Ramsey numbers $r\left(K_{3}, G\right)$ for connected graphs G of order seven

Annette Schelten*, Ingo Schiermeyer
Lehrstuhl für Diskrete Mathematik und Grundlagen der Informatik, TU Cottbus, 03013 Cottbus, Germany

Received 1 September 1995; received in revised form 20 October 1996; accepted 5 March 1997

Abstract

The triangle-graph Ramsey numbers are determined for all 814 of the 853 connected graphs of order seven. For the remaining 39 graphs lower and upper bounds are improved.

1. Introduction

We consider finite, undirected graphs $G=(V(G), E(G))$ without loops or multiple edges. By a two-colouring (R, B) we mean a colouring of the edges of G with two different colours, say red and blue. $\langle R\rangle(\langle B\rangle)$ denotes the subgraph of G, which is induced by the red (blue) edges. P_{p} is the path, C_{p} the cycle and K_{p} the complete graph on p vertices. Also we say $K_{p} \rightarrow\left(G_{1}, G_{2}\right)$ if for each two-colouring of K_{p} either $\langle R\rangle$ contains G_{1} (a subgraph isomorphic to G_{1}) or $\langle B\rangle$ contains G_{2}. Now we define the Ramsey number $r\left(G_{1}, G_{2}\right)$ of two graphs G_{1} and G_{2} as the minimum $p \in N$ where $K_{p} \rightarrow\left(G_{1}, G_{2}\right)$.

So far almost all Ramsey numbers for pairs of graphs G_{1} and G_{2} of order at most five are known: Chvatal and Harary found all Ramsey numbers $r\left(G_{1}, G_{2}\right)$ where the order of both graphs is at most four [2,3]. In [4], Clancy listed all Ramsey numbers where $\left|G_{1}\right| \leqslant 4$ and $\left|G_{2}\right|=5$ except for five pairs of graph. These remaining numbers were determined by Bolze and Harborth [1], Exoo et al. [6] and by Hendry [11]. Very recently $r\left(K_{4}, K_{5}\right)=25$ has been proved by McKay and Radziszowski [12]. In [10], Hendry almost completed the list with those of $\left|G_{1}\right|=5$ except for six pairs. For a complete list of all known Ramsey numbers see also [13]. In 1980 Faudree, Rousseau and Schelp published 'All triangle-graph Ramsey numbers for connected graphs of order six' [5]. In this paper we study the Ramsey numbers $r\left(K_{3}, G\right)$ for connected graphs G of order seven. According to Harary and Palmer [9] there are 853 different

[^0]connected graphs G on seven vertices. Our Theorem 1 settles already 760 cases, but nevertheless the remaining cases require a more detailed analysis.

Like in [5] we will use further notations: For a vertex $v \in V(G)$ we denote its neighbourhood in $\langle R\rangle$ or $\langle B\rangle$ by $N_{R}(v)$ or $N_{R}(v)$, respectively. $X_{R}(v)$ means $N_{R}(v) \cap X$, where X is a subset of $V(G)$ and v is a vertex in $V(G)\left(X_{B}(v):=N_{B}(v) \cap X\right.$ likewise $)$.

2. Results

To find a lower bound for these Ramsey numbers we have to construct a twocolouring of a complete graph which avoids both a red triangle and any connected graph of order seven. Considering the following two-colouring of K_{12} (there are two completely blue coloured K_{6}, joined only by red edges) we conclude that $r\left(K_{3}, G\right) \geqslant 13$ for all connected graphs of order seven. In this figure we indicate red edges by dotted and blue ones by normal lines.

Since Graver and Yackel proved $r\left(K_{3}, K_{7}\right)=23$ [7] the Ramsey numbers $r\left(K_{3}, G\right)$ for G connected and $|G|=7$ are bounded by 13 and 23 . Now we are looking for those connected graphs the triangle-graph Ramsey number of which is equal to 13. Here we are able to prove:

Theorem 1. (a) $r\left(K_{3}, G\right) \leqslant 13$ for all connected graphs $G \subseteq H_{1}$ where

(b) $r\left(K_{3}, G\right) \leqslant 13$ for all connected graphs $G \subseteq H_{2}$ where

(c) $r\left(K_{3}, G\right) \leqslant 13$ for all connected graphs $G \subseteq H_{3}$ where

$$
\overline{H_{3}}=\square
$$

This theorem already reduces the number of graphs with Ramsey number possibly greater than 13 to 83 . We computed a complete list of those remaining graphs. The following theorems give the exact Ramsey numbers for 64 of these graphs. For the others they improve lower and upper bounds.

Theorem 2. (a) $r\left(K_{3}, G\right) \leqslant 14$ for all connected graphs $G \subseteq H_{4}$ where

(b) $r\left(K_{3}, G\right) \leqslant 14$ for all connected graphs $G \subseteq H_{5}$ where

(c) $r\left(K_{3}, G\right) \leqslant 14$ for all connected graphs $G \subseteq H_{6}$ where

(d) $r\left(K_{3}, G\right) \leqslant 14$ for all connected graphs $G \subseteq H_{7}$ where

$$
\overline{H_{7}}=
$$

(e) $r\left(K_{3}, G\right) \leqslant 14$ for all connected graphs $G \subseteq H_{8}$ where

(f) $r\left(K_{3}, G\right) \leqslant 14$ for all connected graphs $G \subseteq H_{9}$ where

This theorem decreases the upper bound for 49 of these graphs to 14 . The following theorem increases the lower bound for 36 of those graphs to 14 as well.

The fact that $r\left(K_{3}, K_{5}\right)=14$ [4] proves Theorem 3(a). Analogously the equation $r\left(K_{3}, K_{6}-K_{3}\right)=14$ [5] gives Theorem 3(b), Theorem 3(c) is proved in the next section.

