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a b s t r a c t

An additive model-assisted nonparametric method is investigated to estimate the finite
population totals of massive survey data with the aid of auxiliary information. A class of
estimators is proposed to improve the precision of the well known Horvitz–Thompson
estimators by combining the spline and local polynomial smoothing methods. These
estimators are calibrated, asymptotically design-unbiased, consistent, normal and robust
in the sense of asymptotically attaining the Godambe-Joshi lower bound to the anticipated
variance. A consistent model selection procedure is further developed to select the
significant auxiliary variables. The proposed method is sufficiently fast to analyze large
survey data of high dimension within seconds. The performance of the proposed method
is assessed empirically via simulation studies.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Auxiliary information is often available in many surveys for all elements of the population of interest. For instance,
in many countries, administrative registers provide extensive sources of auxiliary information. Complete registers can
give access to variables such as sex, age, income and country of birth. Studies of labor force characteristics or household
expenditure patterns, for example, might benefit from these auxiliary data. Another example is the satellite images or GPS
data used in spatial sampling. These data are often collected at the population level, which are often available at little or no
extra cost, especially compared to the cost of collecting the survey data.

If no information other than the inclusion probabilities is used to estimate the population total, a well-known design
unbiased estimator is the Horvitz–Thompson (HT) estimator. Nowadays, ‘‘cheap’’ auxiliary information can be regularly
used to obtain higher precision estimates for the unknown finite population quantities. For instance, post-stratification,
calibration and regression estimation are different design-based approaches used to improve the precision of estimators.
Auxiliary information can also be used to increase the accuracy of the finite population distribution function; see, for
example, [28]. Model-assisted estimation [22] provides a convenient way to incorporate auxiliary variables to developmore
efficient survey estimators. By model-assisted, it is meant that a superpopulation model is adopted (for example, model (1)
below), in which the finite population is modeled conditionally on the auxiliary information; see, for instance, [4,6,8,9].

The traditional parametric model-assisted approach assumes that the superpopulation model is fully described by a
finite set of parameters, e.g., the regression estimator introduced in [22]. However, survey data now being collected by
many government, health and social science organizations have more complex design features. It is difficult to obtain any
prior model information to address various hypotheses. In this sense, a preselected parametric model is too restricted to fit
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unexpected features. In contrast, nonparametric regression provides a useful tool for studying the dependence of variables
of interest on auxiliary informationwithout constraining the dependence to a fixed formwith fewparameters. The flexibility
of nonparametric regression is extremely helpful to capture the complicated relationship between variables as well as in
obtaining robust predictions; see [10,12] for details.

Breidt and Opsomer [2] first proposed a nonparametric model-assisted estimator based on local polynomial regression,
which generalizes the parametric framework in survey sampling and improves the precision of the survey estimators
immensely. Their investigation is only based on one auxiliary variable. Most surveys, however, involve more than one study
variable, perhaps,many; see [20]. For example, the remote sensing datawhich provide awide and growing range of variables
to be employed. In this context, when the dimension of the auxiliary information vector is high, one unavoidable issue is the
‘‘curse of dimensionality’’, which refers to the poor convergence rate of nonparametric estimation of general multivariate
functions. One solution is regression in the form of an additive model; see [13].

Estimation and inference for additive models have been well-studied in the literature; see, for example, the classic
backfitting estimators of [13], the marginal integration estimators of [16], the smoothing backfitting estimators of [17],
the spline estimators of Stone [25,26] and the spline-backfitted kernel estimators of [30]. In a survey sampling context, [1]
discussed a semiparametric possible extension to multiple auxiliary variables via using the penalized splines; [19] applied
the generalized additive models (GAMs) in an interaction model for the estimation of variables from forest inventory and
analysis surveys; and [3] proposed a special case of the GAMs with an identity link function. For large and high dimensional
survey data, it is important that estimation and inference methods are efficient and computationally easily implemented.
However, fewmethods are theoretically justified and computational efficientwhen there aremultiple nonparametric terms.
The kernel based backfitting andmarginal integration approaches are computationally expensive, limiting their use for high
dimensional data; see [18] for some numerical comparisons of these methods. Spline methods, on the other hand, provide
only convergence rates but no asymptotic distributions, so no measures of confidence can be assigned to the estimators.

Challenged by these demands, we propose approximating the nonparametric components by using the spline-backfitted
local polynomial: spline does a quick initial estimation of all additive components and removes them all except the ones
of interest; kernel smoothing is then applied to the cleaned univariate data to estimate with the asymptotic distribution.
This two-step estimator is both computationally expedient for analyzing large and high dimensional survey data, and
theoretically reliable as the estimator is uniformly oracle with asymptotic confidence intervals. The resulting estimator
of population total can therefore be easily calculated, and more importantly allow for formal derivation of the asymptotic
properties of the estimator.

In practice, a large number of variables may be collected and some of the insignificant ones should be excluded from
the final model in order to enhance the predictability. The selection of auxiliary variables is a fundamental issue for model-
assisted survey sampling methods. In this paper, we propose a consistent variable selection method for the additive model-
assisted survey sampling based on the Bayes information criterion (BIC). A comprehensive Monte Carlo study demonstrates
superior performance of the proposed methods.

The rest of the paper is organized as follows. Section 2 gives details of the superpopulation model and proposed method
of estimation. Section 3 describes the weighting, calibration and asymptotic properties of the proposed estimator. Section 4
describes the auxiliary variable selection procedure for the superpopulation model under simple random sampling design
(SRS). Section 5 reports the findings in an extensive simulation study. Lengthy technical arguments are given in theAppendix.

2. Superpopulation model and proposed estimator

In what follows, let UN = {1, . . . , i, . . . ,N} be the finite population of N elements, called the target population, and i
represents the ith element of the population. Let xi = {xi1, . . . , xid} be a d-dimensional auxiliary variable vector, i ∈ UN . We
are interested in the estimation of the population total ty =

∑
i∈UN

yi, where yi is the value of the study variable, y, for the ith
element. To this end, a sample s of size nN is drawn from UN according to a fixed sampling design pN(·), where pN(s) is the
probability of drawing the sample s. The inclusion probabilities, known for all i ∈ UN , areπiN ≡ πi = Pr{i ∈ s} =

∑
s∋i pN(s).

