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Background: An important prerequisite for computa- potential new drug against AIDS, into HIV-l protease. 
tional structure-based drug design is prediction of the For this molecule, which has nine rotatable bonds, the 
structures of ligand-protein complexes that have not yet crystal structure was reproduced within 1.5 A root- 
been experimentally determined by X-ray crystallogra- mean-square deviation 34 times in 100 simulations, each 
phy or NMR. For this task, docking of rigid ligands is requiring eight minutes on a Silicon Graphics R4400 
inadequate because it assumes knowledge of the confor- workstation.The energy function correctly evaluates the 
mation of the bound ligand. Docking of flexible ligands crystal structure as the global energy minimum. 
would be desirable, but requires one to search an enor- Conclusions: We believe that a solution of the docking 
mous conformational space.We set out to develop a strat- problem may be achieved by matching a simple model of 
egy for flexible docking by, combining a simple model of molecular recognition with an efficient search procedure. 
ligand-protein interactions for molecular recognition The necessary ingredients of a molecular recognition 
with an evolutionary programming search technique. model include only steric and hydrogen-bond interaction 
Results: We have developed an intermolecular energy terms.Although these terms are not necessarily sufficient 
function that incorporates steric and hydrogen-bonding to predict binding affinity, they describe ligand-protein 
termsThe parameters in this function were obtained by interactions faithfully enough to enable a docking 
docking in three different protein systems.The effective- program to predict the structure of the bound ligand.This 
ness of this method was demonstrated by conformation- docking strategy thus provides an important tool for the 
ally flexible docking of the inhibitor AG-1343, a interdisciplinary field of rational drug design. 

Chemistry & Biology May 1995, 2:317-324 
Key words: AC-1 343, flexible docking, HIV-protease inhibitors, molecular recognition, rational drug design 

Introduction 
Computational prediction of the structures of ligand- 
protein complexes from the conformations of the 
unbound ligand and protein molecules, usually referred to 
as the docking problem, is an exciting subject of long- 
standing interest in theoretical studies of molecular recog- 
nition [l-13]. Docking is now an important component 
of protein-structure-based drug design [13,14], which has 
been particularly effective in the search for HIV-1 pro- 
tease inhibitors [15,16]. More than one hundred crystal 
structures of HIV-l protease complexes have been solved. 
This structural information is a resource that can be used 
for the testing and refinement of molecular recognition 
models and docking techniques. 

number of possible alternative solutions increases dra- 
matically. Hence, an accurate molecular recognition 
model must be sufhciently sensitive to distinguish 
between these modes. In addition, the flaps that enclose 
the bound ligand constrain the HIV-l protease active site 
and cause the alternative binding modes to be separated 
by large energy barriers, so that it may be hard for a 
search algorithm to cross the energy barriers to find the 
global minimum. 

The flexible docking of ligands into HIV-l protease is a 
particularly demanding problem. Even when rigid 
ligands are docked into a structure representing the con- 
formation that the homodimeric protease adopts when 
ligands are bound, there are two, nearly degenerate, sym- 
metry-related binding modes. For flexible ligands, the 

Underlying any docking strategy is a description of 
ligand-protein association. In principle, a complete ther- 
modynamic description of this process involves contribu- 
tions from several opposing sources, including solvent 
reorganization, conformational entropy and van der Waals 
and electrostatic interaction energies. For biomolecular 
systems, it is difficult to measure these terms with suffi- 
cient accuracy to permit quantitative predictions. 
Moreover, the complete energy function necessary for the 
prediction of binding affinity may not be suitable for 
docking simulations. The energy function used in 
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Fig. 1. The structures of MTX and AG-1343. (a) A two-dimen- 
sional representation of MTX. The freely-rotating bonds are high- 
lighted. (b) A two-dimensional representation of AC-I 343. The 
orientation is chosen to be consistent with that shown in Figure 3. 

docking studies must be simple enough to permit its 
rapid evaluation and, more importantly, the resulting 
energy landscape must be smooth enough to allow the 
search to proceed efficiently without becoming trapped 
in local minima [17]. 

