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Abstract

The objective of the work is first to extend some classic high cycle fatigue (HCF) criteria (as Crossland, Dang Van,

Papadopoulos, ...) to take into account a sensitivity of the criteria to stress spatial variations occurring at length scale

lg, and second to compare the performances of the extensions through numerical simulations of experimental fatigue

tests. After an introduction of the basic criteria and their gradient based extensions proposed by Luu et al., we focus

on the Crossland criterion to propose a more practical and simple expression taking into account the gradient of the

stress amplitude and the maximum hydrostatic stress. The proposition is then tested and applied to different simple

situations: 4-point bending and cantilever rotative bending. The relative errors between the exact solutions and the

numerical simulations are estimated. Biaxial bending-torsion tests are also simulated to demonstrate the capabilities of

the approach. The generalization of the approach to other multiaxial fatigue criteria is briefly shown through the case

of Papadopoulos 2001 proposal. Finally, the present study develops a simple formulation of gradient multi-axial fatigue

criteria extending the classical HCF criteria. In this work only stress gradient with a beneficial effect on fatigue have

been considered.
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1 Introduction

In several industries, the required design lifetime of many components often exceeds 108 cycles. This

requirement is applicable to aircraft (gas turbine disks 1010 cycles), automobiles (car engine 108 cycles), and

railways (high speed train 109 cycles). Although a large amount of fatigue data has been published in the

form of S-N (where S is stress and N the number of cycles to fatigue) curves, the data in the literature have

been usually limited to fatigue lives up to 107 cycles. Using traditional fatigue criteria, a near hyperbolic

relationship between stress and fatigue life is assumed, with an asymptotic limit defined as the fatigue limit

(or endurance stress). A large number of multiaxial fatigue criteria, generalizing this notion of fatigue limit,

are available in the literature [1][2][3]. They are practically used to design industrial components against

failure. Nevertheless, most of these criteria present some drawbacks, for instance when dealing with out-of-

phase loading or with metals of different kinds from those used to develop the criteria. In fact, quite all of
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them are not designed to cope with high stress gradient introducing by surface treatments or notches, and

also with scale effect especially present in nano or micro components.

More precisely, as mentioned by Luu et al. [4], in problems related to small electronic components and

electro-mechanical devices, at sufficiently small sizes, factors as size, gradient and loading effects affecting

fatigue limits are not captured by classical fatigue criteria. The general statement ”the smaller the size, the

higher the gradient, then the higher fatigue resistance” sums up the following observations.

Loading effects: the three types of tests with different volumes of the most loaded zones are examined in

[4]. In descending volume order, they are tension-compression, rotative bending and plane bending, leading

to increasing order of fatigue limits.

Size: for the same in-state stress distribution as well as nominal maximum stress and material, the

smaller the sample size is, the smaller the surface or the volume of the most stressed zone is, the higher the

fatigue limit is.

Stress gradient: the nominal fatigue limit increases in the presence of stress gradient corresponding to a

decreasing stress from the surface. Experimental example illustrates and makes clearer ”beneficial gradient

effect” [5]. The results of the constant moment tests on specimens of the same radius but different lengths

shows that the gradient effect is an order of magnitude higher than the pure size effect. In this case, size

effect is proved insignificant compared to the gradient effect at the considered scale.

From above it is concluded that the stress gradient factor is the most important contributer to this phe-

nomenon. It has been generalized by several authors to include a gradient dependence [5] in order to

introduce a sensitivity of the endurance limit to space variations occurring at length scale lg. Uniaxial nor-

mal cyclic stress states with non-zero and zero normal stress gradients, respectively, allow drawing some

comments about the normal stress gradient effect. The larger the normal stress due to bending, the larger the

difference between bending test points and tension-compression ellipse arc (as is shown in Fig. 1).

Fig. 1: Schematic representation of the nominal fatigue limit (ellipse arc) for two different tests: the arc is larger in the case of

bending-torsion (presence of stress gradient) than in tension-compression.

Apart from gradient approaches[6][5], to take account of these effect, others approaches such critical

volume [7], critical distance[8][9], critical layer[10], averaging over a specific volume [11][12] are used . In

fact, all the approaches are equivalent to introducing a length scale. In the paper, we consider specifically

the gradient approach. We start from the proposition of Luu et al., and propose and a simpler way to account

for the gradient. The Crossland criterion, one of the most widely known HCF criteria, is used to illustrate

the approach. Crossland proposed that the second invariant of the deviatoric stress tensor and the hydrostatic

stress are the variables governing the endurance limit. The new proposition adds two gradient terms ; it is

then calibrated and its predictions are compared to experimental results to check its relevancy.
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2 Approach of Luu et al.