Theorem 3. (a) $r\left(K_{3}, G\right) \geqslant 14$ for all connected graphs G containing a complete subgraph on 5 vertices.
(b) $r\left(K_{3}, G\right) \geqslant 14$ for all connected graphs G containing a $K_{6}-K_{3}$.
(c) $r\left(K_{3}, G\right) \geqslant 14$ for all connected graphs G containing a $K_{7}-C_{i}$, where $i=$ 5,6 or 7 .

Theorem 4. (a) $r\left(K_{3}, G\right) \leqslant 17$ for all connected graphs G the complement of which contains a $P_{3} \cup P_{2}$.
(b) $r\left(K_{3}, G\right) \leqslant 17$ for all connected graphs G the complement of which contains $a P_{4}$.

From Theorem 4 it follows that 17 is an upper bound for at least 35 of the 83 graphs.

Theorem 5. $r\left(K_{3}, G\right) \geqslant 17$ for all conncected graphs containing a $K_{6}-P_{2}$.
Theorem 5 is a simple conclusion from the fact that $r\left(K_{3}, K_{6}-P_{2}\right)=17$ [4].
Theorem 6. $r\left(K_{3}, G\right) \leqslant 18$ for each connected graph on seven vertices G the complement of which contains a path on three vertices.

The previous theorem gives a new upper bound for 5 of the 83 graphs.
The next theorem follows from the fact that $r\left(K_{3}, K_{6}\right)$ is equal to 18 [5].
Theorem 7. $r\left(K_{3}, G\right) \geqslant 18$ for all connected graphs G containing a K_{6}.
Thus $r\left(K_{3}, G\right)=18$ for these 5 graphs.
In 1982 Grenda and Harborth [8] proved the following theorem:
Theorem 8. $r\left(K_{3}, K_{7}-P_{2}\right)=21$.
Altogether we find that the triangle-graph Ramsey number is for at least 760 connected graphs of order seven equal to 13 , for at least 36 equal to 14 , for at least 11 equal to 17 , for at least 5 equal to 18 , for at least one equal to 21 and for exactly one equal to 23 . The Ramsey numbers for the remaining 39 graphs are mostly bounded by 14 and 17 or by 13 and 14.

3. Proofs

First of all we prove three lemmas, which are often used in the sequel.
Lemma 1. Suppose H is a complete graph on at least 13 vertices with red and blue coloured edges. Assume that there is no red triangle, but a blue K_{6}. Then we conclude
that there is also a blue F_{1} where

Proof. Let $X:=\left\{x_{1}, \ldots, x_{6}\right\}$ span the blue K_{6} and let $Y:=V(H) \backslash X,|Y| \geqslant 7$ and $Y(X, R):=\left\{y \in Y\left|X_{R}(y)>1 / 2\right| X \mid\right\}$. Obviously $X_{R}\left(y_{1}\right) \cap X_{R}\left(y_{2}\right) \neq \emptyset$ and thus $\left(y_{1} y_{2}\right) \in$ $\langle B\rangle$ for all $y_{1}, y_{2} \in Y(X, R)$. Hence the set $Y(X, R)$ spans a complete graph in $\langle B\rangle$. Now we consider two different cases:

- $|Y(X, R)| \geqslant 7$ implies that there is a K_{7} in $\langle B\rangle$.
- If $|Y(X, R)|<7$ then there is a vertex $y \in Y$ with $\left|X_{R}(y)\right| \leqslant 1 / 2|X|=3$ which gives a graph F_{1} in $\langle B\rangle$ spanned by $X \cup\{y\}$. \square

Lemma 2. This time suppose H is a complete graph on at least 17 vertices. Again assume that there is no red triangle, but a blue K_{6}. Then we conclude that there is also a blue $K_{7}-P_{3}$.

Proof. Again let $X:=\left\{x_{1}, \ldots, x_{6}\right\}$ span the blue $K_{6}, Y:=V(H) \backslash X,|Y| \geqslant 11$ and assume that there is no blue $K_{7}-P_{3}$. If there is a vertex $y \in Y$ with $\left|X_{R}(y)\right| \leqslant 2$ then we directly get a contradiction. Thus we may assume $\left|X_{R}(y)\right| \geqslant 3$ for all $y \in Y$. This means that at least $3 \times 11=33$ red edges join X and Y. Avoiding a blue K_{7} we can choose $\left|Y_{R}\left(x_{1}\right)\right|=6$ and let $Y_{R}\left(x_{1}\right):=X^{\prime}=\left\{x_{7}, \ldots, x_{12}\right\}$. Obviously, X^{\prime} spans a second K_{6}. To avoid a blue $K_{7}-P_{3}$ each of the remaining vertices $\left\{x_{13}, x_{14}, \ldots\right\}$ has at least three red neighbours in each K_{6}. Say $X^{\prime \prime}=\left\{x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right\}$ are the red neighbours of x_{13} which also spans a K_{6}. Again we either get a blue $K_{7}-P_{3}$ or there are at least $3 \times 4=12$ red edges between $X^{\prime \prime}$ and $\left\{x_{14}, x_{15}, x_{16}, x_{17}\right\}$. The last conclusion implies that there is a vertex $x \in X^{\prime \prime}$ with two red neighbours in $\left\{x_{14}, x_{15}, x_{16}, x_{17}\right\}$, let the edges ($x_{7} x_{14}$) and ($x_{7} x_{15}$) be red. In addition x_{7} has three red neighbours in X, and since $X^{\prime \prime}=\left\{x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}\right\}$ spans a blue K_{6} these are the vertices x_{1}, x_{2} and x_{3}. Hence the set $X^{\prime \prime \prime}:=\left\{x_{1}, x_{2}, x_{3}, x_{13}, x_{14}, x_{15}\right\}$ spans one more complete graph on six vertices. Following the same arguments x_{4} has three red neighbours in X^{\prime} and three in $X^{\prime \prime \prime}$, in fact those are $x_{10}, x_{11}, x_{12}, x_{13}, x_{14}$ and x_{15}. Altogether we find five complete subgraphs of order six containing the vertices $\left\{x_{1}, \ldots, x_{15}\right\}$. Furthermore, the vertex x_{16} has at least three red neighbours in each K_{6}, which implies that $\left|N_{R}\left(x_{16}\right)\right| \geqslant 8$ and thus we either find a blue $K_{7}-P_{3}$ or a blue K_{8}. Both give a contradiction to our assumption.