A fundamental component of models for molecular 
recognition is the steric energy function, based on 
surface complementarity [l-5]. This term alone, 
however, is not sufficient to distinguish consistently 
between alternative binding modes. In general, electro- 
static interactions may provide additional specificity to 
discriminate between ‘true’ and ‘false’ solutions [l-5]. 
They are highly sensitive, however, to assignment of the 
charges as well as to geometric details of the 
ligand-protein interface. In an effort to circumvent 
these complications, we have developed a simple, and 
possibly minimal, molecular recognition model that 
incorporates both a steric term and a hydrogen-bond 
contribution calibrated to reproduce the structure of the 
ligand in crystal structures of ligand-protein complexes, 
rather than to determine their binding affinity. 

A variety of methods have been applied to docking 
studies, including Monte Carlo optimization techniques 
[l-lo] and genetic algorithms [11,12]. Because of the 
high computational cost of flexibly docking ligands, early 
studies focused on rigid molecules [l]. Unfortunately, 
this approach is likely to fail when the bound conforma- 
tion of the ligand is unknown. As a result, attention has 
turned toward the flexible docking of ligands into pro- 
teins held in their bound conformation (see, for example, 
[8-ll]), where the internal degrees of freedom of the 

ligand are varied to optimize simultaneously the 
intramolecular ligand interactions and the intermolecular 
ligand-protein interactions. 

We have applied a stochastic search technique, evolution- 
ary programming [18-201, that has been shown to be 
effective in a variety of optimization problems. A full 
conformational and positional search of the candidate 
inhibitor was conducted within the rigid active site of 
the crystallographic bound-protein conformation. No 
assumptions regarding either the likely bound conforma- 
tion of the ligand or any specific hydrogen-bond interac- 
tions were made. We refined our strategy by studying the 
flexible docking of methotrexate (MTX) into dihydro- 
folate reductase (DHFR), and applied it to the flexible 
docking of the inhibitor AG-1343, a potential new drug 
against AIDS, into HIV-l protease. 

Results and discussion 
To verify the ability of the molecular recognition model 
to reproduce crystal structures, and to optimize the 
parameters in the search procedure, the classic case of 
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Fig. 2. Deviation of docked structures from crystallographically 
determined structures (a) The results of 100 docking runs of MTX 
into DHFR; 91 solutions are within 1.5 A rms of the crystal struc- 
ture. (b) The results of 100 docking runs of AC-1 343 into HIV-1 
protease; 34 solutions are within 1.5 A rms of the crystal structure. 



Flexible docking of AG-1343 Gehlhaar et al. 319 

Fig. 3. A representation of the docking 
process for a typical successful docking 
of AG-1343 into HIV-1 protease. (a) A 
ribbon diagram of the bound form of the 
dimeric HIV-1 protease receptor with 
the Connolly surface of the binding site 
shown in white. The flaps are closed in 
this conformation. (b) and (c) 30 repre- 
sentative structures from the top 15 % of 
the population at generations 2 and 70, 
respectively. (d) 30 representative struc- 
tures from the top 15 % of the popula- 
tion at generation 92. By careful 
inspection, two binding modes can be 
seen. One corresponds to the experi- 
mentally observed binding orientation; 
the other is related by a two-fold rota- 
tion about an axis passing through the 
ligand center of mass. (e) 30 representa- 
tive structures from the top 15 % of the 
population at generation 149. Only the 
experimentally observed binding mode 
is now populated. (f) The most favorable 
structure after conjugate gradient energy 
minimization, shown in green. The 
experimentally determined crystal struc- 
ture is shown in white. The rms devia- 
tion between the docked structure and 
the crystal structure is 0.4 A. 

docking MTX into the folate-binding region of DHFR 
was studied [21]. S even rotatable bonds were considered 
for the MTX molecule (Fig. la). As a quantitative 
measure of docking performance, we use the percent of 
docking simulations that identify the conformation of 
the bound ligand within 1.5 A root-mean-square (rms) 
deviation from the crystallographically observed confor- 
mation. Given this criterion, the binding mode seen in 
the crystal structure was observed 91 times out of 100 
runs. In the remaining nine structures the pteridine ring 
is inverted relative to the crystal structure, consistent 
with the binding mode of the natural substrate [21].The 
nearly linear correlation between the rms deviation 
from the crystal structure and the energy of the docked 
structure shows that for this system the molecular recog- 
nition model is sufficiently accurate to distinguish 
between alternative binding modes (Fig. 2a). 

