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Abstract 

The triangle-graph Ramsey numbers are determined for all 814 of the 853 connected graphs 
of order seven. For the remaining 39 graphs lower and upper bounds are improved. 

1. Introduction 

We consider finite, undirected graphs G = (Y(G),_!?(G)) without loops or multiple 

edges. By a two-colouring (R,B) we mean a colouring of the edges of G with two 

different colours, say red and blue. (R) ((B)) denotes the subgraph of G, which is 

induced by the red (blue) edges. Pp is the path, C, the cycle and Kp the complete 

graph on p vertices. Also we say Kp 4 (Gl, G2) if for each two-colouring of Kp either 

(R) contains G1 (a subgraph isomorphic to G,) or (B) contains G2. Now we define 

the Ramsey number r(G1, G2) of two graphs G1 and GZ as the minimum pi N where 

K,+(Gl,Gz). 
So far almost all Ramsey numbers for pairs of graphs G1 and G2 of order at most 

five are known: Chvatal and Harary found all Ramsey numbers r(G1, Gz) where the 

order of both graphs is at most four [2, 31. In [4], Clancy listed all Ramsey numbers 

where 1 GI 1 < 4 and 1 G2 I= 5 except for five pairs of graph. These remaining numbers 

were determined by Bolze and Harborth [I], Exoo et al. [6] and by Hendry [l 11. Very 

recently r(K4, KS) = 25 has been proved by McKay and Radziszowski [12]. In [lo], 

Hendry almost completed the list with those of /GlI = 5 except for six pairs. For a 

complete list of all known Ramsey numbers see also [13]. In 1980 Faudree, Rousseau 

and Schelp published ‘All triangle-graph Ramsey numbers for connected graphs of 

order six’ [5]. In this paper we study the Ramsey numbers r(K3, G) for connected 

graphs G of order seven. According to Harary and Palmer [9] there are 853 different 
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connected graphs G on seven vertices. Our Theorem 1 settles already 760 cases, but 

nevertheless the remaining cases require a more detailed analysis. 

Like in [5] we will use further notations: For a vertex u E V(G) we denote its 
neighbourhood in (R) or (B) by NR(u) or Ns(u), respectively. X,(u) means NR(u) nx, 
where X is a subset of V(G) and u is a vertex in V(G) (J&(u) := Ns(u) nX likewise). 

2. Results 

To find a lower bound for these Ramsey numbers we have to construct a two- 
colouring of a complete graph which avoids both a red triangle and any connected 

graph of order seven. Considering the following two-colouring of Ki2 (there are two 
completely blue coloured K6, joined only by red edges) we conclude that r(K3, G) 3 13 

for all connected graphs of order seven. In this figure we indicate red edges by dotted 

and blue ones by normal lines. 

: 

K6 r -5. 
*...-.. . ..- 

‘..:‘.. ..I:..” 
:: 
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Since Graver and Yackel proved r(K3, K7) = 23 [7] the Ramsey numbers r(K3, G) 
for G connected and ]GI = 7 are bounded by 13 and 23. Now we are looking for those 
connected graphs the triangle-graph Ramsey number of which is equal to 13. Here we 

are able to prove: 

Theorem 1. (a) r(K3, G) < 13 fir all connected graphs G CH, where 

. 
/ 

. 

K= / . 

(b) r(K3, G) < 13 for all connected graphs G C H2 where 

(c) r(K3, G) < 13 for all connected graphs G C H3 where 
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This theorem already reduces the number of graphs with Ramsey number possibly 

greater than 13 to 83. We computed a complete list of those remaining graphs. The 

following theorems give the exact Ramsey numbers for 64 of these graphs. For the 

others they improve lower and upper bounds. 

