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Abstract

The inequalities of Hardy–Littlewood and Riesz say that certain integrals involving products
of two or three functions increase under symmetric decreasing rearrangement. It is known that
these inequalities extend to integrands of the form F(u1, . . . , um) where F is supermodular; in
particular, they hold when F has nonnegative mixed second derivatives �i�jF for all i �= j .
This paper concerns the regularity assumptions on F and the equality cases. It is shown here
that extended Hardy–Littlewood and Riesz inequalities are valid for supermodular integrands
that are just Borel measurable. Under some nondegeneracy conditions, all equality cases are
equivalent to radially decreasing functions under transformations that leave the functionals
invariant (i.e., measure-preserving maps for the Hardy–Littlewood inequality, translations for the
Riesz inequality). The proofs rely on monotone changes of variables in the spirit of Sklar’s
theorem.
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1. Introduction

The systematic study of rearrangements begins with the final chapter of “Inequalities”
by Hardy, Littlewood, and Pólya [24]. Two inequalities are discussed there at length,
the Hardy–Littlewood inequality [24, Theorems 368–370 and Theorem 378]

∫
R

u(x)v(x) dx�
∫

R
u∗(x)v∗(x) dx, (1.1)

and the Riesz rearrangement inequality ([31,38], Theorem 370 of [24])

∫
R

∫
R

u(x)v(x′)w(x − x′) dx dx′ �
∫

R

∫
R

u∗(x)v∗(x′)w∗(x − x′) dx dx′. (1.2)

Here, u, v, and w are nonnegative measurable functions that vanish at infinity, and u∗,
v∗, and w∗ are their symmetric decreasing rearrangements.

The Hardy–Littlewood inequality is a very basic inequality that holds, with suitably
defined rearrangements, on arbitrary measure spaces [13]. Its main implication is that
rearrangement decreases L2-distances [25]. In contrast, the Riesz rearrangement inequal-
ity is specific to Z and to Rn, where it is closely related with the Brunn–Minkowski
inequality of convex geometry. The generalization of Eq. (1.2) from R to Rn is due
to Sobolev [34], and the inequality is also known as the Riesz–Sobolev inequality. For
many applications, the third function in Eq. (1.2) is already radially decreasing, i.e.,
w(x − x′) = K(|x − x′|) with some nonnegative nonincreasing function K, such as the
heat kernel or the Coulomb kernel [24, Theorems 371–373 and Theorem 380]. This
special case of the inequality also holds on the standard spheres and hyperbolic spaces
[4,5], and it still contains the isoperimetric inequality as a limit.

It is a natural question whether these inequalities carry over to more general integral
functionals. Under what conditions on F do the extended Hardy–Littlewood inequality

∫
F(u1(x), . . . , um(x)) dx�

∫
F(u∗

1(x), . . . , u∗
m(x)) dx (1.3)

and the extended Riesz inequality

∫
· · ·
∫

F(u1(x1), . . . , um(xm))
∏
i<j

Kij (d(xi, xj )) dx1 . . . dxm

�
∫

· · ·
∫

F(u∗
1(x1), . . . , u

∗
m(xm))

∏
i<j

Kij (d(xi, xj )) dx1 . . . dxm (1.4)

hold for all choices of u1, . . . , um? In Eq. (1.4) the Kij are given nonnegative nonin-
creasing functions on R+, and d(x, y) denotes the distance between x and y. Eq. (1.3)
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can be recovered from Eq. (1.4) by choosing Kij as a Dirac sequence and passing to the
limit. Note that Eq. (1.4) contains only the case of Eq. (1.2) where the third function
is a symmetric decreasing kernel. A larger class of integral kernels K(x1, . . . , xm) was
considered in [16]. The full generalization of Riesz’ inequality to products of more
than three functions was found by Brascamp–Lieb–Luttinger [7]; again, one may ask
to what class of integrands the Brascamp–Lieb–Luttinger inequality naturally extends.