Lemma 3. Again suppose H with $|V(H)| \geqslant 13$ is a complete graph, coloured blue and red. If there is no red triangle but a blue $K_{6}-P_{2}$ then there exists a blue F_{2} where

Proof. If there is a blue clique of six vertices we conclude that there is also a blue F_{2} by Lemma 3. Hence let $X:=\left\{x_{1}, \ldots, x_{6}\right\}$ span a blue $K_{6}-P_{2}$ where the edge $\left(x_{1} x_{2}\right)$ is red and let $Y:=V(H) \backslash X,|Y| \geqslant 7$. If there is a vertex $y \in Y$ with $\left|X_{R}(y) \cap\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}\right|$ $=:\left|X_{R}^{\prime}(y)\right| \leqslant 2$ then $X \cup\{y\}$ spans a blue graph containing F_{0}. Hence we may assume $\left|X_{R}^{\prime}(y)\right| \geqslant 3$ for all $y \in Y$, which in particular means $\left|Y\left(X^{\prime}, R\right)\right|:=\mid\left\{y \in Y \mid X_{R}^{\prime}(y)>\right.$ $\left.1 / 2\left|X^{\prime}\right|\right\} \geqslant 7$. As in the proof of Lemma 1 it follows that there is a blue K_{7}, spanned by $Y\left(X^{\prime}, R\right)$.

Lemma 4. Suppose H is a complete graph on at least 13 vertices with red and blue coloured edges. Assume that there is no red triangle, but a blue $K_{6}-P_{3}$. Then we conclude that there is also a blue F_{3} where

Proof. Using Lemma 1 and Lemma 3 we assume that $X:=\left\{x_{1}, \ldots, x_{6}\right\}$ spans an induced blue $K_{6}-P_{3}$ where ($x_{1} x_{2}$) and ($x_{2} x_{3}$) are red edges and let $Y:=V(H) \backslash X,|Y| \geqslant 7$, $X^{\prime}:=\left\{x_{4}, x_{5}, x_{6}\right\}$. Again we consider the sct $\left|Y\left(X^{\prime}, R\right)\right|:=\mid\left\{y \in Y\left|X_{R}^{\prime}(y)>1 / 2\right| X^{\prime} \mid\right\}$. Since $\left(y_{i} y_{j}\right) \in\langle B\rangle$ for all $y_{i}, y_{j} \in Y\left(X^{\prime}, R\right)$ (proof of Lemma 1) $\left|Y\left(X^{\prime}, R\right)\right| \geqslant 6$ would give a complete graph on six vertices in $\langle B\rangle$ and thus by Lemma 1 in particular a blue graph F_{3}. Hence we may assume that there is a vertex $y \in Y$ with $\left|X_{R}^{\prime}(y)\right| \leqslant 1$. Avoiding a red triangle the set $X \cup\{y\}$ spans either a blue F_{3} or a blue graph containing F_{3}.

Proof of Theorem 1(a). Let $V\left(K_{13}\right)=\left\{a, b, c, d, e, f, y_{1}, \ldots, y_{7}\right\}$ and suppose there is a two-colouring of K_{13} which avoids both a red triangle and a blue H_{1}. In [4] Faudree et al. proved $r\left(K_{3}, K_{6}-2 P_{2}\right)=13$. Since our two-colouring avoids a red K_{3}, assume that $X:=\{a, b, c, d, e, f\}$ spans a K_{6}, a $K_{6}-P_{2}$ or a $K_{6}-2 P_{2}$ in $\langle B\rangle$.

- X spans a blue K_{6}. By Lemma 1 there exists a blue F_{1}.
- X spans a blue $K_{6}-P_{2}$. By Lemma 3 there exists a blue F_{2}.
- Let X span a blue $K_{6}-2 P_{2}$ where $(a b),(c d)$ are the red edges. Avoiding a red triangle we also know $\left|N_{R}(y) \cap\{a b\}\right| \leqslant 1$ and $\left|N_{R}(y) \cap\{c d\}\right| \leqslant 1$ for all $y \in Y:=$ $V\left(K_{13}\right) \backslash X$. Furthermore, $\langle B\rangle$ contains no K_{7}. Thus we find at least one red edge, say $\left(y_{1} y_{2}\right)$, in Y. Also we note $\left|N_{R}\left(y_{1}\right) \cap\{e, f\}\right|+\left|N_{R}\left(y_{2}\right) \cap\{e, f\}\right| \leqslant 2$. This implies that either $\left\{y_{1}\right\} \cup X$ or $\left\{y_{2}\right\} \cup X$ spans a blue H_{1}.
Altogether we know that each two-colouring of a K_{13} which avoids any red triangle contains a blue F_{1}, a blue F_{2} or a blue H_{1}. Since $H_{1} \subseteq F_{2} \subseteq F_{1}$ we conclude that all these two-colourings contain at least a blue H_{1} which contradicts our assumption.