Theorem 2. (a) r(KJ, G) 6 14 for cl11 connected graphs G C H4 where 

(b) r(Kx, G) 6 14 for all connected graphs G C H5 where 

(c) r(K3, G) < 14 for all connected graphs G C: H6 where 

(d) r(Kx, G) 6 14 for all connected graphs G C H7 where 

(e) r(K3, G) d 14 for all connected graphs G C HE where 

i& LxL- 

(0 r(K3,G) < 14f or all connected graphs G 2 HS where 

This theorem decreases the upper bound for 49 of these graphs to 14. The following 

theorem increases the lower bound for 36 of those graphs to 14 as well. 

The fact that r(K3, KS) = 14 [4] proves Theorem 3(a). Analogously the equation 

r(K3,Kb - K3) = 14 [5] gives Theorem 3(b), Theorem 3(c) is proved in the next 

section. 
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Theorem 3. (a) r(K3, G) 3 14 for all connected graphs G containing a complete sub- 
graph on 5 vertices. 

(b) r(K3, G) 3 14 f or all connected graphs G containing a Ke - K3. 

(c) r(K3,G) 3 14 for all connected graphs G containing a K7 - Ci, where i = 
$6 or 7. 

Theorem 4. (a) r(K3, G) 6 17 for all connected graphs G the complement of which 
contains a P3 U P2. 

(b) r(K3,G) 6 17 for all connected graphs G the complement of which contains 
a Pd. 

From Theorem 4 it follows that 17 is an upper bound for at least 35 of the 83 

graphs. 

Theorem 5. r(K3, G) 3 17 for all conncected graphs containing a Ke - P2. 

Theorem 5 is a simple conclusion from the fact that r(K3,KG - P2) = 17 [4]. 

Theorem 6. r(K3, G) < 18 for each connected graph on seven vertices G the comple- 
ment of which contains a path on three vertices. 

The previous theorem gives a new upper bound for 5 of the 83 graphs. 

The next theorem follows from the fact that r(K3, Ke) is equal to 18 [5]. 

Theorem 7. r(K3,G) 2 18 for all connected graphs G containing a K6. 

Thus r(K3, G) = 18 for these 5 graphs. 

In 1982 Grenda and Harborth [8] proved the following theorem: 

Theorem 8. r(K3, K7 - P2) = 2 1. 

Altogether we find that the triangle-graph Ramsey number is for at least 760 con- 

nected graphs of order seven equal to 13, for at least 36 equal to 14, for at least 11 

equal to 17, for at least 5 equal to 18, for at least one equal to 21 and for exactly one 

equal to 23. The Ramsey numbers for the remaining 39 graphs are mostly bounded by 

14 and 17 or by 13 and 14. 

3. Proofs 

First of all we prove three lemmas, which are often used in the sequel. 

Lemma 1. Suppose H is a complete graph on at least 13 vertices with red and blue 
coloured edges. Assume that there is no red triangle, but a blue Kc. Then we conclude 
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that there is also a blue Fl where 

Proof. Let X := {XI,. .,x6} span the blue K6 and let Y := V(H)\X, IYl 2 7 and 

Y(X,R):= {ye Y IX,&)> l/ZlXl}. Ob viously XR(Yl)nXR(Y2)#0 and thus (YlY2)E 

(B) for all yl, y2 E Y&R). Hence the set Y(X,R) spans a complete graph in (B). Now 

we consider two different cases: 

l (Y(X,R)l 2 7 implies that there is a K7 in (B). 

l If IY(X,R)l<7 then there is a vertex YEY with IX,(y)1 < 1/2/X1 =3 which gives 

a graph Fl in (B) spanned by X U {y}. 0 

Lemma 2. This time suppose H is a complete graph on at least 17 vertices. Again 
assume that there is no red triangle, but a blue K6. Then we conclude that there is 
also a blue K7 - P3. 