In addition to the πi, denote πijN ≡ πij = Pr{i, j ∈ s} =
∑

s∋i,j pN(s) the inclusion probability for both elements i, j ∈ UN .
Let {(xi, yi)}i∈UN be a realization of (X, Y ) from an infinite superpopulation, ξ , satisfying

Y = m(X)+ σ(X)ε, (1)

in which the unknown d-variate functionm has a simpler form of

m(X) = c +

d−
α=1

mα(Xα), Eξ [mα(Xα)] ≡ 0, 1 ≤ α ≤ d, (2)

the function σ(·) is the unknown standard deviation function and the standard error ε satisfies that Eξ (ε|X) = 0 and
Eξ (ε2|X) = 1. In the following, we assume that the auxiliary variable Xα is distributed on a compact interval [aα, bα], α =

1, . . . , d. Without loss of generality, we take all intervals [aα, bα] = [0, 1]. To estimate the additive components in (2), we
employ a two-stage procedure based on the spline-backfitted local polynomial smoothing.
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For any α = 1, . . . , d, we introduce a knot sequence with J interior knots k0α = 0 < k1α < · · · < kJα < 1 = k(J+1)α ,
where J ≡ JN increases when nN increases, and the precise order is given in assumption (A5). Denote the piecewise linear
truncated power spline basis

0(x) ≡ {1, xα, (xα − k1α)+, . . . , (xα − kJα)+, α = 1, . . . , d}T, (3)

where (a)+ = a if a > 0 and 0 otherwise. For the local linear smoothing, let Kh(x) = h−1K(x/h), where K denotes a kernel
function and h = hN is the bandwidth; see assumption (A6).

We now describe our two-stage estimator for the population total ty. At the first stage, we apply the spline smoothing to
obtain a quick initial estimator ofm(xi),

m̂(xi) = b̂0 +

d−
α=1

b̂0,αxiα +

d−
α=1

J−
j=1

b̂j,α(xiα − kjα)+,

where b̂0 and b̂j,α, j = 0, 1, . . . , J, α = 1, . . . , d are the minimizers of the following

−
i∈s

π−1
i


yi − b0 −

d−
α=1

b0,αxα −

d−
α=1

J−
j=1

bj,α(xiα − kjα)+

2

(4)

over a Gd ≡ 1+ (J + 1)d dimensional vector. Because the componentsmα(xα) each can only be identified up to an additive
constant, we center the estimator ofmα(xα) and define the centered pilot estimator of the αth component as

m̂α(xα) = b̂0,αxα +

J−
j=1

b̂j,α(xα − kjα)+ − ĉα, (5)

where ĉα = N−1∑
i∈s π

−1
i


b̂0,αxiα +

∑J
j=1 b̂j,α(xiα − kjα)+


. The pilot estimators in (5) are then used to construct the new

pseudo-responses

ŷiα = yi − N−1 t̂y −

−
β≠α

m̂β(xiα), i ∈ s, α = 1, . . . , d, (6)

where t̂y is the well-known HT estimator.
At the second stage, a local polynomial smoothing is applied to the cleaned univariate data {xiα, ŷiα}i∈s to achieve the

‘‘oracle’’ property in [30]. To be specific, considering the local linear smoothing, for any α = 1, . . . , d, we minimize−
i∈s

π−1
i {ŷiα − a0,α − a1,α(xiα − x)Kh(xiα − x)}2, (7)

with respect to a0,α and a1,α . The spline-backfitted local linear (SBLL) estimator of the α-th component mα is m̂∗
α = â0,α in

(7). The final sample design-based SBLL estimator ofm(x) is defined as

m̂∗(x) =
1
N
t̂y +

d−
α=1

m̂∗

α(xα). (8)

Substituting m̂∗

i ≡ m̂∗(xi) into the existing generalized difference estimator (see page 221 of [22]), the SBLL estimator
for ty is defined by

t̂y,SBLL =

−
i∈UN

m̂∗

i +

−
i∈s

yi − m̂∗

i

πi
=

−
i∈s

yi
πi

+

−
i∈UN


1 −

Ii
πi


m̂∗

i , (9)

where Ii = 1 if i ∈ s and Ii = 0 otherwise.

Remark 1. In the first step spline smoothing, the number of knots JN can be determined by nN and a tuning constant c:

JN = min([cn1/4
N log(nN)] + 1, [(nN/2 − 1)/d − 1]). (10)

As discussed in [30], the choice of c makes little difference. In the second step local polynomial smoothing, one can use the
quartic kernel and the rule-of-thumb bandwidth.
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3. Properties of the estimator

3.1. Weighting and calibration

In the last decade, calibration estimation has developed into an important field of research in survey sampling. As
discussed in [7,15], calibration is a highly desirable property for survey weights, which allows the survey practitioner to
simply adjust the original designweights to incorporate the information of the auxiliary variables. Several national statistical
agencies have developed software to compute calibrated weights based on auxiliary information available in population
registers and other sources. The proposed SBLL estimator in this paper also shares this property in certain sense.

Let ys be the column vector of the response values yi for i ∈ s and define the diagonal matrix of inverse inclusion
probabilities 5s = diag{1/πi}i∈s. For 0(x) in (3), denote 0s = {0(xi)T}i∈s the sample truncated power spline matrix. Let
Bs be the collection of the estimated spline coefficient in (4). Then Bs = (0T

s5s0s)
−10T

s5sys. Thus the pilot spline estimator
ofmα(xα) in (5) can be written as

m̂α(xα) = {0(x)TDαBs − N−11T
n5s0sDαBs}ys, (11)

where 1n is a vector of length nN with all ‘‘1’’s, and

Dα = diag{0, . . . , 0, 1, . . . , 1  ,
from (J+1)(α−1)+2 to (J+1)α+1

0, . . . , 0} (12)

is a Gd × Gd diagonal matrix. Denoting the spline smoothing matrix and its centered version by

9sα = 0sDα(0T
s5s0s)

−10T
s5s, 9∗

sα = (I − N−11n1T
n5s)9sα,

we have m̂α ≡ {m̂α(xiα)}i∈s = 9∗

sαys, for α = 1, . . . , d. Further for ŷiα in (6), let ŷα ≡ {ŷiα}i∈s = ys −
1
N t̂y1n −

∑
β≠α m̂β ,

and define the matrices

Xsiα = {(1 xkα − xiα)}k∈s, Wsiα = diag


1
πk

Kh(xkα − xiα)


k∈s
.