Proof of Theorem 1(b). We assume that there is a two-colouring of K_{13} which avoids a blue H_{2} as well as a red K_{3}. Again we conclude from $r\left(K_{3}, K_{6}-2 P_{2}\right)=13$ that there is a blue K_{6}, an induced blue $K_{6}-P_{2}$ or an induced blue $K_{6}-2 P_{2}$. Following

Lemma 1 and Lemma 3 we conclude that the existence of a blue K_{6} or an induced blue $K_{6}-P_{2}$ implies a blue F_{1}, F_{2}, respectively. In particular, a blue K_{6} and an induced blue $K_{6}-P_{2}$ give a blue H_{2}. Thus assume that there is a blue $K_{6}-2 P_{2}$ spanned by $X:=\{a, b, c, d, e, f\}$, where $(a b)$ and $(c d)$ are red edges. Let $Y:=V\left(K_{13}\right) \backslash X, A:=\{a, b\}$, $C:=\{c, d\}$ and $E:=\{e, f\}$. If there is a vertex $y \in Y$ with $\left|N_{R}(y) \cap\{a, b, c, d\}\right| \leqslant 1$ then there is a blue H_{2} - spanned by $\{a, b, c, d, e, f, y\}$. Hence $\left|A_{R}(y)\right|=1$ and $\left|C_{R}(y)\right|=1$ for all $y \in Y$ which implies $\left|X_{R}(A)\right|=7$ and $\left|X_{R}(C)\right|=7$. This and the fact that the existence of a blue K_{6} contradicts our assumption means that one vertex of a and b and one of c and d has exactly four red neighbours in Y. Say the edges $\left(a y_{1}\right),\left(a y_{2}\right),\left(a y_{3}\right),\left(a y_{4}\right)$, $\left(b y_{5}\right),\left(b y_{6}\right)$ and $\left(b y_{7}\right)$ are red. To avoid a blue $K_{6}-P_{2}$ (Lemma 3) c as well as d has exactly two red neighbours in $\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. Without loss of generality let $\left(c y_{1}\right),\left(c y_{2}\right),\left(d y_{3}\right)$ and $\left(d y_{4}\right)$ be red. Furthermore, each vertex of $\left\{y_{5}, y_{6}, y_{7}\right\}$ has one red neighbour in C - say $\left(c y_{5}\right),\left(c y_{6}\right),\left(d y_{7}\right) \in\langle R\rangle$. Now we consider different cases:

- If $\left\{y_{3}, y_{4}, y_{5}\right\} \subseteq N_{R}(e)$ or if $\left\{y_{3}, y_{4}, y_{5}\right\} \subseteq N_{R}(f)$ then $\left\{b, c, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$ spans a blue graph containing H_{2}.
- If $\left\{y_{3}, y_{4}, y_{6}\right\} \subseteq N_{R}(e)$ or if $\left\{y_{3}, y_{4}, y_{6}\right\} \subseteq N_{R}(f)$ then $\left\{b, c, y_{1}, y_{2}, y_{3}, y_{4}, y_{6}\right\}$ spans a blue graph containing H_{2}.
- If $\left\{y_{3}, y_{5}, y_{6}\right\} \subseteq N_{R}(e)$ or if $\left\{y_{3}, y_{5}, y_{6}\right\} \subseteq N_{R}(f)$ then $\left\{b, d, y_{1}, y_{2}, y_{3}, y_{5}, y_{6}\right\}$ spans a blue graph containing H_{2}.
- If $\left\{y_{4}, y_{5}, y_{6}\right\} \subseteq N_{R}(e)$ or if $\left\{y_{4}, y_{5}, y_{6}\right\} \subseteq N_{R}(f)$ then $\left\{b, d, y_{1}, y_{2}, y_{4}, y_{5}, y_{6}\right\}$ spans a blue graph containing H_{2}.
- If $\left\{y_{1}, y_{2}, y_{7}\right\} \subseteq N_{R}(e)$ or if $\left\{y_{1}, y_{2}, y_{7}\right\} \subseteq N_{R}(f)$ then $\left\{b, c, y_{1}, y_{2}, y_{3}, y_{4}, y_{7}\right\}$ spans a blue graph containing H_{2}.
Altogether this means $\left|N_{R}(e) \cap\left\{y_{3}, y_{4}, y_{5}, y_{6}\right\}\right| \leqslant 2,\left|N_{R}(e) \cap\left\{y_{1}, y_{2}, y_{7}\right\}\right| \leqslant 2, \mid N_{R}(f)$ $\cap\left\{y_{3}, y_{4}, y_{5}, y_{6}\right\} \mid \leqslant 2$ and $\left|N_{R}(f) \cap\left\{y_{1}, y_{2}, y_{7}\right\}\right| \leqslant 2$.

Suppose $\left\{y_{1}, y_{7}\right\} \subseteq N_{R}(e)$. Considering the fact that $\left|N_{R}(e) \cap\left\{y_{3}, y_{4}, y_{5}, y_{6}\right\}\right| \leqslant 2$ we distinguish the following cases:

- If $\left\{y_{5}, y_{6}\right\} \nsubseteq N_{R}(e)$ then $\left\{a, d, e, y_{2}, y_{5}, y_{6}, y_{7}\right\}$ spans a blue graph containing H_{2}.
- If $\left\{y_{3}, y_{4}\right\} \nsubseteq N_{R}(e)$ then $\left\{b, c, e, y_{2}, y_{3}, y_{4}, y_{7}\right\}$ spans a blue graph containing H_{2}.
- If $\left\{y_{3}, y_{5}\right\},\left\{y_{3}, y_{6}\right\},\left\{y_{4}, y_{5}\right\}$ or $\left\{y_{4}, y_{6}\right\} \nsubseteq N_{R}(e)$ then Y spans a blue $K_{7}-\left(P_{4} \cup P_{2}\right)$. We obtain similar results if we suppose $\left\{y_{1}, y_{7}\right\} \subseteq N_{R}(f),\left\{y_{2}, y_{7}\right\} \subseteq N_{R}(e)$ or $\left\{y_{2}, y_{7}\right\}$ $\subseteq N_{R}(f)$. Hence we conclude that if $y_{7} \in N_{R}(e)\left(N_{R}(f)\right)$ then $y_{1}, y_{2} \notin N_{R}(e)\left(N_{R}(f)\right)$. We also have to avoid a blue $K_{6}-P_{2}$, therefore $y_{1}, y_{2} \notin N_{R}(e)\left(N_{R}(f)\right)$ implies $N_{R}(e) \cap$ $\left\{y_{3}, y_{4}\right\} \geqslant 2$ and $N_{R}(e) \cap\left\{y_{5}, y_{6}\right\} \geqslant 2\left(N_{R}(f) \cap\left\{y_{3}, y_{4}\right\} \geqslant 2\right.$ and $N_{R}(f) \cap\left\{y_{5}, y_{6}\right\} \geqslant$ 2), contradicting $\left|N_{R}(e) \cap\left\{y_{3}, y_{4}, y_{5}, y_{6}\right\}\right| \leqslant 2\left(\left|N_{R}(f) \cap\left\{y_{3}, y_{4}, y_{5}, y_{6}\right\}\right| \leqslant 2\right)$. Thus we may assume $y_{7} \notin N_{R}(e) \cup N_{R}(f)$. Avoiding a blue $K_{7}-\left(P_{4} \cup P_{2}\right)$, possibly spanned by $\left\{b, c, e, f, y_{3}, y_{4}, y_{7}\right\}$, we conclude $y_{3}, y_{4} \in N_{R}(e)$. Now the fact that $\mid N_{R}(e) \cap\left\{y_{3}, y_{4}\right.$, $\left.y_{5}, y_{6}\right\} \mid \leqslant 2$ gives $y_{5}, y_{6} \notin N_{R}(e)$ which implies the existence of a $K_{7}-\left(P_{3} \cup P_{2}\right)$, spanned by $\left\{a, d, e, f, y_{5}, y_{6}, y_{7}\right\}$.