Proof. Again let X := {xl,. . . ,x6} span the blue KG, Y := V(H)\X, IYI 3 11 and 

assume that there is no blue K7 - P3. If there is a vertex y E Y with IXR(Y)I < 2 then 

we directly get a contradiction. Thus we may assume I&(y)1 b 3 for all ye Y. This 

means that at least 3 x 11 = 33 red edges join X and Y. Avoiding a blue KI we can 

choose IYR(x1)I = 6 and let YR(x~) :=X’ = {XT,. . . ,x12}. Obviously, X’ spans a second 

Kb. To avoid a blue K7 - P3 each of the remaining vertices {xis,xi4,. . .} has at least 

three red neighbours in each K6. Say X” = {x~,x~,x~,x~,xs,x~} are the red neighbours 

of xl3 which also spans a KG, Again we either get a blue K7 - 9 or there are at least 

3 x 4= 12 red edges between X” and {x~4,xis,xi6,xir}. The last conclusion implies 

that there is a vertex x&X” with two red neighbours in {xi4,xi5,x16,xi7}, let the edges 

(x7x14) and (~7x1s) be red. In addition x7 has three red neighbours in X, and since 

X” = {x~,x=,,x~,x7,xs,xg} spans a blue K6 these are the vertices x1,x2 and x3. Hence 

the set X”‘:=={X~,X~,X~,X~~,X~~,X~~} spans one more complete graph on six vertices. 

Following the same arguments x4 has three red neighbours in X’ and three in X”‘, in 

fact those are x~o,x~~,x~~,xI~,xI~ and x15. Altogether we find five complete subgraphs 

of order six containing the vertices {xi,. . , x15}. Furthermore, the vertex xi,5 has at least 

three red neighbours in each K6, which implies that INR(x~~)I 2 8 and thus we either 

find a blue K7 - P3 or a blue KS. Both give a contradiction to our assumption. 0 

Lemma 3. Again suppose H with IV(H)1 b 13 is a complete graph, coloured blue 
and red. If there is no red triangle but a blue K6 - P2 then there exists a blue F2 
where 



194 A. Schelten, I. SchiermeyerlDiscrete Applied Mathematics 79 (1997) 189-200 

Proof. If there is a blue clique of six vertices we conclude that there is also a blue F2 

by Lemma 3. Hence let X := {x1, . . .,x6} span a blue K6 - P2 where the edge (~1x2) is 

red and let Y := V(H)\X, IY] 2 7. If there is a vertex YE Y with lX~(y) n {xs,xq,xg,xg}] 

=: (XL(y)] < 2 then 

IX;(y)] > 3 for all 

l/Z]X’]} 2 7. As in 

by Y(X’,R). 0 

X U {y} spans a blue graph containing F2. Hence we may assume 

YE Y, which in particular means IY(X’,R)l := j{y~ Y IX;(y)> 

the proof of Lemma 1 it follows that there is a blue K7, spanned 

Lemma 4. Suppose H is a complete graph on at least 13 vertices with red and blue 
coloured edges. Assume that there is no red triangle, but a blue K6 - Pj. Then we 
conclude that there is also a blue F3 where 

Proof. Using Lemma 1 and Lemma 3 we assume that X := {x1,. . . ,x6} spans an in- 

duced blue K6 - P3 where (~1x2) and (~2x3) are red edges and let Y := V(H)\X, (YI > 7, 
X’:= {xq,xg,xg}. Again we consider the set IY(X’,R)] := [{YE Y IX;(y)> 1/2JX’l}. 

Since (yiyj)~ (B) for all yi,yiE Y(X’,R) (proof of Lemma 1) ]Y(X’,R)I 3 6 would 

give a complete graph on six vertices in (B) and thus by Lemma 1 in particular a blue 

graph FJ. Hence we may assume that there is a vertex y E Y with IX;(y)] < 1. Avoid- 

ing a red triangle the set X U {y} spans either a blue F3 or a blue graph containing 

F3. 0 

Proof of Theorem l(a). Let V(K13) = {a, b,c,d,e, f,y~,. . . , ~7) and suppose there 

is a two-colouring of K~J which avoids both a red triangle and a blue HI. In [4] 

