
of Z2 − J . Then both D ∪ J and E ∪ J are connected subsets of (Z2; v2).

Proof. First, suppose that J is rectangular. Then there is a point z = (k(n − 1) +
1; l(n− 1)) with k; l∈Z even such that z ∈ J . Put A1 = {(k(n− 1)+1; (l+1)(n− 1)−
i); 06 i¡n−1} and A2 ={(k(n−1)+1; (l−1)(n−1)+ i); 06 i¡n−1}. Clearly,
A1 and A2 are contained in diMerent components of Z2 − J . We can suppose, without
loss of generality, that A1 ⊆ D and A2 ⊆ E. As we obviously have z ∈ vnA1 ∪ vnA2,
D ∪ {z} and E ∪ {z} are connected. Consequently, D ∪ J and E ∪ J are connected.
Further, suppose that J is not rectangular. Then there is a point z=(k(n−1); l(n−1))

with k; l∈Z odd such that z ∈ J . Put z1 = (k(n − 1) − 1; l(n − 1)) and z2 = (k(n −
1) + 1; l(n − 1)). Clearly, z1 and z2 belong to diMerent components of Z2 − J . We
can suppose, without loss of generality, that z1 ∈D and z2 ∈E. Obviously, we have
{z1; z2} ⊆ vn{z} and thus D∪{z} and E ∪{z} are connected. Consequently, D∪ J and
E ∪ J are connected.

Remark 3.22. If J is a COTS-Jordan curve in (Z2; v2) and D; E are the components
of Z2 − J , then D ∪ {z} and E ∪ {z} are connected subsets of (Z2; v2) for each point
z ∈ J . For a Jordan curve J in (Z2; vn), n¿ 2, this is not true in general (it is true,
however, whenever J is rectangular). Indeed, if n¿ 2 and J is an elementary Jordan
curve in (Z2; vn) such that, say, %1(k; l) ⊆ J and ((k − 1)(n − 1); (k + 1)(n − 1))∈ J
where k; l∈Z are odd numbers, and if D is the ?nite component of Z2 − J and
z = ((k − 1)(n− 1); (k + 1)(n− 1)), then D ∪ {z} is not connected.

As a concluding remark let us note that the n-ary digital planes with n¿ 2 can be
useful also in the cases when we want to work with a topological structure of Z2

that is more “continuous” than the AlexandroM topology provided by the Khalimsky
topology.
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