Then the SBLL estimator ofmα at xiα can be written as

m̂∗

iα ≡ m̂∗

α(xiα) = eT1(X
T
siαWsiαXsiα)

−1XT
siαWsiα ŷα, (13)

where e1 = (1, 0)T. Therefore, the SBLL estimator in (8) of m(x) at xi is

m̂∗

i =
1
N
t̂y +

d−
α=1

eT1(X
T
siαWsiαXsiα)

−1XT
siαWsiα


ys −

t̂y
N
1n −

−
β≠α

9∗

sβys


≡ ρT

siys,

where

ρT
si = eT1


d−

α=1

(XT
siαWsiαXsiα)

−1XT
siαWsiα


I +

1 − d
dN

1n1T
n5s −

−
β≠α

9∗

sβ


.

Similar to [21], we define the ‘‘g-weight’’

gis = 1 + πi

−
j∈UN


1 −

Ij
πj


ρT
sjai, (14)

where ai is a nN -dimensional vector with a ‘‘1’’ in the ith position and a ‘‘0’’ elsewhere. Thus the proposed estimator t̂y,SBLL
in (8) can be written as

t̂y,SBLL =

−
i∈s

yi
πi

+

−
j∈UN


1 −

Ij
πj


ρT
sjys ≡

−
i∈s

gisyi/πi,

which is a linear combination of the sample yi’s with a sampling weight, π−1
i , and the ‘‘g-weight’’. Because the weights are

independent of yi, they can be applied to any study variable of interest.
As we show below, the weight system gives our estimator of the known total

∑
i∈UN

xiα to be itself.

Theorem 1. For any α = 1, . . . , d and the ‘‘g-weight’’ defined in (14),

t̂xα ,SBLL ≡

−
i∈s

gisxiα/πi =

−
i∈UN

xiα.
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Proof. Let xα = {xiα}i∈s. We have

t̂xα ,SBLL =

−
i∈s

π−1
i xiα +

−
j∈UN

(1 − Ijπ−1
j )eT1


d−

γ=1

(XT
sjγWsjγXsjγ )

−1XT
sjγWsjγ


I +

1 − d
dN

1n1T
n5s −

−
β≠γ

9∗

sβ


xα.

Observe that

(0T
s 5sΓ s)

−10T
s Πsxα = τα, 9sβxα = 0sDβτα =


xα, for β = α
0, for β ≠ α

,

where τα is the vector of dimension Gd with a ‘‘1’’ in the {2 + (J + 1)(α − 1)}th position and ‘‘0’’ elsewhere. Then we have,
I +

1 − d
dN

1n1T
n5s −

−
β≠γ

9∗

sβ


xα =



I +

1 − d
dN

1n1T
n5s


xα, for γ = α

1
dN

1n1T
n5sxα, for γ ≠ α

.

Note that for any i ∈ UN ,

eT1(X
T
siαWsiαXsiα)

−1XT
siαWsiαxα = xiα, eT1(X

T
siαWsiαXsiα)

−1XT
siαWsiα1n = 1.

Thus

eT1


d−

γ=1

(XT
sjγWsjγXsjγ )

−1XT
sjγWsjγ


I +

1 − d
dN

1n1T
n5s −

−
β≠γ

9∗

sβ


xα

= eT1(X
T
siαWsiαXsiα)

−1XT
siαWsiα{I + (dN)−1(1 − d)1n1T

n5s}xα
+ d−1eT1

−
γ ≠α

(XT
sjγWsjγXsjγ )

−1XT
sjγWsjγ 1n1T

n5sxα = xjα.

Hence the proposed SBLL estimator defined in (9) preserves the calibration property. �

3.2. Assumptions

For the asymptotic properties of the estimators, we adopt the traditional asymptotic framework in [2] where both the
population and sample sizes increase as N → ∞. There are two sources of ‘‘variation’’ to be considered here. The first is
introduced by the random sample design and the correspondingmeasure is denoted by p. The ‘‘Op’’, ‘‘op’’ and ‘‘Ep(·)’’ notation
below is with respect to this measure. The second is associated with the superpopulation from which the finite population
is viewed as a sample. The corresponding measure and notation are ‘‘ξ ’’. For simplicity, let πij − πiπj = ∆ij.
(A1) The density f (x) of X is continuous and bounded away from 0 and ∞. The marginal densities fα(xα) of xα have continuous

derivatives and are bounded away from 0 and ∞.
(A2) The second order derivative of mα(xα) is continuous, ∀α = 1, . . . , d.
(A3) There exists a positive constant M such that Eξ (|ε|2+δ|X) < M for some δ > 1/2; σ(x) is continuous on [0, 1]d and

bounded away from 0 and ∞.
(A4) As N → ∞, nN → ∞ and nNN−1

→ π < 1.
(A5) The number of knots JN ∼ n1/4

N log(nN).
(A6) The kernel function K is Lipschitz continuous, bounded, nonnegative, symmetric, and supported on [−1, 1]. The bandwidth

hN ∼ n−1/5
N , i.e., chn

−1/5
N ≤ hN ≤ Chn

−1/5
N for some positive constants ch, Ch.

(A7) For all N,mini∈UN πi ≥ λ > 0,mini,j∈UN πij ≥ λ∗ > 0 and

lim sup
N→∞

nN max
i,j∈UN ,i≠j

|∆ij| < ∞.

(A8) Let Dk,N be the set of all distinct k-tuples (i1, i2, . . . , ik) from UN . Then

lim sup
N→∞

n2
N max
(i1,i2,i3,i4)∈D4,N

|Ep[(Ii1 − πi1)(Ii2 − πi2)(Ii3 − πi3)(Ii4 − πi4)]| < ∞,

lim sup
N→∞

n2
N max
(i1,i2,i3,i4)∈D4,N

|Ep[(Ii1 Ii2 − πi1 i2)(Ii3 Ii4 − πi3i4)]| < ∞,

lim sup
N→∞

n2
N max
(i1,i2,i3)∈D3,N

|Ep[(Ii1 − πi1)
2(Ii2 − πi2)(Ii3 − πi3)]| < ∞.

Remark 2. Assumptions (A1)–(A3) are typical in the smoothing literature; see, for instance, [10,12,30]. Assumption (A5)
is about how to choose the number of interior knots JN for the spline estimation in the first stage. In practice, JN can
be determined by (10). Assumption (A6) is how to select the kernel function and the corresponding bandwidth. Such
assumptions were used in [30] in the additive autoregressivemodel fitting. Assumptions (A7) and (A8) involve the inclusion
probabilities of the design, which were also assumed in [2].
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3.3. Asymptotic properties of the estimator

Like the local polynomial estimators in [2], the following theorem shows that the estimator t̂y,SBLL in (9) is asymptotically
design unbiased and design consistent.