The main condition on F is a second-order monotonicity property identified by
Lorentz [28],

F(y + hei + kej ) + F(y)�F(y + hei ) + F(y + kej ) (i �= j, h, k > 0), (1.5)

where y = (y1, . . . , ym), and ei denotes the ith standard basis vector in Rm. Functions
satisfying Eq. (1.5) are called supermodular or 2-increasing in Economics. A smooth
function is supermodular, if all its mixed second partial derivatives are nonnegative.
Eqs. (1.3) and (1.4) were proved for continuous supermodular integrands depending on
m = 2 functions by Crowe–Zweibel–Rosenbloom [14] and Almgren–Lieb [2, Theorem
2.2]. For m > 2, Eq. (1.3) is due to Brock [8] and Eq. (1.4) is a recent result of
Draghici [15]. The purpose of this paper is to dispense with the continuity assumptions
on F in the theorems of Brock and Draghici, and to characterize the equality cases in
some relevant situations. This continues prior work of the second author [19–23].

2. Statement of the results

Let X denote either the Euclidean space Rn, the sphere Sn, or the hyperbolic space
Hn, equipped with the standard distance function d(·, ·) and the uniform volume mea-
sure �. Choose a distinguished point x∗ ∈ X to serve as the origin or the north pole.
Consider a nonnegative measurable function u on X. When X = Rn or Hn, we require
u to vanish at infinity in the sense that all its positive level sets {x ∈ X : u(x) > t} have
finite measure; when X = Sn this requirement is void. By definition, the symmetric
decreasing rearrangement u∗ of u is the unique upper semicontinuous, nonincreasing
function of d(x, x∗) that is equimeasurable with u. Explicitly, if

�(t) = �({x ∈ X : u(x) > t})

is the distribution function of u, and Br denotes the open ball of radius r centered at
x∗, then

u∗(x) := sup
{
t �0 : �(t)��

(
Bd(x,x∗)

)}
.

Theorem 1 (Extended Hardy–Littlewood inequality). Eq. (1.3) holds for any nonnega-
tive measurable functions u1, . . . , um that vanish at infinity on X = Rn, Sn, or Hn,
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provided that the integrand F is a supermodular Borel measurable function on the
closed positive cone Rm+ with F(0) = 0, and that its negative part satisfies

∫
X

F−
(
ui(x)ei

)
dx < ∞ (2.1)

for i = 1, . . . , m.
Suppose Eq. (1.3) holds with equality, and the integrals are finite. If F satisfies

Eq. (1.5) with strict inequality for some i �= j , all y ∈ Rm+ and all h, k > 0, then

(
ui(x) − ui(x

′)
)(

uj (x) − uj (x
′)
)
�0

for almost all x, x′ ∈ X; in particular, if ui = u∗
i is strictly radially decreasing, then

uj = u∗
j .

The Borel measurability of F and the integrability assumption in Eq. (2.1) ensure
that the integrals in Eq. (1.3) are well-defined, though they may take the value +∞.

The left-hand side of Eq. (1.3) is invariant under volume-preserving diffeomorphisms
of X. More generally, if (�, �) and (�′, �′) are measure spaces and � : � → �′ pushes
� forward to �′ in the sense that �′(A) = �(�−1(A)) for all �′-measurable subsets
A ⊂ �′, then

∫
�

F(u1(�), . . . , um(�)) d�(�) =
∫
�′

F(u1 ◦ �(�′), . . . , um ◦ �(�′)) d�′(�′).

The right-hand side of Eq. (1.3) can also be expressed in an invariant form. Define the
nonincreasing rearrangement u# of u as the unique nonincreasing upper semicontinuous
function on R+ that is equimeasurable with u,

u#(�) := sup
{
t �0 : �(t)��

}
.