Docking the potent nonpeptidic inhibitor AG-1343 (Fig. 
lb) into the active site of HIV-l protease is a considerably 
more challenging problem.The HIV-l protease active site 
is relatively large and has a number of specific binding 
pockets. The symmetry-related and energetically similar 
binding modes make the search for the crystallographically 
observed binding mode difficult. In principle, a complete 

solution of the docking problem implies a flexible protein 
molecule as well as a flexible ligand. HIV-l protease, 
however, undergoes a significant conformational change 
upon ligand binding that involves backbone rearrange- 
ments of up to 7 A [15,16]. Therefore, we study docking 
of the flexible ligand into the rigid protease held in its 
bound conformation. 

Previous computational attempts to insert a ligand into 
the binding site of HIV-l protease have failed because of 
insurmountable barriers to penetration of the active site 
[4]. In our study, the repulsive term of the energy func- 
tion is linearly increased throughout the docking simula- 
tion.The ligand is thereby allowed to penetrate into the 
protein core during the initial stages of the docking simu- 
lation when the population consists mostly of random 
orientations, enabling the evolutionary search to explore a 
variety of possible solutions that would otherwise be for- 
bidden by the presence of high energy barriers. 
Eventually, in later stages of the evolution, scaling of the 
potential energy function narrows the search to only a 
few energetically favorable binding modes that serve, in 
effect, to ‘funnel’ the search into the global minimum rep- 
resented by the ligand’s crystallographic conformation. 
This method is analogous to temperature scaling in 
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Fig. 4. The four members of the 
population with the smallest rms 
tion from the crystal structure; the 
has a rms deviation of 4.0 ,k 

1 initial 
devia- 
closest 

Monte Carlo optimization (see, for example, [2,4,6]), in 
that it employs a combination of evolutionary search and 
simulated annealing. Optimizing the energy parameters, 
such as the ‘softness’ of the energy function repulsion, 
may further facilitate conformational search both by pro- 
moting escape from local minima and by destabilizing 
alternative solutions [ 171. 

The crystal structure of the AG-1343 complex (K. 
Appelt, unpublished data) was reproduced within the 
1.5 A rms tolerance 34 times from 100 simulations (Fig. 
2b). The success rate of these simulations is remarkable 
given the large number of freely rotating bonds located 
in the center of the AG-1343 molecule and the nature 
of the HIV-l protease binding site. Assuming only a 
0.2 A resolution for positional variables and 3.6” for 
angles, the nine conformational angles and six positional 
and orientational variables in AG-1343 would constitute 
a search space of -1030 possible solutions. During the 
simulation, however, the system explores a continuous 
space of positions and angles. The search of this enor- 
mous space during the flexible docking ofAG-1343 was 
achieved within eight minutes of cpu time on a single 
Silicon Graphics R4400 workstation. 

For one of the successful docking simulations (Fig. 3), the 
final predicted structure ofAG-1343 has only 0.4 A rms 
deviation from the crystal structure. This conformation 
was not present as a member of the initial population, and 
the solution is not merely fortuitous (Fig. 4). The interac- 
tion energies for structures near the crystallographic 
orientation are lower than the energies of structures 
docked in incorrect orientations (Fig. 2b). The solutions 
with large (near 8.0 A) rms deviations from the crystal 

structure yet with relatively low interaction energy (see 
the upper left corner of Fig. 2b) are symmetry-related to 
the crystal structure. As expected for such solutions, their 
energy is nearly degenerate with the crystal solution. 
Nevertheless, the energy function correctly ranks their 
energy as higher than that of the crystal structure. 