Theorem 2. Under assumptions (A1)–(A7), the estimator t̂y,SBLL in (9) is asymptotically design unbiased in the sense that

lim
N→∞

Ep

[
t̂y,SBLL − ty

N

]
= 0 with ξ -probability 1,

and is design consistent in the sense that for all η > 0,

lim
N→∞

Ep[I{|t̂y,SBLL−ty|>Nη}] = 0 with ξ -probability 1.

Let t̃y,SBLL be the population-based generalized difference estimator of ty when the entire realization were known; see
(A.4) in Appendix A.1 for the formal definition. Like the estimators in the local polynomial estimators in [2], the penalized
spline estimators in [1], and the backfitting estimators in [3], the following theorem shows that the proposed estimator
t̂y,SBLL also inherits the limiting distribution of the ‘‘oracle’’ estimator t̃y,SBLL.

Theorem 3. Under assumptions (A1)–(A8),

N−1(t̃y,SBLL − ty)
Var1/2p (N−1 t̃y,SBLL)

d
−→ N(0, 1)

as N → ∞ implies

N−1(t̂y,SBLL − ty)V 1/2(N−1 t̂y,SBLL)
d

−→ N(0, 1),

where

V (N−1 t̂y,SBLL) =
1
N2

−
i,j∈s

∆ij

πij

yi − m̂∗

i

πi

yj − m̂∗

j

πj
. (15)

The next theorem proves that t̂y,SBLL is robust as in [2] and it also asymptotically attains the Godambe–Joshi lower bound
to the anticipated variance

Var[N−1(t̂y − ty)] = E[N−1(t̂y − ty)]2 − E2
[N−1(t̂y − ty)],

where the expectation is taken over both design, pN , and population ξ in (1).

Theorem 4. Under assumptions (A1)–(A8), t̂y,SBLL asymptotically attains the Godambe–Joshi lower bound, in the sense that

nNE

t̂y,SBLL − ty

N

2

=
nN

N2

−
i∈UN

σ 2(xi)
1 − πi

πi
+ o(1).

The proofs of Theorems 2–4 are given in the Appendix.

4. Auxiliary variable selection

In this section, we propose a BIC-basedmethod to select the auxiliary variables for use in the superpopulation model (2).
The BIC was first proposed in [23] for the selection of parametric models. Recently, [14] proposed a fast and

consistent model selection method based on spline estimation with the BIC to select significant lags in non-linear additive
autoregression. Analogous to the approach in [14], if the entire realization were known by an ‘‘oracle’’, one can select
significant auxiliary variables based on the BIC. For an index set of variables r ⊂ {1, . . . , d}, the BIC is defined as

BIC(r) = log{AMSE(r)(N−1 t̂y,SBLL)} +
Jr

nN
log(nN), (16)

where Jr = 1 +
∑

α∈r(JN + 1), and AMSE(N−1 t̂y,SBLL) is the asymptotic mean squared error (AMSE) of N−1 t̂y,SBLL in (A.11),
i.e. the asymptotic expectation of {N−1(t̂y,SBLL − ty)}2.
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Next let f = nN/N be the fixed sampling fraction. Under a simple random sampling (SRS) design, if σ 2(x) = cTx,

AMSE(N−1 t̂y,SBLL) =
1 − f

nN(N − 1)

−
i∈UN

(yi − m̃∗

i )
2.

Thus, using similar arguments in Section 5 of [14], we can show that the above BIC in (16) is consistent under SRS.
By Theorem A.2, AMSE(N−1 t̂y,SBLL) can be estimated consistently by

Vg ≡ Vg(N−1 t̂y,SBLL) =
1
N2

−
i,j∈s

∆ij

πij

gis(yi − m̂∗

i )

πi

gjs(yj − m̂∗

j )

πj
, (17)

a modified version of (15) proposed by [21] with the ‘‘g-weight’’ in (14). So the sample-based BIC is defined as

BIC(r) = log{V (r)g } +
Jr

nN
log(nN), (18)

and we select the subsect r̂ ⊂ {1, . . . , d} that gives the smallest BIC value.

Remark 3. Under SRS design, the variance estimator given in (17) can be simplified as

Vg =
1 − f

nN(nN − 1)

−
i∈s

g2
is(yi − m̂∗

i )
2.

In practice, we first decide on a set of candidate variables to be selected. Since a full search through all possible subsets
of variables is in general computationally too costly in actual implementation of the BIC method, we consider a forward
selection procedure and a backward selection procedure. Let d denote the total number of candidate variables to be selected
from. In the forward selection procedure, we pre-specify themaximal number of variables dmax = min


d,


nN
2(JN+1)


that are

allowed in the model, in which [a] denotes the integer part of a. We start from the empty set of auxiliary variables, add one
variable at a time to the current model, choosing between the various candidate variables that have not yet been selected by
minimizing the BIC in (18). The process stops when the number of variables selected reaches dmax. In the backward selection
procedure, we start with a set of variables of the maximal size dmax, delete one variable at a time by minimizing the BIC and
stop when no variable remains in the model. If dmax < d, we first apply the forward selection procedure, then we start with
the maximal set of variables selected in the last step of the forward stage.

5. Simulation study

In this section, simulations are carried out to investigate the finite-sample performance of t̂y,SBLL. For comparison we also
obtained the results of four other estimators: the HT estimator which does not make use of the auxiliary population, the
linear regression (LREG) estimator in [22], the one-step linear spline (LS) estimator defined by

t̂y,LS =

−
i∈s

(yi − m̂i)/πi +
−
i∈UN

m̂i, m̂i = N−1 t̂y +

d−
α=1

m̂iα

with m̂iα ≡ m̂α(xiα) given in (5), and the single-index model-assisted (SIM) estimator in [27]. The number of knots JN for
the LS and SBLL is determined by (10).

For the superpopulation model (1), the following four additive models (no interactions) were considered:

2-dim linear:Y = −1 + 2X3 + 4X6 + σ0ε,

2-dim quadratic:Y = 5.5 − 6X2 + 8(X2 − 0.5)2 − 3X10 + 32(X10 − 0.5)3 + σ0ε,

3-dim mixed:Y = 8(X2 − 0.5)2 + exp(2X5 − 1)+ sin{2π(X8 − 0.5)} + σ0ε,

5-dim sinusoid:Y = 2 +

d−
α=1

sin{2π(Xα − 0.5)} +
σ0

2


d−

α=1

Xα

1/2

ε, d = 5.