By construction, (u◦�)# = u# for any map � : � → �′ that pushes � forward to �′. On
X = Rn, Sn and Hn, the nonincreasing rearrangement is related with the symmetric
decreasing rearrangement by u∗(x) = u#

(
�
(
Bd(x,x∗)

))
. Theorem 1 implies that

∫
�

F(u1(�), . . . , um(�)) d�(�)�
∫ �(�)

0
F(u#

1(�), . . . , u#
m(�)) d� (2.2)

for all nonnegative measurable functions u1, . . . , um on � that vanish at infinity.
When � is a probability measure, Eq. (2.2) says that the expected value of

F(Y1, . . . , Ym) is maximized among all random variables Y1, . . . , Ym with given marginal
distributions by the perfectly correlated random variables Y #

1 , . . . , Y #
m. The joint distri-

bution of the maximizer is uniquely determined, if Yi is continuously distributed for
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some i and Eq. (1.5) is strict for all j �= i. In this formulation, the invariance under
measure-preserving transformations is evident, since the expected value depends only
on the joint distribution of Y1, . . . , Ym. The assumption that F is supermodular signifies
that each of the random variables enhances the contribution of the others.

Theorem 2 (Extended Riesz inequality). Eq. (1.4) holds for all nonnegative measur-
able functions u1, . . . , um on X = Rn, Sn, or Hn that vanish at infinity, provided that
F is a supermodular Borel measurable function on Rm+ with F(0) = 0, each Kij is
nonincreasing and nonnegative, and the negative part of F satisfies

∫
X

· · ·
∫

X
F−
(
u�(x�)e�

)∏
i<j

Kij (d(xi, xj )) dx1 . . . dxm < ∞ (2.3)

for � = 1, . . . , m.
Suppose Eq. (1.4) holds with equality. Assume additionally that the integrals are

finite, and that Kij (t) > 0 for all i < j and all t < diam X. Let �0 be the graph
on the vertex set {1, . . . , m} which has an edge between i and j whenever Kij is a
strictly decreasing function, and let i �= j be from the same component of �0. If Eq.
(1.5) is strict for all y ∈ Rm+ and all h, k > 0, and if ui and uj are non-constant, then
ui = u∗

i ◦ � and uj = u∗
j ◦ � for some translation � on X.

3. Related work

There are several proofs of the extended Hardy–Littlewood inequality in the lit-
erature. For continuous integrands, Lorentz showed by discretization and elementary
manipulations of the ui that Eq. (2.2) holds for all measurable functions u1, . . . , um

on � = (0, 1) if and only if F is supermodular [28]. By the invariance under measure-
preserving transformations, this implies Eq. (1.3), as well as Eq. (2.2) for arbitrary
finite measure spaces �. However, Lorentz’ paper has had little impact on subsequent
developments.

More than 30 years later, Crowe–Zweibel–Rosenbloom proved Eq. (1.3) for m = 2
on X = Rn [14]. They expressed a given continuous supermodular function F on R2+
that vanishes on the boundary as the distribution function of a Borel measure �F ,

F(y1, y2) = �F

([0, y1) × [0, y2)
)
.

With Fubini’s theorem, this provides a layer-cake representation

∫
F(u1(x), u2(x)) dx =

∫
R2+

{∫
1u1(x)>y1 1u2(x)>y2 dx

}
d�F (y1, y2), (3.1)

which reduces Eq. (1.3) to the case where F is a product of characteristic functions (see
[27, Theorem 1.13]). Another reduction to products was proposed by Tahraoui [36].
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The regularity and boundary conditions on F were relaxed by Hajaiej–Stuart, who
assumed it to be supermodular, of Carathéodory type (i.e., Borel measurable in the
first, continuous in the second variable), and to satisfy some growth and integrability
restrictions [21]. Equality statements for their results were obtained by Hajaiej [19,20].
Using a slightly different layer-cake decomposition, Van Schaftingen–Willem recently
established Eq. (2.2) for m = 2 under this inequality, under additional assumptions on
F, for any equimeasurable rearrangement that preserves inclusions [37].