2.1. General formulation
Luu et al. [4] proposed extensions of classical HCF fatigue criteria using the gradients of the shear and

normal stress to account for the gradient effect. In the case of critical plane type criteria, they defined a

generalized shear stress amplitude including shear stress gradient and a generalized maximum normal (or

hydrostatic) stress. A general form of classical fatigue limit criteria can be written as follows:

f (Ca(n∗),Nmax(n∗)) = Ca(n∗) + aNmax(n∗) − b � 0, (1)

with a, b being two material parameters. f is a function, chosen in many cases as linear, and n∗ is the normal

vector of the critical plane; Ca(n∗), Nmax(n∗) are respectively the amplitude of shear stress and the maximum

value of the normal stress on the critical plane.

A new class of fatigue criteria extended from classical ones with stress gradient terms introducing not

only in the normal stress but also in the shear stress components, was proposed. It concerns only free defect

materials and can model both phenomena ”smaller is Stronger and Higher Gradient is Stronger”.

Besides the stress gradient term appearing in the normal stress part in form of G = Δ(σ11 + σ22 + σ33),

another gradient term, the gradient of the stress tensor amplitude (or alternatively of deviatoric stress tensor

amplitude) ‖ Ya ‖= Δσa is added to the shear stress amplitude part. Basing on all these analyses a new form

of fatigue criteria taking into account gradient effects, is proposed:

f (C̃a(n∗), Ñmax(n∗)) = C̃a(n∗) + aÑmax(n∗) − b � 0, (2)

where C̃a(n∗) and Ñmax(n∗) are extended definitions of the amplitude of shear stress and of the normal stress

taking into account the presence of local gradient.

In the following we just focus on the Crossland criterion and its extension.

2.2. Recall of the classical Crossland criterion
The classical Crossland criterion defines the fatigue limit of metallic specimens subjected to multi-axial

cyclic stress[13] :

f (
√

J2,a, Pmax) =
√

J2,a + aPmax − b � 0 (3)

where
√

J2,a measures the amplitude of variation of the second invariant of the deviatoric stress and Pmax

is the maximum hydrostatic stress observed during a loading cycle. The parameters a and b are material

constants to be calibrated experimentally. The amplitude of the square root of the second invariant of the

stress deviator can be defined, in general case, as the half-length of the longest chord of the deviatoric stress

path or as the radius of the smallest hypersphere circumscribing the stress deviator loading path [1]√
J2,a =

1

2
√

2
min

S 1

{max
t

√
(S (t) − S 1) : (S (t) − S 1)} (4)

The deviatoric stress S associated with a stress tensor σ is defined by

S = σ − 1

3
trσ I (5)

where trσ is the trace of the stress tensor σ and I the second order unit tensor.

The maximum value that the hydrostatic stress reaches during the loading cycle is on the other hand:

Pmax = max
t
{1
3

tr(σ(t))}. (6)

For a proportional cyclic loading, if one introduces the two extreme stress tensors σA and σB observed

during the loading path, together with the stress range

Δσ = σB − σA (7)



63 Ma Zepeng et al.  /  Procedia Engineering   133  ( 2015 )  60 – 71 

and its deviatoric part Δs, the variation of the second invariant of the stress deviator reduces to

√
J2,a =

1

2
max

t

√
1

2
Δs : Δs =

1

2
max

t

√
1

2
(Δs2

11
+ Δs2

22
+ Δs2

33
+ 2Δs2

12
+ 2Δs2

13
+ 2Δs2

23
). (8)

The material constants a and b can be related to the limit t−1 of endurance in alternate torsion and to the

limit s−1 of endurance in alternate tension-compression by

a =
3t−1

s−1

− √3, b = t−1. (9)

2.3. Formulation of Crossland criterion with gradient effect

In particular, using as a basis the classical Crossland criterion Eq.(3) and the general framework for the

development of a gradient dependent fatigue limit criterion Eq.(2), a new version can be written in the form:√
J̃2,a + aP̃max � b. (10)

This formula takes into account the indicator of the influence of the gradient of the stress deviator which

reflects the spatial non-uniform distribution of stress state.