Faudree et al. proved r(K3, K6 - 2P2) = 13. Since our two-colouring avoids a red K3, 

assume that X := {a, b, c,d, e, f} spans a K6, a K6 - PZ or a K6 - 2P2 in (B). 

l X spans a blue K6. By Lemma 1 there exists a blue Fl. 
l X spans a blue KS - 9. By Lemma 3 there exists a blue F2. 

b Let X span a blue K6 - 2P2 where (ab),(cd) are the red edges. Avoiding a red 

triangle we also know INR(y)n{ab}l d 1 and IN..(y)n{cd}l d 1 for all YE Y:= 

V(Ki3)\X Furthermore, (B) contains no K,. Thus we find at least one red edge, say 

(yiy2), in Y. Also we note INR(yt)n {e,f}l+ IN~(yz)n {e,f}l G 2. This implies 

that either {yi } UX or {yz} UX spans a blue Hi. 

Altogether we know that each two-colouring of a K 13 which avoids any red triangle 

contains a blue Fl, a blue F2 or a blue HI. Since HI C F2 C: FI we conclude that all 

these two-colourings contain at least a blue HI which contradicts our assumption. 0 

Proof of Theorem l(b). We assume that there is a two-colouring of K13 which avoids 

a blue H2 as well as a red K3. Again we conclude from r(K3, KG - 2P2) = 13 that 

there is a blue KG, an induced blue K6 - PZ or an induced blue KG - 2P2. Following 
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Lemma 1 and Lemma 3 we conclude that the existence of a blue KG or an induced 

blue K6 - P2 implies a blue Fi, F2, respectively. In particular, a blue K6 and an induced 

blue K6 - P2 give a blue H2. Thus assume that there is a blue K6 - 2P2 spanned by 

X := {a,b,c,d,e,f}, where (ab) and (cd) are red edges. Let Y := V(Klj)\X, A:={a,b}, 
C:={c,d}andE:={e,f}.Ifthereisavertexy~Ywith~N~(y)~{a,b,c,d}~ < 1 then 

there is a blue H2 - spanned by {a, b,c,d,e, f, y}. Hence lA~(y)l = 1 and [CR(~)/ = 1 

for all y E Y which implies I&.(A)/ = 7 and IX,(C)1 = 7. This and the fact that the exis- 

tence of a blue K6 contradicts our assumption means that one vertex of a and b and one 

of c and d has exactly four red neighbours in Y. Say the edges (uyl), (uyz), (uy3), (uyd), 

(by5),(by6) and (by,) are red. To avoid a blue K6 - P2 (Lemma 3) c as well as 

d has exactly two red neighbours in {yt, y2, ys, ~4). Without loss of generality let 

(cyi ), (cy2), (dy3) and (dy4) be red. Furthermore, each vertex of {ys, yg, ~7) has one 

red neighbour in C - say (cys), (Cye),(dy,)E (R). Now we consider different cases: 

l lf {y3,~4,y5} cJG(e) or if {Y~,Y~,YS} GNR(f) then {~,c,YI,Y~,Y~,Y~,Ys} Spans 

a blue graph containing Hz. 

. If (y3, y4, Y6) c NR(e) or if {Y3, Y4, Yb} c NR(f) then {b> C> yl, Yz> Y3, Y4, Y6) spans a 
blue graph containing Hz. 

. lf {y3,y5,y6}CNR(e) Or if {y3,y5>y6}CNR(f) then {brd,y1,y2,y3,y5,y6} spans 

a blue graph containing H2. 

. If {y4ryhy6}CNR(e) Or if{y4,ys,y6}C:NR(f)then (b,d,)'l,yz,y4,y5,y6) spans a 
blue graph containing HI. 

l If {YI,Y~,.v~} GNR(e) or if {ylT.Y2,y7}CNR(f) then {b,c,yl,y2,y3,y4,y7} spans 

a blue graph containing Hz. 