We found that the crystallographic conformation repre- 
sents the global minimum of the energy landscape and 
that the energy decreases gradually in the neighborhood 
of the crystallographic binding mode (Fig. 2). Because of 
these properties, the performance of structure prediction 
can be increased by iterating the simulation. Given that 
the probability of successfully docking AG-1343 into 
HIV-l protease with our method is p = 0.34, the crystal- 
lographic structure can be found after N simulations 
with probability l-(l-p)N.Therefore, if one chooses the 
lowest energy conformer from eight simulations, the 
probability that it is the crystal structure is increased to 
greater than 0.95. 

The results of this study are encouraging and suggest that 
the molecular recognition model introduced in this work 
may have general applicability to other ligand-protein 
systems. We are currently studying a more diverse set of 
ligand-protein complexes to determine the limits of the 
model for structure prediction. 

Significance 
We have developed a simple model of molecular 
recognition that allows the reliable docking of 
conformationally flexible ligands into protein 
binding sites by evolutionary programming. In 
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this work, the correct structure of the AG- 
1343-HIV-1 protease complex was obtained in 34 
out of 100 docking simulations, each taking eight 
minutes on a single Silicon Graphics R4400 work- 
station. The confidence of finding the correct 
structure in this case can be increased to 95% by 
running the simulation only eight times. 

The results suggest that solution of the flexible 
docking problem requires two ingredients: first, a 
simple energy function that alleviates the frustra- 
tion of binding-energy landscapes [17], and 
second, an effective stochastic search procedure. 
We conclude that steric and hydrogen-bond inter- 
actions combined with a rudimentary intramolec- 
ular term provide a reasonable framework for this 
energy function. While a more detailed model that 
includes, for example, solvation and entropic 
effects may be required to predict binding a&&y, 
a simple energy function is apparently preferable 
for structure prediction because it yields an 
energy landscape with relatively few local minima. 
We believe, therefore, that more complicated 
models of ligand-protein interactions may not be 
generally useful for the structural prediction of 
ligand-protein complexes. 

The strategy of flexible docking introduced in 
this work can be a valuable tool in a variety of 
rational drug design applications including rapid 
database searching for lead compounds [22] and 
prediction of the structure of protein complexes 
of novel inhibitors [23]. 

Materials and methods 
Molecular recognition model 
As a minimal requirement, the energy function used for 
docking must account for hydrophilic and hydrophobic surface 
complementarity [5,7]. In our molecular recognition model, 
we include steric and hydrogen-bond contributions calculated 
from a piecewise linear potential (Fig. 5). One advantage of the 
chosen functional form is that it has a finite value when the 
interatomic distance approaches zero.Thus, the function is well 
behaved even when there are severe close contacts between 
protein and ligand atoms, such as occur during initial stages of 
the docking simulation when the ligand conformations are 
largely in random orientations. To permit penetration of the 
protein core during these early stages, the repulsive parameter 
of the intermolecular ligand-protein interaction potential was 
linearly scaled from zero to its final value. 

The ligand-protein energy function defined by our molecular 
recognition model is a pairwise sum over all ligand and protein 
heavy atoms. The parameters used in the pairwise potential 
depend on the atom types involved in the interaction. In our 
model, there are four different atom types; hydrogen-bond 
donor, hydrogen-bond acceptor, both donor and acceptor, and 
nonpolar.These atom types interact through steric and hydro- 
gen-bond potentials (Table l), which have the same functional 
form but different parameters that reflect the notion that a 
single hydrogen bond should have a larger weight than a single 
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Fig. 5. The piecewise linear pairwise potential function used for 
the ligand-protein interaction energy. Values are given in Table 2. 

steric interaction (Table 2) [7]. Every pair of atoms has one and 
only one type of interaction. Primary and secondary amines 
are classified as donors while oxygen and nitrogen atoms with 
no bound hydrogens are defined as acceptors. Hydroxyl groups 
and crystallographic water molecules are defined as both donor 
and acceptor. Carbon and sulfur atoms are defined as nonpolar. 