The auxiliary variable vectors xi, i ∈ UN , were generated from i.i.d. uniform (0, 1) random vectors. The errors ε were
generated from i.i.d.N(0, 1)with noise level σ0 = 0.1, 0.4. The population size wasN = 1000. SRS Samples were generated
of sizenN = 50, 100 and200. For each combination of noise level and sample size, 1000 replicated SRS sampleswere selected
from the same population, the estimators were calculated, and the design bias and the design mean squared errors were
computed empirically.

Table 1 shows the ratios of the mean squared error (MSE) for the various estimators to the proposed SBLL estimators.
From the table, one sees that the model-assisted estimators, LREG, LS, SIM and SBLL, perform much better than the simple
HT regardless the type of mean function, standard error and sample size. For Model 1, LREG is expected to be the preferred
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Table 1
Ratio of MSE of the HT, LREG, LS and SIM estimators to that of the SBLL estimator and the average computing time of the SBLL estimator based on 1000
replications of SRS samples from four fixed populations of size N = 1000.

Model Error Sample size MSE Ratio SBLL (s)
σ nN HT LREG LS SIM

1

0.1
50 140.36 0.89 1.12 1.60 0.07

100 148.03 0.91 1.07 1.33 0.07
200 147.03 0.92 1.10 1.02 0.09

0.4
50 9.78 0.92 1.16 1.24 0.07

100 10.50 0.95 1.10 1.02 0.07
200 10.47 0.98 1.05 1.04 0.09

2

0.1
50 134.05 28.38 2.11 19.77 0.07

100 282.47 58.10 1.03 36.58 0.07
200 313.93 66.63 0.98 41.15 0.09

0.4
50 18.45 4.25 2.36 3.44 0.07

100 23.67 5.34 1.04 3.69 0.07
200 23.36 5.63 1.02 3.92 0.09

3

0.1
50 63.14 30.83 1.10 37.12 0.07

100 103.33 49.62 1.01 50.76 0.07
200 115.13 56.57 1.02 57.04 0.09

0.4
50 6.80 3.46 1.11 3.93 0.07

100 8.18 4.20 1.14 4.40 0.07
200 18.39 4.52 1.09 4.57 0.09

4

0.1
50 55.81 25.26 1.01 27.61 0.07

100 151.59 62.63 1.03 65.78 0.07
200 230.44 97.91 0.97 99.45 0.09

0.4
50 9.97 4.75 1.03 5.22 0.07

100 16.35 7.10 1.01 7.44 0.07
200 19.95 8.60 1.05 8.74 0.09

Table 2
Monte Carlo bias, standard error and the square root of the average estimated variances (15) of the population total based on 1000 simulations.

Model σ n Bias SE Est. SE

1

0.1
50 −0.10 14.69 13.18

100 −0.36 9.85 9.32
200 −0.13 6.55 6.29

0.4
50 −1.62 57.73 51.81

100 −1.55 38.51 36.77
200 −0.42 25.71 24.86

2

0.1
50 1.27 24.49 14.06

100 0.62 11.52 9.13
200 0.37 7.06 6.10

0.4
50 2.41 67.66 52.45

100 −0.47 40.94 36.15
200 −0.13 26.54 24.33

3

0.1
50 2.29 20.40 13.38

100 0.90 10.91 8.74
200 0.48 6.82 5.88

0.4
50 2.17 64.89 50.86

100 −0.04 40.17 35.44
200 0.32 26.30 23.99

4

0.1
50 −1.98 29.04 18.04

100 −0.51 12.28 8.22
200 −0.10 6.38 4.82

0.4
50 −4.38 69.69 43.31

100 −1.18 37.92 27.72
200 −0.37 22.58 18.56

estimator, since the assumedmodel is correctly specified. However, notmuch efficiency is lost by using SBLL instead of LREG
and the MSE ratios of LREG to SBLL are at least 0.89 for all cases. For all other scenarios, SBLL performs consistently better
than LREG. The SBLL estimators also improve upon the LS estimators across almost every combination of noise level and
sample size, which implies that our second local linear smoothing step is not redundant.

To see how fast the computation is, Table 1 also provides the average time of generating one sample of size nN and
obtaining the SBLL estimator on an ordinary PC with Intel Pentium IV 1.86 GHz processor and 1.0 GB RAM. It shows that
the proposed SBLL estimation is extremely fast. For instance, for Model 4, the SBLL estimation of a 5-dimensional of size
200 takes on average merely 0.2 s. We also carried out simulations for high dimensional data with sample size nN = 1000
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Table 3
Simulation results for auxiliary variable selection based on 100 replications of SRS samples from four fixed populations of size N = 1000. (Here the MSE
Ratio is the ratio of MSE of the SBLL estimator calculated by using the selected model to the MSE of the oracle SBLL estimates computed by using the true
model.)

Model σ0 n Forward Backward
C U O MSE C U O MSE

Ratio Ratio

1

0.1
50 72 0 28 1.150 73 0 27 1.124

100 97 0 3 1.001 97 0 3 1.001
200 99 0 1 0.999 99 0 1 0.999

0.4
50 76 0 24 1.147 77 0 23 1.145

100 98 0 2 1.002 98 0 2 1.002
200 100 0 0 1.000 100 0 0 1.000

2

0.1
50 87 0 13 1.255 87 0 13 1.255

100 96 0 4 1.012 96 0 4 1.012
200 100 0 0 1.000 100 0 0 1.000

0.4
50 79 0 21 1.019 80 0 20 1.022

100 98 0 2 1.000 98 0 2 1.000
200 100 0 0 1.000 100 0 0 1.000

3

0.1
50 87 0 13 1.082 86 0 14 1.082

100 91 0 9 1.000 91 0 9 1.001
200 100 0 0 1.000 100 0 0 1.000

0.4
50 83 0 17 1.020 83 0 17 1.020

100 99 0 1 1.000 99 0 1 1.000
200 100 0 0 1.000 100 0 0 1.000

4

0.1
50 68 0 32 1.277 69 0 31 1.277

100 88 0 12 1.029 88 0 12 1.029
200 100 0 0 1.000 100 0 0 1.000

0.4
50 69 0 31 1.063 69 0 31 1.063

100 97 0 3 1.000 97 0 3 1.031
200 100 0 0 1.000 100 0 0 1.000

generated from the population of size 10000. Remarkably, it takes on average less than 60 s to get the SBLL estimator even
when the dimension reaches 50.

In Table 2 we give the Monte Carlo bias and standard error of the SBLL estimator based on its sampling distribution over
1000 replications. Table 2 also shows the square root of the average estimated variance of the population total (15). We see
that the biases of the SBLL estimator are very small and the variance estimator appears to perform well for medium sample
size.