Altogether this means iNR(e) n (~3, ~4, ~5, y6)i 6 2, INR(e) n (~1, ~2, ~711 G 2, INR(.f) 

n{y3,y-19y5,y6}i 6 2 and I~R(f)~{%y2d7)~ < 2. 

Suppose { yl, ~7) c NR(e). Considering the fact that IA’!.!.(e) n { ~3, ~4, y5, y6}( 6 2 we 

distinguish the following cases: 

0 If {y5,y6} 9 NR(e) then {~,d,e,y2,ys,y6, y7) spans a blue graph COntaining HZ. 

l If (~3, ~4) g NR(e) then {b,c,e, ~2, ~3, y4,y7} spans a blue graph containing Hz. 

l lf {Y3, Y5}, {Y3, y6}, {Y49 Y5) Or {Y4, Y6) sf= NR(e) then Y spans a blue K7 - (P4 U p2 ). 

We obtain similar results if we suppose { ~1, y7) C ffR( f), { y2, y7) & NR(e) or { y2, y7) 

C NR( f). Hence we conclude that if y7 ENR(e) (NR( f)) then ye, y2 $! N,(e) (&(f)). 

We also have to avoid a blue K6 - P2, therefore yl, y2 @NR(e) (NR(f)) implies &(e)n 

{Y3,Y4) 32 and NR(e)n{y5,y6) 32 (NR(f')n{y3,y4) 22 and NR(f)n{y5,yh} 2 

2), contradicting INR(e)n{y3,y4~y5~y6)I 6 2 (INR(f)n{y3,y4,Y5,Y6}1 G 2). Thus we 

may assume y7 @N,(e) U NR( f). Avoiding a blue KT - (I’4 U P2), possibly spanned by 

{b,c,e,f’,ys,y4, y7}, we conclude ~3, y4 E%(e). Now the fact that Ifi( (~3, y4, 

y5, y6) I < 2 gives y5, y6 $!NR(e) which implieS the existence of a K7 - (4 UP2), 

Spanned by {a,d,e,.f,Y5,~6,~7}. 0 

Proof of Theorem l(c). We assume that there is a two-colouring of K~J which avoids 

both a blue H3 and a red triangle. As in the proof of Theorem 1 (a) and (b) we 

conclude that each two-colouring contains a blue FI (Lemma l), a blue F2 (Lemma 2) 
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or an induced blue K6 - 2P2. Since H3 C F2 G F, suppose X := {a, b, c, d, e, f } spans a 

KG - 2P2 in (B) where the edges (ab) and (cd) are red. Let Y := V(G)\X. If there 

is a YE Y with NR(y) fl {e, S} = 0, then the set X U {y} spans a blue K7 -Pg. Hence 

we may assume [J&(y) f? {e, f} 1 2 1 f or all y E Y. Avoiding a blue K6 we conclude 

I&(e)1 d 5 and jNR(f)l 6 5. Let INR(e)l b I&(f)1 an consider the following cases: d 

1. /NR(e)l =5: Since there is no red triangle either &(e)U {c} or bk(e)U {d} spans 

a blue K6 - Pj. Following Lemma 4 this contradicts our assumption. 

2. IN&(e)1 = 4 and INR( f)l = 3: Let without loss of generality NR(e) := {yi, Yz, y3, yd}, 

NR(f):= {y5,y6ry7) and I~R(~)~{yl,y2,Y3,y4}1 2 INR(b)n{Yl,Y2,Y3,Y4}1. 
Avoiding a red triangle we obtain INR(b) n {yi, ~2, ~3, y4}1 6 2. Again we find a 

blue K6 - P3, this time spanned by {b, f, y1, y2, y3, y4). 
3. I&(e)1 = 4 and INR(f)l = 4: Let without loss of generality N,(e) := {yi, ~2, ys, ~4) 

and NR(f) := (~4, ~5, y6, ~7). Now the following holds: 

(a) NR(x)n {yl,y2,y3} #@ for all xE {u,b,c,d}, since othemise {x,~,YI,Y~,Y~, 

y4) would span a blue K7 - P3. 