The drawback of the layer-cake representation is that for m > 2 it requires an
mth order monotonicity condition on the integrand, which amounts for smooth F to
the nonnegativity of all (non-repeating) mixed partial derivatives [22]. Brock proved
Eq. (1.3) under the much weaker assumption that F is continuous and supermodular
[8].

Carlier viewed maximizing the left-hand side of Eq. (2.2) for a given right-hand side
as an optimal transportation problem where the distribution functions of u1, . . . , um

define mass distributions �i on R, the joint distribution defines a transportation plan,
and the functional represents the cost after multiplying by a minus sign [12]. He showed
that the functional achieves its maximum (i.e., the cost is minimized) when the joint
distribution is concentrated on a curve in Rm that is nondecreasing in all coordinate
directions, and obtained Eq. (2.2) as a corollary. His proof takes advantage of the dual
problem of minimizing

m∑
i=1

∫
R

fi(y) d�i (y)

over f1, . . . , fm, subject to the constraint that
∑

fi(yi)�F(y1, . . . , ym)

for all y1, . . . , ym.
Theorem 1 can be applied to some integrands that depend explicitly on the ra-

dial variable [12,28]. If G is a function on R+ × Rm+ such that F(y0, . . . , ym) :=
G(y−1

0 , y1, . . . , ym) satisfies the assumptions of Theorem 1, then

∫
Rn

G(|x|, u1(x), . . . , um(x)) dx�
∫

Rn
G(|x|, u∗

1(x), . . . , u∗
m(x)) dx. (3.2)

Hajaiej–Stuart studied this inequality in connection with the following problem in non-
linear optics [21,22]. The profiles of stable electromagnetic waves traveling along a
planar waveguide are given by the ground states of the energy functional

E(u) = 1

2

∫
R

|u′|2 dx −
∫

R
G(|x|, u) dx

under the constraint ‖u‖2 = c. Here, x is the position relative to the optical axis, G is
determined by the index of refraction, and c > 0 is a parameter related to the wave
speed [35]. If the index of refraction of the optical media decreases with |x|, then
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F(r, y) = G(r−1, y) satisfies the assumptions of Theorem 1. Then the first integral
shrinks under symmetric decreasing rearrangement by the Pólya-Szegő inequality, the
second integral grows by Eq. (3.2), and the L2-constraint is conserved. Thus, one may
rearrange any minimizing sequence to obtain a minimizing sequence of symmetric
decreasing functions. This is a crucial step in the construction of ground states—
if G violates the monotonicity conditions, then a ground state need not exist [23].
Hajaiej–Stuart worried about restrictive regularity assumptions, because G may jump
at interfaces between layers of different media.

The Riesz inequality in Eq. (1.4) is non-trivial even when F is just a product of
two functions. Ahlfors introduced two-point rearrangements to treat this case on X =
S1 [1], Baernstein–Taylor proved the corresponding result on Sn [4], and Beckner
noted that the proof remains valid on Hn and Rn [5]. When F is a product of m > 2
functions, Eq. (1.4) has applications to spectral invariants of heat kernels via the Trotter
product formula [29]. This case was settled by Friedberg–Luttinger [17], Burchard–
Schmuckenschläger [11], and by Morpurgo, who proved Eq. (1.4) more generally for
integrands of the form

F(y1, . . . , ym) = �

( m∑
i=1

yi

)
(3.3)

with � convex [30, Theorem 3.13]. In the above situations, equality cases have been de-
termined [6,11,26,30]. Almgren–Lieb used the technique of Crowe–Zweibel–Rosenbloom
to prove Eq. (1.4) for m = 2 [2]. The special case where F(u, v) = �(|u − v|) for
some convex function � was identified by Baernstein as a ‘master inequality’ from
which many classical geometric inequalities can be derived quickly [3]. Eq. (1.4) for
continuous supermodular integrands with m > 2 is due to Draghici [15].