Proof of Theorem 1(c). We assume that there is a two-colouring of K_{13} which avoids both a blue H_{3} and a red triangle. As in the proof of Theorem 1 (a) and (b) we conclude that each two-colouring contains a blue F_{1} (Lemma 1), a blue F_{2} (Lemma 2)
or an induced blue $K_{6}-2 P_{2}$. Since $H_{3} \subseteq F_{2} \subseteq F_{1}$ suppose $X:=\{a, b, c, d, e, f\}$ spans a $K_{6}-2 P_{2}$ in $\langle B\rangle$ where the edges $(a b)$ and $(c d)$ are red. Let $Y:=V(G) \backslash X$. If there is a $y \in Y$ with $N_{R}(y) \cap\{e, f\}=\emptyset$, then the set $X \cup\{y\}$ spans a blue $K_{7}-P_{5}$. Hence we may assume $\left|N_{R}(y) \cap\{e, f\}\right| \geqslant 1$ for all $y \in Y$. Avoiding a blue K_{6} we conclude $\left|N_{R}(e)\right| \leqslant 5$ and $\left|N_{R}(f)\right| \leqslant 5$. Let $\left|N_{R}(e)\right| \geqslant\left|N_{R}(f)\right|$ and consider the following cases: 1. $\left|N_{R}(e)\right|=5$: Since there is no red triangle either $N_{R}(e) \cup\{c\}$ or $N_{R}(e) \cup\{d\}$ spans a blue $K_{6}-P_{3}$. Following Lemma 4 this contradicts our assumption.
2. $\left|N_{R}(e)\right|=4$ and $\left|N_{R}(f)\right|=3$: Let without loss of generality $N_{R}(e):=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$, $N_{R}(f):=\left\{y_{5}, y_{6}, y_{7}\right\} \quad$ and $\quad\left|N_{R}(a) \cap\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}\right| \geqslant\left|N_{R}(b) \cap\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}\right|$. Avoiding a red triangle we obtain $\left|N_{R}(b) \cap\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}\right| \leqslant 2$. Again we find a blue $K_{6}-P_{3}$, this time spanned by $\left\{b, f, y_{1}, y_{2}, y_{3}, y_{4}\right\}$.
3. $\left|N_{R}(e)\right|=4$ and $\left|N_{R}(f)\right|=4$: Let without loss of generality $N_{R}(e):=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ and $N_{R}(f):=\left\{y_{4}, y_{5}, y_{6}, y_{7}\right\}$. Now the following holds:
(a) $N_{R}(x) \cap\left\{y_{1}, y_{2}, y_{3}\right\} \neq \emptyset$ for all $x \in\{a, b, c, d\}$, since otherwise $\left\{x, f, y_{1}, y_{2}, y_{3}\right.$, $\left.y_{4}\right\}$ would span a blue $K_{7}-P_{3}$.
(b) Analogously we conclude $N_{R}(x) \cap\left\{y_{5}, y_{6}, y_{7}\right\} \neq \emptyset$ for all $x \in\{a, b, c, d\}$.
(c) Avoiding a blue F_{3} we conclude $\left|N_{R}\left(x_{i}\right) \cup N_{R}\left(x_{j}\right) \cap\left\{y_{1}, y_{2}, y_{3}\right\}\right| \geqslant 2$ and $\left|N_{R}\left(x_{i}\right) \cup N_{R}\left(x_{j}\right) \cap\left\{y_{5}, y_{6}, y_{7}\right\}\right| \geqslant 2$ for $x_{i} \in\{a, b\}, x_{j} \in\{c, d\}$.
From (a)-(c) we infer that a, b, c or d has two red neighbours in $\left\{y_{1}, y_{2}, y_{3}\right\}$. Say $\left(a y_{1}\right),\left(a y_{2}\right)$ and $\left(b y_{3}\right)$ are red. Without loss of generality it also follows from (c) that $\left(c y_{1}\right)$ and $\left(d y_{2}\right)$ are red edges. Analogously one vertex of $\{a, b, c, d\}$ has two red neighbours in $\left\{y_{5}, y_{6}, y_{7}\right\}$.