(b) Analogously we conclude N,(x) n (~5, y6, ~7) # 8 for all x E {a, 6, c, d}. 
(c) Avoiding a blue F3 we conclude INR(xi) UNR(X~) fl {yl, yz, ys}[ 2 2 and 

~~(~i)u~R(~/.)~{y5,y6,y7}~~2 forxi~{u,b},xj~{~~d}~ 

From (a)-(c) we infer that a, b,c or d has two red neighbours in {yi,y2,ys}. Say 

(uyl),(uy2) and (by3) are red. Without loss of generality it also follows from (c) 

that (cyi) and (dy2) are red edges. Analogously one vertex of {a, b, c,d} has two 

red neighbours in {y5,y6,y7}. 

l If this is the vertex a, then INR(u)I > 5 and together with either c or d ?&(a) 

would span a blue K6 - P3. 

l If the vertex b has two red neighbours in (~5, y6, ~7) then suppose (uy5),(by6) 

and (by7) are red and because of (c) let also (cy6) and (dy7) be red. Since at 

least one of the edges (uy4) or (by4) is blue we find a blue K7 - P5 spanned by 

{u,~2,~3,~4,Y5,~6,~7} Or by {b,YI,Y2,y3,Y4,Y5,Y6}. 
l If one of the vertices c or d has two red neighbours in {ys,y6,y7} then suppose 

without loss of generality that (cy5),(cy6),(dy7),(uy5) and (bye) are red. Now 

either {a,y~,y3,~4,y5,y6,~7} spans a blue K7 - G5 or {b,yl,y2,~3,~4,~5,y6} 

spans a blue K7 - Ps. 

Altogether we find in each case a blue graph containing Hs which contradicts our 

assumption. 0 

Proof of Theorem 2(a). Suppose, to the contrary, that there is a two-colouring (R,B) 

of Ki4 which avoids a blue H4 and a red triangle. By Lemma 1 a blue K6 gives in 

particular a blue H4. Hence we conclude l&(0)1 < 5 for all u E V(Ki4). 

First we assume that there is a vertex v E V(K14) with at most 4 red and thus at 

least 9 blue neighbours. It is r(Ks,K4) = 9 and hence we know that the set NR(a) 

contains a blue K4, spanned by Y := { yi , ~2, y3, ~4). Together with the vertex v this 

gives a blue clique of order five. Let Z := V(Ki4)\(X U Y U {u}) = {z1,.@,z3,z4,z5}. 

Since there is no blue K6 there is at least one red edge in Z, say (zizz) E (R). To avoid 

a blue graph H4 - possibly spanned by Y U {u, z1 ,z2} - at least one of the vertices zi 
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and z2 has three red neighbours in Y. And since there is no red triangle either, this 

in particular implies that Y U {u,zz} spans a blue Kb - Pz. Following Lemma 3 there 

exists a blue F2 and hence a blue HJ. 
Hence we conclude 1&(c)l= 5 and thus INS(C)\ = 8 for all v E V(Kt4). We start with 

the vertex a E V(Kr4) and let X :=NR(u) and Y :=Ns(a). Since each vertex has exactly 

five red neighbours and since the set NR(u) spans a clique in (B) there are exactly 

4 x 5 = 20 red edges between X and Y. By Lemma 3 we have to avoid a blue K6 - Pz, 

hence we conclude /Nil > 2 for all y E Y. Altogether there is a vertex y E Y with 

two red neighbours in X and three red neighbours in Y. Without loss of generality let 

(Y~YC~),(Y~Y~),(Y~YS),(YSXI) and (ySx2) E (R). Also let ~2, ~3 and ~4 be the further 

red neighbours of x2 in Y. Since there is no red triangle at least two of these three 

vertices are also red neighbours of nl, say (xl y3), (ncly4) E (R). Now we consider the 

vertex yr: Avoiding a blue KG - P2 it has at least two red neighbours in each KS: 

l yl has two red neighbours in NR(x~), in particular in the set (~2, ~3, ~4). Therefore 

and since there is no red triangle we conclude (x1 yr )$(R). 

l yr has two red neighbours in No, in particular in the set {ye, ~7, ys} and 

l y, has two red neighbours in X, in particular in the set {x3,x4,x5}. 