The initial potential parameters were extracted from a 
potential used for de TWO design of enzyme inhibitors [24]. 
The values were refined [25] to reproduce consistently the 
crystal structure of the complex by performing 25 docking 
runs into three different proteins: MTX into DHFR [21], a 
proprietary compound from Agouron Pharmaceuticals into 
FK506-binding protein (FKBP) and AG-1284 into HIV-1 
protease [26]. 

The internal energy of the ligand is given by a torsional poten- 
tial and a non-bonded term! all bond distances and angles are 
fixed during the docking simulation. The torsional potential has 
the form: 

E = A[1 = cos(n++,$] 

where A = 3.0, n = 3, c& = +IT for sp3-sp3 bonds, and A = 1.5, 
n = 6, and & = 0 for sp3-sp2 bonds. Torsional angles about 
sp2-sp2 bonds are held fixed, as are dihedral angles in ringsThe 
nonbonded term provides a constant penalty of 10 000 when 
the interatomic distance between any pair of non-bonded ligand 
atoms is smaller than a threshold of 2.35 A and vanishes other- 
wise; it was chosen to prevent internal collapse of the ligand. 

Table 1. Pairwise atomic interaction types used in the 
molecular recognition model. 

Ligand Protein atom type 
atom type Donor Acceptor Both Nonpolar 

Donor Steric Hydrogen Hydrogen Steric 
bond bond 

Acceptor Hydrogen Steric Hydrogen Steric 
bond bond 

Both Hydrogen Hydrogen Hydrogen Steric 
bond bond bond 

Nonpolar Steric Steric Steric Steric 
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Table 2. Parameters of the atomic pairwise ligand-protein 
potential@. 

Interaction 

type A B C D E F 

Steric 3.4 3.6 4.5 5.5 -0.4 20.0 

Hydrogen 2.3 2.6 3.1 3.4 -2.0 20.0 
bond 

aA, B, C and D are in Angstroms. E and F are in arbitrary 
energy units. 

No assumptions were made regarding likely ligand conforma- 
tions or any specific ligand-protein interactions, including 
hydrogen-bond formation.The ligand is required to remain in 
a parallelepiped that encompasses the active site, obtained from 
the crystal structure of a ligand-protein complex.This binding 
box is defined by adding a 2 A cushion to the bound ligand. A 
constant energy penalty of 200 is added to every ligand atom 
outside the box. For HIV-l protease, the box is defined using 
the AG-1343 complex and has dimensions of 15.2 A x 15.4 A 0 
x 14.0 A. The intermolecular potential is precalculated on a 
0.2 A grid covering the protein binding site. 

The values for the ligand bond distances and bond angles were 
obtained from the crystal structure of the bound 
ligand-protein complex, and are indistinguishable from the 
values obtained after minimization of the ligand in the absence 
of the protein using the Amber force field [27].The bond con- 
necting the amide and the aromatic ring in AG-1343 (see the 
lower right of Fig. lb) is not allowed to rotate in our model 
because it involves two s$ carbon atoms. It is fixed at the crys- 
tallographic value of 51.4”, which changes to 41.6” after mini- 
mization of the ligand in the absence of the protein. All 
crystallographic water molecules, including the critical bridg- 
ing water, are included in the docking simulation as a part of 
the protein structure. 

Evolutionary programming 
In the course of the evolutionary process (Fig. 6), a popula- 
tion of candidate ligand conformations competes for survival. 
The energy of each member in the population is compared 
with a fixed number of randomly selected opponents. A win 
is assigned to the member with the lower energy, and the 
number of competitions a member wins is used to determine 
whether it survives into the next generation [19]. All surviv- 
ing members produce offspring by Gaussian mutation so as to 
maintain a constant population size. The best member of the 
final generation is minimized using a conjugate gradient 
algorithm [28]. 