- If this is the vertex a, then $\left|N_{R}(a)\right| \geqslant 5$ and together with either c or $d N_{R}(a)$ would span a blue $K_{6}-P_{3}$.
- If the vertex b has two red neighbours in $\left\{y_{5}, y_{6}, y_{7}\right\}$ then suppose $\left(a y_{5}\right),\left(b y_{6}\right)$ and ($b y_{7}$) are red and because of (c) let also $\left(c y_{6}\right)$ and $\left(d y_{7}\right)$ be red. Since at least one of the edges $\left(a y_{4}\right)$ or $\left(b y_{4}\right)$ is blue we find a blue $K_{7}-P_{5}$ spanned by $\left\{a, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}\right\}$ or by $\left\{b, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right\}$.
- If one of the vertices c or d has two red neighbours in $\left\{y_{5}, y_{6}, y_{7}\right\}$ then suppose without loss of generality that $\left(c y_{5}\right),\left(c y_{6}\right),\left(d y_{7}\right),\left(a y_{5}\right)$ and $\left(b y_{6}\right)$ are red. Now either $\left\{a, y_{1}, y_{3}, y_{4}, y_{5}, y_{6}, y_{7}\right\}$ spans a blue $K_{7}-C_{5}$ or $\left\{b, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right\}$ spans a blue $K_{7}-P_{5}$.
Altogether we find in each case a blue graph containing H_{3} which contradicts our assumption.

Proof of Theorem 2(a). Suppose, to the contrary, that there is a two-colouring (R, B) of K_{14} which avoids a blue H_{4} and a red triangle. By Lemma 1 a blue K_{6} gives in particular a blue H_{4}. Hence we conclude $\left|N_{R}(v)\right| \leqslant 5$ for all $v \in V\left(K_{14}\right)$.

First we assume that there is a vertex $v \in V\left(K_{14}\right)$ with at most 4 red and thus at least 9 blue neighbours. It is $r\left(K_{3}, K_{4}\right)-9$ and hence we know that the set $N_{R}(v)$ contains a blue K_{4}, spanned by $Y:=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. Together with the vertex v this gives a blue clique of order five. Let $Z:=V\left(K_{14}\right) \backslash(X \cup Y \cup\{v\})=\left\{z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right\}$. Since there is no blue K_{6} there is at least one red edge in Z, say $\left(z_{1} z_{2}\right) \in\langle R\rangle$. To avoid a blue graph H_{4} - possibly spanned by $Y \cup\left\{v, z_{1}, z_{2}\right\}$ - at least one of the vertices z_{1}
and z_{2} has three red neighbours in Y. And since there is no red triangle either, this in particular implics that $Y \cup\left\{v, z_{2}\right\}$ spans a blue $K_{6}-P_{2}$. Following Lemma 3 there exists a blue F_{2} and hence a blue H_{4}.

Hence we conclude $\left|N_{R}(v)\right|=5$ and thus $\left|N_{B}(v)\right|=8$ for all $v \in V\left(K_{14}\right)$. We start with the vertex $a \in V\left(K_{14}\right)$ and let $X:=N_{R}(a)$ and $Y:=N_{B}(a)$. Since each vertex has exactly five red neighbours and since the set $N_{R}(a)$ spans a clique in $\langle B\rangle$ there are exactly $4 \times 5=20$ red edges between X and Y. By Lemma 3 we have to avoid a blue $K_{6}-P_{2}$, hence we conclude $\left|N_{R}(y)\right| \geqslant 2$ for all $y \in Y$. Altogether there is a vertex $y \in Y$ with two red neighbours in X and three red neighbours in Y. Without loss of generality let $\left(y_{5} y_{6}\right),\left(y_{5} y_{7}\right),\left(y_{5} y_{8}\right),\left(y_{5} x_{1}\right)$ and $\left(y_{5} x_{2}\right) \in\langle R\rangle$. Also let y_{2}, y_{3} and y_{4} be the further red neighbours of x_{2} in Y. Since there is no red triangle at least two of these three vertices are also red neighbours of x_{1}, say $\left(x_{1} y_{3}\right),\left(x_{1} y_{4}\right) \in\langle R\rangle$. Now we consider the vertex y_{1} : Avoiding a blue $K_{6}-P_{2}$ it has at least two red neighbours in each K_{5} :

- y_{1} has two red neighbours in $N_{R}\left(x_{2}\right)$, in particular in the set $\left\{y_{2}, y_{3}, y_{4}\right\}$. Therefore and since there is no red triangle we conclude $\left(x_{1} y_{1}\right) \notin\langle R\rangle$.
- y_{1} has two red neighbours in $N_{R}\left(y_{5}\right)$, in particular in the set $\left\{y_{6}, y_{7}, y_{8}\right\}$ and
- y_{1} has two red neighbours in X, in particular in the set $\left\{x_{3}, x_{4}, x_{5}\right\}$.

Altogether this implies $\left|N_{R}\left(y_{1}\right)\right| \geqslant 6$ and we obtain a contradiction to our assumption.

Proof of Theorem 2(b)-(e). We assume, to the contrary, that there is a two-colouring of K_{14} which avoids both a red triangle and a blue H_{i} where $i=5$ in Theorem 2(b), $i=6$ in Theorem 2(c), $i=7$ in Theorem 2(d) and $i=8$ in Theorem 2(e). As in the proof of Theorem 1 let $X:=\{a, b, c, d, e, f\}$ span a blue K_{6}, a blue $K_{6}-P_{2}$ or a blue $K_{6}-2 P_{2}$. By Lemma 1 and Lemma 3 a blue K_{6} or an induced blue $K_{6}-P_{2}$ gives a blue F_{1} or F_{2} and thus also a blue H_{5}, H_{6}, H_{7} and H_{8}. Hence consider the remaining case that X spans an induced blue $K_{6}-2 P_{2}$ and assume that ($a b$) and ($c d$) are red edges $\left(r\left(K_{3}, K_{6}-2 P_{2}\right)=13\right.$ [4]). Let $Y:=V\left(K_{14}\right) \backslash X=\left\{y_{1}, \ldots, y_{8}\right\},|Y|:=8$. Avoiding a red triangle we get $\left|N_{R}(y) \cap\{a, b\}\right| \leqslant 1$ and $\left|N_{R}(y) \cap\{c, d\}\right| \leqslant 1$ for all $y \in Y$. If there is a vertex $y \in Y$ with $N_{R}(y) \cap\{e, f\}=\emptyset$ then the set $\{y\} \cup X$ spans a blue $K_{7}-P_{5}$. Hence we may assume that $N_{R}(y) \cap\{e, f\} \neq \emptyset$ for all $y \in Y$, which means $\left|Y_{R}(e)\right|+\left|Y_{R}(f)\right| \geqslant 8$. Also let $\left|Y_{R}(e)\right| \geqslant\left|Y_{R}(f)\right| .\left|Y_{R}\left(v_{i}\right)\right| \geqslant 6$ implies a blue K_{6} and following Lemma 1 also a blue F_{1}. Thus we have $5 \geqslant\left|Y_{R}(e)\right| \geqslant\left|Y_{R}(f)\right| \geqslant 3$. Now we have to consider the following possibilities for the choice of $\left|Y_{R}(e)\right|$ and $\left|Y_{R}(f)\right|$:

1. $\left|Y_{R}(e)\right|=5$ and $\left|Y_{R}(e) \cap Y_{R}(f)\right| \leqslant 1$ which means $\left|Y_{R}(f)\right|=3$ or $\left|Y_{R}(f)\right|=4$: This and $Y_{R}(a) \cap Y_{R}(b)=\emptyset$ imply $\left|Y_{R}(x) \cap Y_{R}(e)\right| \leqslant 2$ for $x-a$ or $x-b$. Thus $Y_{R}(e) \cup\{x\}$ $\cup\{f\}$ spans either a blue $K_{7}-P_{4}$ or a blue $K_{7}-\left(P_{3} \cup P_{2}\right)$.
2. $\left|Y_{R}(e)\right|=5$ and $\left|Y_{R}(f)\right|=5$. Let $Y_{R}(e):=\left\{y_{1}, \ldots, y_{5}\right\}$ and $Y_{R}(f):=\left\{y_{4}, \ldots, y_{8}\right\}$. We distinguish two cases:
(a) $\left|Y_{R}(x) \cap\left\{y_{4}, y_{5}\right\}\right|=2$ for at least one $x \in\{a, b, c, d\}-$ say $x=a$. This means that $\left|Y_{R}(b) \cap\left\{y_{4}, y_{5}\right\}\right|=0$. Tu avoid that either $\{b\} \cup\{e\} \cup Y_{R}(f)$ or $\{b\} \cup\{f\} \cup Y_{R}(e)$ spans a $K_{7}-\left(P_{3} \cup P_{2}\right)$ we get $\left|Y_{R}(b) \cap\left\{y_{1}, y_{2}, y_{3}\right\}\right| \geqslant 2$ and $\left|Y_{R}(b) \cap\left\{y_{6}, y_{7}, y_{8}\right\}\right|$ $\geqslant 2$. Let $\left(b y_{1}\right),\left(b y_{2}\right),\left(b y_{6}\right)$ and $\left(b y_{7}\right)$ be red. But then the set $\left\{y_{1}, \ldots, y_{7}\right\}$ spans a blue $K_{7}-P_{3}$.
(b) $\left|Y_{R}(x) \cap\left\{y_{4}, y_{5}\right\}\right| \leqslant 1$ for all $x \in\{a, b, c, d\}$. In particular, this is true for $x=a$ and $x=b$. Also at least one of a or b has at most one red neighbour in $\left\{y_{1}, y_{2}, y_{3}\right\}$ - say a. Now the set $\left\{a, f, y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$ spans a $K_{7}-P_{5}$ in $\langle B\rangle$.
3. $\left|Y_{R}(e)\right|=4$ and $\left|Y_{R}(f)\right|=4$. Let $Y_{R}(e):=\left\{y_{1}, \ldots, y_{4}\right\}$ and $Y_{R}(f):=\left\{y_{5}, \ldots, y_{8}\right\}$. Without loss of generality let $\left|Y_{R}(e) \cap Y_{R}(x)\right| \leqslant 2$ for $x=a$ and $x=c$. Avoiding a blue $K_{7}-P_{4}$ and a blue $K_{7}-\left(P_{3} \cup P_{2}\right)$ we get $\left|Y_{R}(e) \cap Y_{R}(x)\right|=2$ for $x=a$ and $x=c$ and for symmetric reasons for $x=b, d$ as well. Analogously we observe that $\left|Y_{R}(f) \cap Y_{R}(x)\right|=2$ for $x \in\{a, b, c, d\}$. Considering these red neighbours we have four more different cases:
(a) $\left|Y_{R}(a) \cap Y_{R}(c) \cap Y_{R}(e)\right|=2$ and $\left|Y_{R}(a) \cap Y_{R}(c) \cap Y_{R}(f)\right|=2$: Now $Z:=\{b, d, f\}$ $\cup Y_{R}(a)$ spans a blue $K_{7}-P_{3}$.
(b) $\left|Y_{R}(a) \cap Y_{R}(c) \cap Y_{R}(e)\right|=1$ and $\left|Y_{R}(a) \cap Y_{R}(c) \cap Y_{R}(f)\right|=2$: This time Z spans a blue $K_{7}-\left(P_{3} \cup P_{2}\right)$.
(c) $\left|Y_{K}(a) \cap Y_{R}(c) \cap Y_{R}(e)\right|=1$ and $\left|Y_{R}(a) \cap Y_{R}(c) \cap Y_{R}(f)\right|=1$: This gives a blue $K_{7}-P_{5}$, again spanned by Z.
(d) $\left|Y_{R}(a) \cap Y_{R}(c) \cap Y_{R}(e)\right|=0$: This implies $\left|Y_{R}(b) \cap Y_{R}(c) \cap Y_{R}(e)\right|=2$ and according to either (a) or (b), we find a blue $K_{7}-P_{3}$ or a blue $K_{7}-\left(P_{3} \cup P_{2}\right)$.

Proof of Theorem 2(f). Grenda and Harborth [8] proved that in each two-colouring of a K_{14} there is either a red triangle or a blue graph of order seven missing only three edges. In particular, this means that each two-colouring where $\langle R\rangle$ is trianglefree, contains each graph in $\langle B\rangle$ the complement of which contains three isolated edges, a $P_{3} \cup P_{2}$, a P_{4}, a K_{3} and a $K_{1,3}$. The graph H_{9} meets this condition.