Altogether this implies IiV~(yr )I > 6 and we obtain a contradiction to our assumption. 

Proof of Theorem 2(b)-(e). We assume, to the contrary, that there is a two-colouring 

of K14 which avoids both a red triangle and a blue Hi where i = 5 in Theorem 2(b), 

i=6 in Theorem 2(c), i=7 in Theorem 2(d) and i= 8 in Theorem 2(e). As in the 

proof of Theorem 1 let X := {a, b, c,d, e,f} span a blue Kh, a blue K6 - PZ or a 

blue K6 - 2P2. By Lemma 1 and Lemma 3 a blue K6 or an induced blue K6 - P2 
gives a blue Fr or FZ and thus also a blue Hs, Hh, H7 and Hg. Hence consider the 

remaining case that X spans an induced blue Kb - 2P2 and assume that (ub) and (cd) 

are red edges (r(Kj,Kb-2P2)=13 [4]). Let Y:=V(K14)\X={yl,...,ys}, lYI=8. 
Avoiding a red triangle we get INR(y)n{u,b}l d 1 and INR(y)n{c,d}l d 1 for all 

YEY. If there is a vertex ~VEY with NR(y)n{e,f‘}=0 then the set {y}UX spans 

a blue K7 - P5. Hence we may assume that NR(Y) n {e,f} # 0 for all y E Y, which 

means IYR(e)l + lY~(f)i > 8. Also let (YR(e)l > lY~(f)l. lY~(v,)l > 6 implies a blue Kh 
and following Lemma 1 also a blue PI. Thus we have 5 3 IYR(e)l 2 IY,(f)l 2 3. Now 

we have to consider the following possibilities for the choice of lYR(e)l and IYR(f)l: 

1. 

2. 

(YR(e)[ =5 and IYR(e)n Y,(f)1 d 1 which means lY~(f)l=3 or [Y,(f)1 =4: This 

and Y,(u) n YR(b) = 0 imply IYR(x) f? YR(e)l d 2 for x = u or x = b. Thus YR(e) U {x} 

u (f} spans either a blue K7 - P4 or a blue K7 - (Pj U Pz). 
iY,(e)J = 5 and [Y~(f)l = 5. Let YR(e) := {yl,. . ,y5} and YR(~) := (~4,. , ys}. We 

distinguish two cases: 

(a) I YR(x) n { y4, y5) I = 2 for at least one x E {a, b, c, d} - say x = a. This means that 

IY~(b)n{y4,ys}l =O. To avoid that either {b}u(e}UY~(f) or {b}U{f}U YR(e) 

sPansaK7-(P3UPz)Weget (YR(b)n{yl,y2,y3}l~2andIYR(b)n{Yb,y7,ys}l 

3 2. Let (byl),(byz),(bys) and (bys) be red. But then the set {yr,. . .,y7} spans 

a blue K7 - P3. 
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3. 

(b) ( YR(x) fl {y4, ys} 1 < 1 for all x E {a, b, c, d}. In particular, this is true for x = a 
and x = b. Also at least one of a or b has at most one red neighbour in 

{Y~,YZ,Y~} - say a. Now the set {~.f,~1,y2,~3,~4,~5) spans a K7-P5 in (B). 
jYR(e)(=4 and ]Y~(f)]=4. Let YR(e):={yi,...,y4} and YR(~):={~~,...,YS}. 
Without loss of generality let IYR(e) n YR(x)] < 2 for x = a and x = c. Avoiding a 

blue K7 - P4 and a blue K7 - (P3 U P2) we get IYR(e)n YR(x)~ =2 for x=u and 
x = c and for symmetric reasons for x = b,d as well. Analogously we observe that 