In practice, [4] had proposed:

√
J2,a

√√√√√
1 −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝lτ
‖ Y ‖,a
‖ S ‖,a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
nτ

+ aPmax

(
1 −
〈
lσ
‖ G ‖
Pmax

〉nσ) − b < 0. (11)

Here ‖ Y ‖,a is the full stress gradient and ‖ G ‖ is used as an indicator of the influence of the normal

stresses gradient.

‖ G ‖=‖ ∇Pmax ‖=
√(
∂Pmax

∂x

)2
+

(
∂Pmax

∂y

)2
+

(
∂Pmax

∂z

)2
. (12)

3 Optimized Crossland Criterion formulation

The precedent Luu and al. formula has six materials parameters a,b,lτ,lσ,nτ,nσ to be identified exper-

imentally. The calibration can be complicated ; it does not lead to a unique set of parameters. Physical

considerations, such as the length scales, have to be taken into account for choosing the optimized ma-

terial constants. For practical application in an industrial context, it is essential to reduce the number of

parameters. We therefore wish to investigate a simpler construction, departing from the classical Crossland

criterion.

Surfaces with stresses decreasing in depth are, here and after, considered. Failure occurs at the point

x0 when, (
√

J2,a + aPmax − b)(x0) � 0. To be more general and avoid singularity, this condition should be

satisfied in some x0 neighboring volume of size lg, leading to a criterion given by:

inf
x∈B(x0,lg)

( √
J2,a + aPmax − b

)
(x) � 0. (13)

To obtain a suitable expression, an expansion of Eq.(13) in performed in the neighborhood of x0. The

sought formula should account for the beneficial effect of the stress gradient. Considering that the stress

is decreasing in depth, a negative sign is associated with the norm of the gradient of stress tensor in to the

proposed formula. In addition, the gradient term should not only affect hydrostatic stress but also shear

stress.
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An objective formulation based on the lowest possible value of
√

J2,a and of Pmax in the neighborhood,

is finally: √
J2,a + aPmax − lg ‖ ∇

√
J2,a + a∇Pmax ‖� b, (14)

We keep the same material parameters a and b as before. lg is a characteristic length to be optimized to match

the experimental results. The approach has only one supplementary material constant whose calibration is

easy.

4 Calibration of the criterion

In this section, two different uniaxial fatigue tests with stress gradient effects are used to calibrate the

optimized gradient Crossland criterion. An application to a biaxial test fatigue test shows the ability of the

proposed approach to account the stress gradient in multiaxial cases.

4.1. Fully reversed 4-point bending and rotating cantilever bending fatigue tests

The model of 4-point bending is first considered. The bar made of steel has both ends fixed. The radius

R is a variable ranging from 1mm to 30mm enough to highlight the fact ”the smaller, the stronger”. The

length L of the bar is 100 mm.

Fig. 2: 4-point bending test [14]

The bending moment is the same in the interval L � x � L + l and equal to M = FL (Fig. 2). The

bending stress σ and its gradient Y for L � x � L + l and −R � y � R are then:

σ = σxxsin(wt)ex ⊗ ex =
FLy

I
sin(wt)ex ⊗ ex

with I = πR
4

4

The maximum stress during the cyclic loading in the bar is: σmax =
FLy

I .

The gradient components of Y is: σxx,x = 0, σxx,y =
FL
I =

σmax
y , σxx,z = 0.

The macroscopic stress range is: Δσ(t) = 2σmaxex ⊗ ex The hydrostatics stress:

Pmax = max
t
{1
3

tr(σ(t))} = 1

3
σmax =

FLy
3I
, (15)

Deviator of the macroscopic stresses:

ΔS = Δσ − 1

3
trΔσI =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
4
3
σmax 0 0

0 − 2
3
σmax 0

0 0 − 2
3
σmax

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (16)

The second invariant of the stress deviator is then:√
J2,a =

1

2
√

2

√
ΔS : ΔS =

σmax√
3
=

FLy√
3I
. (17)
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Then the gradient part has the value:

∇√J2,a =
∂
√

J2,a

∂x
ex +

∂
√

J2,a

∂y
ey +

∂
√

J2,a

∂z
ez = (0,

FL√
3I
, 0), (18)

and

∇Pmax = (0,
FL
3I
, 0). (19)

The parameters a and b of the standard Crossland criterion, are obtained from fully reversed tension-

compression fatigue limit s−1 and torsion fatigue limit t−1 using Eq.(9).