4. Outline of the arguments

In their proofs of Eqs. (1.3) and (1.4), Brock and Draghici showed that the left-
hand sides increase under two-point rearrangements if F is any supermodular Borel
integrand [8,15]. Then they approximated the symmetric decreasing rearrangement with
sequences of repeated two-point rearrangements. Baernstein–Taylor had established that
such sequences can be made to converge to the symmetric decreasing rearrangement in
a space of continuous functions [4], and Brock–Solynin had proved this convergence
in Lp-spaces [9]. To pass to the desired limits, Brock and Draghici assumed that F is
continuous and satisfies some boundary and growth conditions.

No new proofs of these inequalities will be given here. Rather, we reduce general
supermodular integrands to the known cases of integrands that are also bounded and
continuous. This reduction needs more care than the usual density arguments, because
pointwise a.e. convergence of a sequence of integrands Fk does not guarantee pointwise
a.e. convergence of the compositions Fk(u1, . . . , um). Approximation within a class of
functions with specified positivity or monotonicity properties can be subtle; for instance,



568 A. Burchard, H. Hajaiej / Journal of Functional Analysis 233 (2006) 561–582

nonnegative functions of m variables cannot always be approximated by positive linear
combinations of products of nonnegative functions of the individual variables (contrary
to Theorem 2.1 and Lemma 4.1 of [36]).

In Section 5, we prove a variant of Sklar’s theorem [32] which factorizes a given su-
permodular function on Rm+ as the composition of a Lipschitz continuous supermodular
function on Rm+ with m monotone functions on R+, and a cutoff lemma that replaces
a given supermodular function by a bounded supermodular function. Section 6 is dedi-
cated to the two-point versions of Theorems 1 and 2. Here, we review the proofs of the
two-point rearrangement inequalities of Lorentz [28], Brock [8], and Draghici [15] and
find their equality cases. The main theorems are proved in Section 7 by combining the
results from Sections 5 and 6. Adapting Beckner’s argument from [6], we note that the
inequalities in Eq. (1.3) and Eq. (1.4) are strict unless u1, . . . , um produce equality in all
of the corresponding two-point inequalities, and then apply the results from Section 6.
In the final Section 8, we briefly discuss extensions for the Brascamp–Lieb–Luttinger
and related inequalities.

5. Monotone functions

In this section, we provide two technical results about functions with higher-order
monotonicity properties. We begin with an auxiliary lemma for functions of a single
variable.

Lemma 5.1 (Monotone change of variable). Let � be a nondecreasing real-valued func-
tion defined on an interval I. Then, for every function f on I satisfying

|f (z) − f (y)|�C(�(z) − �(y)) (5.1)

for all points y < z ∈ I with some constant C, there exists a Lipschitz continuous
function f̃ : R → [inf f, sup f ] such that f = f̃ ◦�. Furthermore, if f is nondecreasing,
then f̃ is nondecreasing.

Proof. If t = �(y) we set f̃ (t) := f (y). For s < t with s = �(y), t = �(z), Eq. (5.1)
implies that

|f̃ (t) − f̃ (s)| = |f (z) − f (y)|�C(�(z) − �(y)) = C(t − s). (5.2)

Since f̃ is uniformly continuous on the image of �, it has a unique continuous exten-
sion to the closure of the image. The complement consists of a countable number of
open disjoint bounded intervals, each representing a jump of �, and possibly one or
two unbounded intervals. On each of the bounded intervals, we interpolate f̃ linearly
between the values that have already been assigned at the endpoints. If � is bounded
either above or below, we extrapolate f̃ to t > sup � and t < inf � by constants.
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By construction, f = f̃ ◦ � and f̃ (R) = [inf f, sup f ]. The continuous extension
and the linear interpolation preserve the modulus of continuity of f̃ , and hence, by
Eq. (5.2),

|f̃ (t) − f̃ (s)|�C|t − s| (5.3)

for all s, t ∈ R. If f is nondecreasing, then f̃ is nondecreasing on the image of � by
definition, and on the complement by continuous extension and linear interpolation. �

Lemma 5.1 is related to the elementary fact that a continuous random variable can be
made uniform by a monotone change of variables. More generally, if � is nondecreasing
and right continuous and its generalized inverse is defined by �(t) = inf{y : �(y)� t},
then the cumulative distribution functions of two random variables that are related by
Y = �(Ỹ ) satisfy

F(y) = P(Y �y) = P
(
Ỹ ��(y)

) = F̃ ◦ �(y).