In the population of ligand conformations, each member is 
represented by an encoded vector composed of its six rigid 
body coordinates and the dihedral angles about its rotatable 
bonds. The initial ligand conformations are generated by ran- 
domizing the encoded vector, given that the center of mass of 
each ligand conformation must lie anywhere within the rec- 
tangular parallelepiped that defines the active site. Rigid rota- 
tion and rotatable dihedral angles are uniformly randomized 
between 0 and 360 degrees. 

We have tuned the parameters of the search procedure by sys- 
tematically varying the population size, the number of com- 
petitors in the stochastic competition, and the initial value of 

Compute energy for all 
members of the 

population 

Compete population 

i 
Generate offspring 

Yes 

r-l Perform conjugate 
gradient optimization 

on best member 

Fig. 6. A flow diagram of the general evolutionary programming 
protocol. 

the standard deviation of the Gaussian mutation used to gener- 
ate offspring. For each sampled value of these parameters, 100 
docking simulations of MTX into DHFR were performed. 
This system was chosen for the tuning studies because it is a 
canonical yet non-trivial test case with seven rotatable bonds 
and several distinct local minima. 

A mathematical analysis of simple evolutionary algorithms [29] 
gives a logarithmic dependence between the energy and the 
population size, a result that was observed in our experiments 
(Fig. 7a). The goal of our tuning was to maximize convergence 
while minimizing computation time, and consequently a pop- 
ulation size of 1200 was chosen for MTX. Given the larger 
number of rotatable bonds in AG-1343, a population size of 
2000 was used in this case. 

Maintaining diversity in the population throughout the sim- 
ulation is important to avoid premature convergence to local 
minima. This can be achieved by using a small number of 
competitors in the stochastic tournament, which gives less fit 
members a chance to survive and generate offspring. 
The smallest number of competitors that gave consistent 
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Fig. 7. Docking of MTX into DHFR. Each data point represents the average energy of 100 docks of MTX into DHFR. (a) Effect of varying 
population. A logarithmic fit is shown (r = 0.907). (b) Effect of varying the number of competitors in the stochastic tournament. (c) 
Effect of varying the initial standard deviations of the Gaussian mutations used to generate offspring from parents. Units are Angstroms 
for positional degrees of freedom and radians for rotational degrees of freedom. 

convergence was three (Fig. 7b), and this value was used for 
both systems studied. 

The standard deviation of the Gaussian mutations used to 
generate offspring affects the size of mutations. If the muta- 
tions are too small, the system does not efficiently explore the 
search space. If the mutations are too large, offspring bear little 
or no resemblance to the parent, and the search is undirected. 
Although a deterministic method for the calculation of muta- 
tion sizes based on the value of the energy function can be 
effective on some surfaces when the global minimum is 
known [19], such methods are not generally applicable to 
arbitrary potentials. Large mutations are likely to be beneficial 
early in the simulation when the object is to locate the 
minima, while small mutations will be productive late in the 
simulation when the algorithm refines solutions near to the 
global minimum. This process resembles simulated annealing, 
where large mutations are analogous to high temperature, and 
small mutations to low temperature. However, it is difficult to 
predict the most appropriate scaling scheme for the mutations. 
Consequently, we chose to use a self-adaptive strategy in 
which the mutation sizes are allowed to vary, with selection 
pressure determining optimal values as the simulation pro- 
gresses [29]. Standard deviations of Gaussian mutations crli for 
each variable were generated from parent values ui as follows: 

o,+ (TV exp (otN(0, 1) + PN,(O,l)) 

where (Y = 1/42n, p = 1/1/2dn, N(O,l) is a Gaussian random 
number with zero mean and unit variance and Ni(O,l) is a dif- 
ferent random number for each component of the encoded 
vector. n is the number of variables; n = 15 in the case ofAG- 
1343. OL affects the deviation size of the offspring, while p 
affects the deviation of individual components of the vector. 
Based on tuning (Fig. 7c), an initial mutation size of 0.4 A for 
positional degrees of freedom and 0.4 radians for rotational 
degrees of freedom is optimal. 
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