[r,(f) f-l &(x)1 =2 f or x E {a, b, c, d}. Considering these red neighbours we have 

four more different cases: 

(a) IYR(a)nYR(C)nY,(e)l=2 and jYR(a)nY&)n&(f)l=2: NOW Z:={b,d,f} 

U YR(u) spans a blue K7 - Ps. 
(b) ]YR(a) n YR(c) n YR(e)l = 1 and IYR(a) n G(c) n G(f)1 = 2: This time Z spans a 

blue KT - (P3 U P2). 
(C) [&(a) n &(c) n YR(e)l = 1 and IYR(a) n h(c) n Y?(f)] = 1: This gives a blue 

K7 - Pg, again spanned by Z. 
(d) ]YR(a) n YR(c) n YR(e)l = 0: This implies I&(b) n G(c) n h(e)1 = 2 and accord- 

ing to either ,(a) or (b), we find a blue K7 - P3 or a blue K7 - (P3 U P2). 0 

Proof of Theorem 2(f). Grenda and Harborth [S] proved that in each two-colouring 

of a Kt4 there is either a red triangle or a blue graph of order seven missing only 

three edges. In particular, this means that each two-colouring where (R) is triangle- 
free, contains each graph in (B) the complement of which contains three isolated edges, 

a P3 U P2, a P4, a K3 and a Kt,3. The graph Hg meets this condition. Cl 

Proof of Theorem 3(c). To prove this theorem we consider the following two- 

colouring of a Ki3: 

212 x13 

e e- cf e ges 

26 
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Obviously, there is no red K3, hence we have to show that there is no blue graph 

G either. Therefore we consider the set X := {xi , . . . ,x6} and distinguish between the 

number of elements in X which possibly are vertices of such a graph G. 

1. IXn V(G)1 62: at least one vertex of {x~,x~o,x~I} iS in V(G). Since do(X)>4 

for all x E V(G) (which means that IN&) n V(G)] 6 2) at most - and because of 

/V(G] =7 exactly - two vertices of {x7,xs,xi~,x1s} are in V(G). Thus a second 

vertex of {x9,xro,xi1} is in V(G), which means that there exists a Cd in G. Hence 

G $ CS, G g C6 and G $$ CT. 

2. IX n V(G)1 = 3: either x7 or xg are not in l’(G), since otherwise do(X) 6 3 for at 

least one x E V(G) or Cd C G. Analogous to 1, we conclude that two vertices of 

{x9,xrn,xiI} and two vertices of {x7,xS,x12,xi3} are in V(G) which gives a C, in 

G. Again we conclude G $ C,, G $ C6 and G $ CT. 

3. IX f’ V(G)1 > 4: this directly gives &(x) f 3 for at least one vertex x E V(G) or 

the existence of a Cd in G and thus G $ Cg, G 9 CS and G $ CT. cl 

Proof of Theorem 4(a). This time we use that Grenda and Harborth [8] proved that 

in each two-colouring of a K17 there is either a red triangle or a blue graph of order 

seven missing only two edges. In particular, this means that each two-colouring where 

(R) is triangle-free, contains each graph in (B) the complement of which contains two 

adjacent edges as well as two isolated edges. The largest graphs meeting this condition 

are the K7 - PA and the K7 - (P3 U P2). 0 

Proof of Theorem 6. [Sj gives r(K3,K6) = 18. Thus Lemma 2 already proves this 

result. 0 

Remark. During the preparation of this paper in summer 1995 we were informed 

by Gunnar Brinkmann about the existence of the Master’s thesis “Ramsey numbers 

involving a triangle: theory & algorithms” by Xia Jin finished in August 1993 at the 

Rochester Institute of Technology. Using efficient algorithms he computed all triangle- 

graph Ramsey numbers for connected graphs of order seven. 

Unfortunately, there are some strange inconsistencies in the presentation of the 853 

numbers implying that several of these numbers are not correct. 
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