Next we conducted simulations to evaluate the performance of the variable selection method. We generated 100
replications for each of the above models. The variables were searched from {1, 2, . . . , 10} for all methods and we set the
maximum number of variables allowed in the model to be 10. Table 3 shows the number of correct fit (C), underfit (U) and
overfit (O) based on the BIC in (18) over 100 simulation runs. Here underfitting means that the method misses at least one
of the significant variables. From Table 3, we can see that both the forward and the backward selection procedures perform
very well for a moderately large sample size. We also obtained the ratio of MSE of the SBLL estimates calculated by using
the selected model to the MSE of the oracle SBLL estimates computed by using the true model. In all the cases, the ratios are
very close to 1 or exactly 1 for moderately large sample size.

6. Discussion

Nonparametric additivemethods enhance the flexibility of themodels that survey practitioners use. However, due to the
limitations in either interpretability, computational complexity or theoretical reliability, thesemodels have not beenwidely
used as general tools in survey data analysis. In this paper, we have advanced additive models as flexible, computationally
efficient and theoretically attractive tools for studying survey data. We also developed a consistent procedure to select the
significant auxiliary variables under simple random sampling design.

The proposedmethod in this paper is appropriate only for survey data that follow a simple additivemodel. The limitation
of the basic additivemodel is that the interactions between the input features are not considered. There are othermodels, for
instance, single-index model [27], additive model with second-order interaction terms [24], which reduce dimensionality
but also incorporate interactions. The additive partially linear model [11] is another parsimonious candidate when one
believes that the relationship between the study variable and some of the auxiliary variables has a parametric form, while
the relationship between the study variable and the remaining auxiliary covariates may not be linear. These alternative
models are supposed to be more efficient in certain cases, but obtaining the asymptotics is likely to be very complicated,
thus we leave it as future research work.
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Finally, in our methodology development, we have assumed that the auxiliary variables are available for all population
elements. It would be interesting to consider the limited auxiliary information case [5]where only some summary quantities
such as means are available at the population level. This is also a challenging problem for future research.
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Appendix

To show the asymptotic properties of the proposed estimator t̂y,SBLL, we first introduce an ‘‘oracle’’ SBLL estimator of ty if
the entire realization were known.

A.1. The population-based estimator

If the entire realization were known, let 0U = {0(xi)T}i∈UN be the population-based truncated power spline matrix,
where 0(x) is given in (3). Let y be the vector of the response values yi for i ∈ UN . Further let BU = (0T

U0U)
−10T

Uy. The
centered pilot estimators ofmα(xα) at the first stage are

m̃α(xα) = 0(x)TDαBU − N−11T
N0UDαBU , (A.1)

where vector 1T
N = {1, 1, . . . , 1} of length N . The pilot estimators for all elements in the population are denoted by

m̃α ≡ {m̃α(xiα)}i∈UN = (I − N−11N1T
N)0UDαBU , α = 1, . . . , d.

For the second stage kernel smoothing, define the matrices

XUiα =


1 xkα − xiα


k∈UN
, WUiα = diag{Kh(xkα − xiα)}k∈UN .

Then the SBLL estimator of each component at xi is given by

m̃∗

iα ≡ eT1(X
T
UiαWUiαXUiα)

−1XT
UiαWUiα ỹα, (A.2)

where ỹα = y −
1
N ty1N −

∑
β≠α m̃β is collection of the pseudo-responses. The SBLL estimator of m(xi) based on the entire

population is given by

m̃∗

i =
1
N
ty +

d−
α=1

m̃∗

iα, i ∈ UN . (A.3)

Clearly, m̃∗

i is the prediction at xi based on the entire finite population. If these m̃∗

i were known, a design-unbiased estimator
of ty would be

t̃y,SBLL =

−
i∈UN

m̃∗

i +

−
i∈s

yi − m̃∗

i

πi
. (A.4)

The proof of the asymptotic properties of t̂y,SBLL uses reasoning similar to that in [2], in which a key step is the Taylor
linearization. Recall that our proposed estimator involves two smoothing stages: spline smoothing in the first stage and
kernel smoothing in the second stage. In the following, we establish the Taylor linearization for these two smoothing stages
one by one.

A.2. Taylor linearization at the first stage

Lemma A.1. Under assumptions (A1)–(A7), for any α = 1, . . . , d,

lim
N→∞

sup
xα∈[0,1]

|m̂α(xα)− m̃α(xα)| = Op{JN(N−1 logN)1/2},

where m̂α(xα) and m̃α(xα) are the pilot estimators given in (11) and (A.1).
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Proof. Let S = N−10T
U0U and V = N−1Γ T

Uy be matrices with components sjj′ = N−1∑
k∈UN

ΓU,kjΓU,kj′ and vj =

N−1∑
k∈UN

ΓU,kjyk, respectively. Denote Sπ = N−10T
s 5s0s and Vπ = N−10T

s 5sys the sample versions of the matrices S
and V with components sπ,jj′ = N−1∑

k∈s Γs,kjΓs,kj′/πk and vπ,j = N−1∑
k∈s Γs,kjyk/πk. For each α = 1, . . . , d and the

spline basis 0(x) in (3), let

ζ (Sπ ,Vπ ; xα) = 0(x)TDα(S−1
π Vπ − S−1V) (A.5)

be a nonlinear function of {sπ,jj′}1≤j,j′≤Gd and {vπ,j}
Gd
j=1 with respect to xα . The difference m̂α(xα)− m̃α(xα) = ζ (Sπ ,Vπ ; xα)+

Op(N−1/2). Simple calculation shows that the first order derivatives of ζ in (A.5) of sπ,jj′ and vπ,j are

∂ζ

∂sπ,jj′
= 0(x)TDα(−S−1

π 3jj′S−1
π )Vπ , 1 ≤ j, j′ ≤ Gd,

∂ζ

∂vπ,j
= 0(x)TDαS−1

π λj, 1 ≤ j ≤ Gd,

where λj is a Gd-vector with ‘‘1’’ in the jth component and ‘‘0’’ elsewhere; and 3jj′ is a Gd × Gd matrix with ‘‘1’’ in positions
(j, j′) and (j′, j) and ‘‘0’’ everywhere else.