From Eq.(3), standard Crossland criterion without gradient effect (for radius R) is:√
J2,a + aPmax =

FLR√
3I
+

aFLR
3I

� b. (20)

The gradient term here is given by:

‖ ∇√J2,a + a∇Pmax ‖= FL√
3I
+

aFL
3I
. (21)

By comparison we can see in 4-point bending test the difference between classical and modified Cross-

land criterion is related to the product of the characteristic length lg and the term (21) associated to the

decrease of the stress in depth. This value shows how much the modification affects the Crossland criterion.

Crossland criterion with beneficial gradient term as shown in Eq.(14) is given by:√
J2,a + aPmax − lg(‖ ∇√J2,a + a∇Pmax ‖) =

FLR√
3I
+

aFLR
3I
− lg(

FL√
3I
+

aFL
3I

) =

1√
3
σmax +

a
3
σmax − lg(

1√
3R
σmax +

a
3R
σmax) � b ,

(22)

which is to say:

σmax �
b

1√
3
+ a

3
− lg( 1√

3R
+ a

3R )
. (23)

The material parameters a and b are obtained using their classical expressions as Eq.(9) from tests free

of stress gradient. The corresponding fatigue limit are denoted sre f for the alternate tension-compression

test, and tre f for the alternate torsion test. For a specimen of radius R the alternate bending fatigue limit is

denoted f (R). We can observe that:

f (R) =
b

1√
3
+ a

3
− lg( 1√

3R
+ a

3R )
� sre f (24)

f (R) tends to sre f for large radii.
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Fig. 3: Cantilever bending test [14]

In the case of cantilever fully reversed bending. Let us denote the corresponding fatigue limit by σmax.

The second invariant of the stress deviator is then:√
J2,a =

1

2
√

2

√
ΔS : ΔS =

σmax√
3
. (25)

The hydrostatics stress:

Pmax = max
t
{1
3

tr(σ(t))} = 1

3
σmax. (26)

Which results in the same gradient terms as in 4-point bending.
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(a) (b)

(c) (d)

Fig. 4: Fatigue limits with gradient effect for different radii.

Eq.(24) with a et b calibrated from given S re f and tre f is used to estimate the characteristic length lg
in order to give the best correlation between simulated and experimental fatigue limit obtained in rotating

cantilever bending tests for different materials and radii. The results are sketched in Fig.(4).

The fatigue limit of carbon steel is in alternate torsion is tre f = 151MPa and the fatigue limit in alternate

tension-compression is sre f = 222MPa. After fitting, we get lg = 0.3297.

The fatigue limit of SAE 1220 steel is in alternate torsion is tre f = 143MPa and the fatigue limit in alternate

tension-compression is sre f = 191MPa.After fitting, we get lg = 0.3755.

The fatigue limit of SAE 1035 steel is in alternate torsion is tre f = 172MPa and the fatigue limit in alternate

tension-compression is sre f = 234MPa. After fitting, we get lg = 0.2861.

The fatigue limit of 40Kh steel is in alternate torsion is tre f = 180MPa and the fatigue limit in alternate

tension-compression is sre f = 297MPa. After fitting, we get lg = 0.1424.

We can observe a very interesting phenomenon that the smaller fatigue limit is, the larger influence of

gradient effect is.
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Table 1: Length scales of different materials

1220 steel Carbon steel 1035 steel 40Kh steel
Sre f

[MPa] 191 222 234 297

t re f
[MPa] 143 151 172 180

lg
[mm] 0.3755 0.3297 0.2861 0.1424

4.2. Bending-torsion fatigue tests
The bending moment is a linear function of x,Mb = −F(L− x). The twisting moment is denoted Mt. The

stress σxx now varies along the depth (i.e. y-axis) and the length (i.e. x-axis) of the specimen. Consequently,

the gradient of σxx has two non-zero components, the derivatives with respect to x and y. Considering the

critical points (located at y = ±R) The bending stress and its gradient for 0 � x � L are given by the

formulas:

σa =
−F(L − x)

I
R =

Mb

I
y (27)

with I = πR
4

4
, τa =

Mt
J y and J = 1

2
πR4. The stress tensor σ is then:

σ(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ σasin(ωt) τasin(ωt) 0

τasin(ωt) 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (28)

The stress range tensor is:

Δσ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 2σa 2τa 0

2τa 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (29)

Deviator of the macroscopic stresses:

ΔS = Δσ − 1

3
trΔσ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
4
3
σa 2τa 0

2τa − 2
3
σa 0

0 0 − 2
3
σa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (30)