Choosing � = F results in a uniform distribution for Ỹ .
The corresponding result for m�2 random variables is known as Sklar’s theorem

[32]. The theorem asserts that a collection of random variables Y1, . . . , Ym with a given
joint distribution function F can be replaced by random variables Ỹ1, . . . , Ỹm whose
marginals Ỹi are uniformly distributed on [0, 1], and whose joint distribution function
F̃ is continuous. The next lemma contains Sklar’s theorem for supermodular functions.
Since the lemma follows from the arguments outlined in [33] rather than from the
statement of the theorem, we include its proof for the convenience of the reader.

We first introduce some notation. Let F be a real-valued function on the closed
positive cone Rm+. For i = 1, . . . , m and h�0, consider the finite difference operators

�iF (y; h) := F(y + hei ) − F(y).

The operators commute, and higher order difference operators are defined recursively
by

�i1...i�F (y; h1, . . . , h�) := �i1...i�−1�i�F ((y; h�); h1, . . . , h�−1).

If F is � times continuously differentiable, then

�i1...i�F (y; h1, . . . , h�) =
∫ h1

0
· · ·
∫ h�

0
�i1 . . . �i�F

(
y +

�∑
i=1

tiei

)
dt1 . . . dt�.

A function F is nondecreasing in each variable if �iF �0 for i = 1, . . . , m; it is
supermodular, if �ijF �0 for all i �= j . The joint distribution function of m random
variables satisfies �i1 . . . �i�F �0 for any choice of distinct indices i1, . . . , i�.
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Lemma 5.2 (Sklar’s theorem). Assume that F is bounded, nondecreasing in each vari-
able, and supermodular on Rm+. Then there exist bounded nondecreasing functions
�1, . . . ,�m on R+ with �i (0) = 0 and a Lipschitz continuous function F̃ on Rm+ such
that

F(y1, . . . , ym) = F̃ (�1(y1), . . . , �m(ym)).

Furthermore, F̃ is bounded, nondecreasing in each variable, and supermodular. If, in
addition, �i1...i�F �0 on Rm+×R�+ for some distinct indices i1, . . . , i�, then �i1...i� F̃ �0.

Proof. Set

�i (y) = lim
yj →∞,j �=i

{
F(y1, . . . , ym)

∣∣∣
yi=y

− F(y1, . . . , ym)

∣∣∣
yi=0

}
.

These functions are nonnegative and bounded by sup F − inf F . Since F is nonde-
creasing in each variable, they are nonnegative, and since F is supermodular, they are
nondecreasing and satisfy

F(y + hei ) − F(y)��i (yi + h) − �i (yi) (5.4)

for all y = (y1, . . . , ym) ∈ Rm+ and all h > 0.
We construct F̃ by changing one variable at a time. For the first variable, we write

y = (y, ŷ) where y ∈ R+ and ŷ ∈ Rm−1+ . By Eq. (5.4), for each ŷ ∈ Rm−1+ , the function
f (y) = F(y, ŷ) satisfies Eq. (5.1) with C = 1 and � = �1. By Lemma 5.1, there exists
a function F1 satisfying

F(y, ŷ) = F1(�1(y), ŷ)

for all (y, ŷ) ∈ Rm+. Furthermore, F1 is Lipschitz continuous in the first variable,

|F1(t, ŷ) − F1(s, ŷ)|� |t − s|.