Using the Taylor linearization, one can approximate ζ in (A.5) by a linear one so that the difference between m̂α(xα) and
m̃α(xα) can be decomposed as

∑Gd
j=1 ϕαj(xα)(vπ,j − vj)− ĉα + c̃α −

∑
1≤j,j′≤Gd

ψαjj′(xα)(sπ,jj′ − sjj′)+QαN(xα), where for any
1 ≤ j, j′ ≤ Gd,

ϕαj(xα) =
∂ζ

∂vπ,j


vπ,j=vj

= 0(x)TDαS−1λj,

ψαjj′(xα) =
∂ζ

∂sπ,jj′


sπ,jj′=sjj′

= 0(x)TDα(S−13jj′S−1)V,

and QαN(xα) is the remainder. Note that

Gd−
j=1

ϕαj(xα)(vπ,j − vj) = N−1
−
k∈UN

Gd−
j=1

ϕαj(xα)ΓU,kjyk


1 −

Ik
πk



−N−1
−
k∈UN

Gd−
j=1

ϕαj(xα)(ΓU,kj − Γs,kj)


1 −

Ik
πk


yk

+N−1
−
k∈UN

Gd−
j=1

ϕαj(xα)yk(ΓU,kj − Γs,kj).

By the discretization method given in Lemma A.4 of [30], the Borel–Cantelli lemma entails that each single term in the
right-hand side of the above is of the order Op{JN(N−1 logN)1/2}. Therefore, we have

sup
xα∈[0,1]


Gd−
j=1

ϕαj(xα)(vπ,j − vj)

 = Op{JN(N−1 logN)1/2}.

Similar arguments lead to supxα∈[0,1]

∑1≤j,j′≤Gd
ψαjj′(xα)(sπ,jj′ − sjj′)

 to be of the orderOp{JN(N−1 logN)1/2}, and supxα∈[0,1]

|QαN(xα)| = op{JN(N−1 logN)1/2}. Thus supxα∈[0,1] ζ (Sπ ,Vπ ; xα) = Op{JN(N−1 logN)1/2}. The desired result is
established. �

A.3. Taylor linearization at the second stage

Let

tiαq =

−
k∈UN

Kh(xkα − xiα)(xkα − xiα)q−1,

t̂iαq =

−
k∈s

1
πk

Kh(xkα − xiα)(xkα − xiα)q−1,
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for q = 1, 2, 3 and

tiαq =

−
k∈UN

Kh(xkα − xiα)(xkα − xiα)q−4ỹkα,

t̂iαq =

−
k∈s

1
πk

Kh(xkα − xiα)(xkα − xiα)q−4ŷkα,

for q = 4, 5. We rewrite m̃∗

iα in (A.2) and m̂∗

iα in (13) by

m̃∗

iα =
tiα3tiα4 − tiα2tiα5
tiα1tiα3 − t2iα2

, m̂∗

iα =
t̂iα3 t̂iα4 − t̂iα2 t̂iα5
t̂iα1 t̂iα3 − t̂2iα2

.

Let ziαk =
∑5

q=1
∂m̂∗

iα
∂(N−1 t̂iαq)


t̂iα=tiα

ziαkq, where tiα = {tiαq}5q=1 and

ziαkq =


Kh(xkα − xiα)(xkα − xiα)q−1, for q = 1, 2, 3,
Kh(xkα − xiα)(xkα − xiα)q−4ykα, for q = 4, 5.

Then one can approximate m̂∗

iα − m̃∗

iα by a linear sum, i.e.,

m̂∗

iα − m̃∗

iα =
1
N

−
k∈UN

ziαk


Ik
πk

− 1


− LiαN + RiαN , (A.6)

where LiαN =
∑4

q=1 LiαNq with

LiαN1 =
1
N2
(t̂y − ty)

∂m̂∗

iα

∂(N−1 t̂iα4)


t̂iα=tiα

−
k∈UN

ziαk1


Ik
πk

− 1

,

LiαN2 =
1
N

∂m̂∗

iα

∂(N−1 t̂iα4)


t̂iα=tiα

−
k∈UN

ziαk1


Ik
πk

− 1
−
β≠α

{m̂β(xkβ)− m̃β(xkβ)},

LiαN3 =
1
N2
(t̂y − ty)

∂m̂∗

iα

∂(N−1 t̂iα5)


t̂iα=tiα

−
k∈UN

ziαk2


Ik
πk

− 1

,

LiαN4 =
1
N

∂m̂∗

iα

∂(N−1 t̂iα5)


t̂iα=tiα

−
k∈UN

ziαk2


Ik
πk

− 1
−
β≠α

{m̂β(xkβ)− m̃β(xkβ)},

and RiαN is the remainder. Similar to the proof of Lemma 3 in [2],
nN

N

−
i∈UN

Ep[R2
iαN ] = O(n−1

N h−2
N ). (A.7)

Lemma A.2. Under assumptions (A1)–(A8), N−1∑
i∈UN

Ep(L2iαN) → 0.

Proof. By the Cauchy–Schwartz inequality, it suffices to show that for q = 1, . . . , 4,N−1∑
i∈UN

Ep(L2iαNq) → 0.Without loss
of generality, we only show the cases for q = 1 and 2. Similarly to the proof of Lemma 2 (v) in [2], the first order derivatives
of m̂∗

iα with respect to N−1 t̂iαq evaluated at t̂i = ti are uniformly bounded in i. So by assumption (A7)

1
N

−
i∈UN

Ep(L2iαN1) =
1
N5

Ep

(t̂y − ty)
∂m̂∗

iα

∂(N−1 t̂iα4)


t̂i=ti

−
k∈UN

ziαk1


Ik
πk

− 1
2


≤

C
N5

−
j,k,l,p∈UN

ziαj1ziαl1ykypπjl − πjπl

πjπl

πkp − πkπp

πkπp

 ≤
C
N3

−
k,p∈UN

|ykyp| → 0.

Next

1
N

−
i∈UN

Ep(LiαN2)
2

=
1
N3

Ep


∂m̂∗

iα

∂(N−1 t̂iα4)


t̂iα=tiα

−
k∈UN

ziαk1


Ik
πk

− 1
−
β≠α

{m̂β(xkβ)− m̃β(xkβ)}

2

≤ CN−3
−
k∈UN

−
l∈UN

Ep




Ik
πk

− 1


Il
πl

− 1
−
β≠α

−
γ ≠α

{m̂β(xkβ)− m̃β(xkβ)}{m̂γ (xlγ )− m̃γ (xlγ )}

 .
By Lemma A.1, N−1∑

i∈UN
Ep(L2iαN2) → 0, and the lemma follows immediately. �
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A.4. Proofs of Theorems 2–4

Lemma A.3. Under assumptions (A1)–(A8), for the population and sample based SBLL estimators of m(xiα) given in (8) and
(A.3),

lim
N→∞

1
N
Ep

−
i∈UN

(m̂∗

i − m̃∗

i )
2


= 0.