Proof of Theorem $\mathbf{3}(\mathbf{c})$. To prove this theorem we consider the following twocolouring of a K_{13} :

Obviously, there is no red K_{3}, hence we have to show that there is no blue graph G either. Therefore we consider the sct $X:=\left\{x_{1}, \ldots, x_{6}\right\}$ and distinguish betwcen the number of elements in X which possibly are vertices of such a graph G.

1. $|X \cap V(G)| \leqslant 2$: at least one vertex of $\left\{x_{9}, x_{10}, x_{11}\right\}$ is in $V(G)$. Since $d_{G}(x) \geqslant 4$ for all $x \in V(G)$ (which means that $\left|N_{R}(x) \cap V(G)\right| \leqslant 2$) at most - and because of $\mid V\left(G \mid=7\right.$ exactly - two vertices of $\left\{x_{7}, x_{8}, x_{12}, x_{13}\right\}$ are in $V(G)$. Thus a second vertex of $\left\{x_{9}, x_{10}, x_{11}\right\}$ is in $V(G)$, which means that there exists a C_{4} in \bar{G}. Hence $\bar{G} \nsubseteq C_{5}, \bar{G} \nsubseteq C_{6}$ and $\bar{G} \nsubseteq C_{7}$.
2. $|X \cap V(G)|=3$: either x_{7} or x_{8} are not in $V(G)$, since otherwise $d_{G}(x) \leqslant 3$ for at least one $x \in V(G)$ or $C_{4} \subseteq \bar{G}$. Analogous to 1 , we conclude that two vertices of $\left\{x_{9}, x_{10}, x_{11}\right\}$ and two vertices of $\left\{x_{7}, x_{8}, x_{12}, x_{13}\right\}$ are in $V(G)$ which gives a C_{4} in \bar{G}. Again we conclude $\bar{G} \nsubseteq C_{5}, \bar{G} \nsubseteq C_{6}$ and $\bar{G} \nsubseteq C_{7}$.
3. $|X \cap V(G)| \geqslant 4$: this directly gives $d_{G}(x) \leqslant 3$ for at least one vertex $x \in V(G)$ or the existence of a C_{4} in \bar{G} and thus $\bar{G} \nsubseteq C_{5}, \bar{G} \nsubseteq C_{6}$ and $\bar{G} \nsubseteq C_{7}$.

Proof of Theorem 4(a). This time we use that Grenda and Harborth [8] proved that in each two-colouring of a K_{17} there is either a red triangle or a blue graph of order seven missing only two edges. In particular, this means that each two-colouring where $\langle R\rangle$ is triangle-free, contains each graph in $\langle B\rangle$ the complement of which contains two adjacent edges as well as two isolated edges. The largest graphs meeting this condition are the $K_{7}-P_{4}$ and the $K_{7}-\left(P_{3} \cup P_{2}\right)$.

Proof of Theorem 6. [5] gives $r\left(K_{3}, K_{6}\right)=18$. Thus Lemma 2 already proves this result.

Remark. During the preparation of this paper in summer 1995 we were informed by Gunnar Brinkmann about the existence of the Master's thesis "Ramsey numbers involving a triangle: theory \& algorithms" by Xia Jin finished in August 1993 at the Rochester Institute of Technology. Using efficient algorithms he computed all trianglegraph Ramsey numbers for connected graphs of order seven.

Unfortunately, there are some strange inconsistencies in the presentation of the 853 numbers implying that several of these numbers are not correct.

References

[1] R. Bolze, H. Harborth, The Ramsey number $r\left(K_{4}-x, K_{5}\right)$, Theory and Application of Graphs, Kalamazoo, MI, 1980, Wiley, New York, 1981, pp. 109-116.
[2] V. Chvatal, F. Harary, Generalized Ramsey theory for graphs, II. Small diagonal numbers, Proc. Am. Math. Soc. 32 (1972) 389-394.
[3] V. Chvatal, F. Harary, Generalized Ramsey theory for graphs, III. Small off-diagonal numbers, Pacific J. Math. 41 (1972) 335345.
[4] M. Clancy, Some small Ramsey numbers, J. Graph Theory 1 (1977) 89-91.
[5] R.J. Faudree, R.H. Rousseau, R.H. Schelp, All triangle-graph Ramsey numbers for connected graphs on order Six, J. Graph Theory 4 (1980) 293-300.
[6] G. Exoo, H. Harborth, I. Mengersen, The Ramsey number of K_{4} versus $K_{5}-e$, Ars Combin. A25 (1988) 277-286.
[7] J.E. Graver, J. Yackel, Some graph theoretic results associated with Ramsey's Theorem, J. Combin. Theory 4 (1968) 125-175.
[8] U. Grenda, H. Harborth, The Ramsey Number $r\left(K_{3}, K_{7}-P_{2}\right)$ J. Combin. Inf. Syst. Sci. 7 (2) (1982) 166-169.
[9] F. Harary, E.M. Palmer, Graphical Enumeration, Academic Press, New York and London, 1973.
[10] G.R.T. Hendry, Ramsey Numbers for Graphs with Five Vertices, J. Graph Theory 13 (2) (1989) 245-248.
[11] G.R.T. Hendry, The Ramsey numbers $r\left(K_{2}+\overline{K_{3}}, K_{4}\right)$ and $r\left(K_{1}+C_{4}, K_{4}\right)$, Utilitas Math. 35 (1989) 40-54 and Utilitas Math. 36 (1989) 25-32.
[12] B.D. McKay, S.P. Radziszowski, $R(4,5)=25$, J. Graph Theory 19 (3) (1995) 309-322.
[13] S.P. Radziszowski, Small Ramsey Numbers, Technical Report RIT-TR-93-009, Department of Computer Science, Rochester Institute of Technology (1993) update submitted.

[^0]: * Corresponding author. E-mail: schelten@math.tu-cottbus.de.