The second invariant of the stress deviator is then:

√
J2,a =

1

2
√

2

√
ΔS : ΔS =

√
1

3
σ2

a + τ
2
a =

√
M2

b

3I2
+

M2
t

4J2
y. (31)

The hydrostatics stress:

Pmax = max
t
{1
3

tr(σ(t))} = σa

3
=

Mb

3I
y, (32)

Then the gradient part has the value:

∇√J2,a =
∂
√

J2,a

∂x
ex +

∂
√

J2,a

∂y
ey +

∂
√

J2,a

∂z
ez = (0,

√
M2

b

3I2
+

M2
t

4J2
, 0)

= (0,

√
1
3
σ2

a + τ
2
a

y
, 0),

(33)

and

∇Pmax = (0,
Mb

3I
, 0) = (0,

σa

3y
, 0). (34)
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The parameters a and b of the standard Crossland criterion, are obtained from fully reversed tension-

compression fatigue limit sre f and torsion fatigue limit tre f using Eq.(9).

From Eq.(3), standard Crossland criterion without gradient effect writes:

√
J2,a + aPmax =

√
σ2

a

3
+ τ2

a +
σa

3
� b. (35)

The gradient term here is given by:

‖ ∇√J2,a + a∇Pmax ‖=
√
σ2

a
3
+ τ2

a

y
+

aσa

3y
. (36)

Crossland criterion with beneficial gradient term as shown in Eq.(14):√
J2,a + aPmax − lg(‖ ∇√J2,a + a∇Pmax ‖) =√
σ2

a

3
+ τ2

a +
aσa

3
− lg(

√
σ2

a
3
+ τ2

a

y
+

aσa

3y
) � b

(37)

This ellipse arc delimits in the sre f − tre f plane the safe domain against fatigue failure(the blue arc).

Clearly, Eq. (35) is the Crossland criterion for combined normal and shear stress. However, if one tries

to predict the behavior of the material in combined bending and torsion, which involves the gradients of

normal and shear stresses, high discrepancies between predictions and experimental data will be found.

Fig. 5: Fully reversed combined bending-twisting fatigue limit data (Findley et al.[15], Papadopoulos and Panoskaltsis[14]).

By introducing the values of
√

J2,a and Pmax in the the classical Crossland criterion, along with the

change of parameter a from
(

3t−1

s−1
− √3

)
to
(

3t−1

f−1
− √3

)
in Eq.(3), we obtain the ”Papadopoulos ellipse arc”

equation in the plane of amplitudes σa and τa (the black arc):

(
τa

t−1

)2 + (
2 f−1√

3t−1

− 1)(
σa

f−1

)2 + (2 − 2 f−1√
3t−1

)
σa

f−1

� 1 (38)
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Our proposal takes into account both gradients of hydrostatic stress and shear stress. Choosing the

proper lg allows us to predict the experiments within the acceptable range as shown in Fig. 5 (the red arc).

These results illustrate that our proposal is quite satisfactory in biaxial case.
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5 Discussion

Remark 1 (Gradient terms). In this paper, the pure size effect has not been considered and only stress gra-

dient effect is modeled.

Remark 2 (Material characteristic length scale lg). We study here the fatigue limit of macroscopic speci-

mens and components for which the crack initiation is generally detected by loss of stiffness corresponding

to crack length which can reach a millimeter. We choose lg ranging from 0.1 to 0.5mm. To verify the rele-

vancy of this choice, we need more experimental data.

Remark 3 (Extensions to other criteria). The extension of the proposition to other fatigue criteria is straight-

forward. For instance, the modified Papadopoulos criterion [16] is written as :

max Ta + apPmax − lg ‖ ∇{max Ta} + ap∇Pmax ‖� bp. (39)

6 Conclusion

The present study develops a simple formulation of gradient multi-axial fatigue criteria extending the

classical HCF criteria. The objective is to model the surface gradient effects (yielding apparent size and

loading effects), which is not included yet in classical mechanics but become important at small scale or

in the presence of notches, by taking into account just the gradient effect. Besides, for notched fatigue

problems, this approach may be still applicable.

Nevertheless, in this work only simple fatigue tests have been examined. In these tests, the gradient has

a beneficial effect on fatigue. However, cases where the effect can be presumably negative, especially under

the circumstances of residual stresses, can be encountered. A reexamination and validation for complex

loading could be perspective for this research direction.
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