Proof. According to (A.6), one has

1
N
Ep

−
i∈UN

(m̂∗

iα − m̃∗

iα)
2


=

1
N3

−
i∈UN

−
k,l∈UN

∆kl
ziαk
πk

ziαl
πl

−
2
N2

−
i,k∈UN

ziαkEp

[
Ik
πk

− 1

(LiαN − RiαN)

]
+

1
N

−
i∈UN

Ep(LiαN − RiαN)
2.

Following from Lemmma 4 in [2] and assumption (A7), the first term converges to zero as N → ∞. The third term also
converges to zero by (A.7) and LemmaA.2. By theCauchy–Schwartz inequality, limN→∞

1
N Ep

∑
i∈UN

(m̂∗

iα − m̃∗

iα)
2


= 0, α =

1, . . . , d. Note that−
i∈UN

(m̂∗

i − m̃∗

i )
2

=

−
i∈UN


1
N
(t̂y − ty)+

d−
α=1

(m̂∗

iα − m̃∗

iα)

2

=
1
N
(t̂y − ty)2 +

2
N
(t̂y − ty)

−
i∈UN

d−
α=1

(m̂∗

iα − m̃∗

iα)+

−
i∈UN


d−

α=1

(m̂∗

iα − m̃∗

iα)

2

.

By assumption (A.7),

1
N2

Ep(t̂y − ty)2 ≤

1
λ

+

nN max
i,j∈UN ,i≠j

|∆ij|

λ2

 1
N2

−
i∈UN

y2i → 0.

Thus the desired result is obtained from the Cauchy–Schwartz inequality. �

Proof of Theorem 2. Note that Ep[Ii] = πi and

t̂y,SBLL − ty
N

=
1
N

−
i∈UN

(yi − m̃∗

i )(Ii/πi − 1)+
1
N

−
i∈UN

(m̂∗

i − m̃∗

i )(1 − Ii/πi). (A.8)

Then

Ep

 t̂y,SBLL − ty
N

 ≤
1
N
Ep

−
i∈UN

(yi − m̃∗

i )(Ii/πi − 1)


+

1
N2


Ep

−
i∈UN

(m̂∗

i − m̃∗

i )
2


Ep

−
i∈UN

(1 − Ii/πi)
2

1/2

. (A.9)

According to assumptions (A1)–(A6), lim supN→∞
1
N

∑
i∈UN

(yi − m̃∗

i )
2 < ∞. Following the same arguments of Theorem 1

in [2], the first term on the right of (A.9) converges to zero as N → ∞. For the second term, (A7) implies that

Ep


1
N

−
i∈UN

(1 − Ii/πi)
2


=

−
i∈UN

πi(1 − πi)

Nπ2
i

≤
1
λ
.

According to Lemma A.3, limN→∞
1
N

∑
i∈UN

Ep[(m̂∗

i − m̃∗

i )
2
] → 0 and the result follows from the Markov’s inequality. �

The next theorem is to derive the asymptotic mean squared error of the proposed spline estimator in (9).

Theorem A.1. Under assumptions (A1)–(A8),

nNEp


t̂y,SBLL − ty

N

2

=
nN

N2

−
i,j∈UN

∆ij
yi − m̃∗

i

πi

yj − m̃∗

j

πj
+ o(1). (A.10)
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Denote

AMSE(N−1 t̂y,SBLL) =
1
N2

−
i,j∈UN

∆ij
yi − m̃∗

i

πi

yj − m̃∗

j

πj
(A.11)

the asymptotic mean squared error in (A.10). The next result shows that it can be estimated consistently byV (N−1 t̂y,SBLL)
in (15).

Theorem A.2. Under (A1)–(A8),

lim
N→∞

nNEp|V (N−1 t̂y,SBLL)− AMSE(N−1 t̂y,SBLL)| = 0.

The proofs of Theorems A.1 and A.2 are somewhat trivial and we refer the readers to [29].

Proof of Theorem 3. According to (A.8),

t̂y,SBLL − ty
N

=
t̃y,SBLL − ty

N
+

−
i∈UN

m̃∗

i − m̂∗

i

N


Ii
πi

− 1

.

From the proof of Theorem A.1,
∑

i∈UN

m̃∗
i −m̂∗

i
N


Ii
πi

− 1


= op(n
−1/2
N ). Theorem A.2 implies that V (N−1 t̂y,SBLL)/AMSE(N−1

t̂y,SBLL) → 1 in probability. The desired result follows. �

Proof of Theorem 4. Let

T1 =
n1/2
N

N

−
i∈UN

{m̃∗

i − m(xi)}

1 −

Ii
πi


, T2 =

n1/2
N

N

−
i∈UN

(m̂∗

i − m̃∗

i )


1 −

Ii
πi


,

T3 =
n1/2
N

N

−
i∈UN

σ(xi)εi


Ii
πi

− 1

.

Then n1/2
N N−1(t̂y,SBLL − ty) can be represented as the sum of T1, T2 and T3. For the first term,

ET 2
1 =

nN

N2

−
i,j∈UN

[E(m(xi)− m̃∗

i )(m(xj)− m̃∗

j )]
∆ij

πiπj

≤
nN

N

1
λ

+

N max
i,j∈UN ,i≠j

|∆ij|

λ2

 1
N

−
i∈UN

E{m(xi)− m̃∗

i }
2.

By Theorem 2.1 in [30], |m(xi)− m̃∗

i | = op(n−2/5 log n), for any i ∈ UN , which implies that ET 2
1 → 0. Now for T2

ET 2
2 ≤

nN

N

1
λ

+

N max
i,j∈UN ,i≠j

|∆ij|

λ2

 1
N

−
i∈UN

E(m̂∗

i − m̃∗

i )
2.

By Lemma A.1, ET 2
2 → 0. Finally,

ET 2
3 =

nN

N2

−
i∈UN

σ 2(xi)
1 − πi

πi
≤

nN

Nλ
1
N

−
i∈UN

σ 2(xi),

lim sup
N→∞

ET 2
3 ≤

1
λ
lim sup
N→∞

1
N

−
i∈UN

σ 2(xi) < ∞.

By the Cauchy–Schwartz inequality the cross product terms go to zero as N → ∞. The desired result follows. �
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