We claim that F1 satisfies Eq. (5.4) for all j > 1 with the same function �j as F. To
see this, note that for each h > 0 and every ŷ,

f (y) = �jF (y, ŷ; h)

satisfies the assumptions of Lemma 5.1 with C = 2 and � = �1. A moment’s consid-
eration shows that

f̃ (t) = �jF1(t, ŷ; h)

and the claim follows since sup f̃ = sup f ��j (yj + h) − �j (yj ) by Lemma 5.1.
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Next we verify that F1 inherits the monotonicity properties of F. Suppose that
�i1...i�F �0 for some set of ��1 distinct indices i1, . . . , i�. If 1 /∈ {i1, . . . , i�}, we
apply Lemma 5.1 to f (y) = �i1...i�F (y, ŷ; h1, . . . , h�), which satisfies Eq. (5.1) with
C = 2� and � = �1 for all ŷ ∈ Rm−1 and all h1, . . . , h� �0. It follows that f̃ (t) =
�i1...i�F1(t, ŷ; h1, . . . , h�)�0. On the other hand, if i1 = 1, we apply Lemma 5.1 to
f (y) = �i2,...,i�F (y, ŷ; h2, . . . , h�). Since f (y) is nondecreasing by assumption, f̃ (t) =
�i2,...,i�F1(t, ŷ; h2, . . . , h�) is again nondecreasing, and we conclude that �i1...i�F1 �0
also in this case.

Iterating the change of variables for i = 2, . . . , m gives functions Fi satisfying

Fi−1(t1, . . . , ti−1, yi, . . . , ym) = Fi(t1, . . . , ti−1, �i (yi), yi+1, . . . , ym),

as well as

0��jFi(t1, . . . , ti , yi+1, . . . , ym; h)�
{

h, j � i

�j (yj + h) − �j (yj ), j > i.
(5.5)

The construction is completed by setting F̃ = Fm. It follows from Eq. (5.5) that
F̃ satisfies the Lipschitz condition |F̃ (z) − F̃ (y)|� ∑ |zi − yi |�√

m |z − y| for all
y, z ∈ Rm+. �

The distribution function of a Borel measure on Rm+ can be conveniently approxi-
mated from below by restricting the measure to a large cube [0, L)m. The next lemma
constructs the corresponding approximation for functions with weaker monotonicity
properties.

Lemma 5.3 (Cutoff). Given a real-valued function F in Rm+, set

FL(y1, . . . , ym) := F(min{y1, L}, . . . , min{ym, L}).
If F is nondecreasing in each variable, then FL �F . If �i1...i�F �0 on Rm+ × R�+ for
some distinct indices i1, . . . , i�, then �i1,...,i�F

L �0. In particular, if F is supermodular,
so is FL. If F has the property that �i1...i�F �0 on Rm+ × R�+ for every set of distinct
indices i1, . . . , i�, then F − FL also has this property.

Proof. As in the proof of Lemma 5.2, we modify the variables one at a time. The
function F 1,L(y, ŷ) := F

(
min{y, L}, ŷ

)
has the same monotonicity properties as F

because min{y, L} is nondecreasing in y.
If �i1...i�F �0 for all collections of distinct indices i1, . . . , i�, we write

F(y, ŷ) − F 1,L(y, ŷ) = �1F
(
y, ŷ; [y − L]+

)
,

and it follows that �i1...i� (F −F 1,L)�0 whenever 1 /∈ {i1, . . . , i�}. For i1 = 1, we write

�1(F (y, ŷ; h) − F 1,L(y, ŷ; h) = �1F
(
max{y, L}, ŷ; [h − [L − y]+]+

)
,

and conclude that �i1...i� (F − F 1,L)�0 also in this case.
Repeating the construction for the variables y2, . . . , ym gives the claims. �
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6. Two-point rearrangements

Let X be Rn, Sn, or Hn. A reflection on X is an isometry characterized by the
properties that (i) 	2x = x for all x ∈ X; (ii) the fixed point set H0 of 	 separates
M into two half-spaces H+ and H− that are interchanged by 	; and (iii) d(x, x′) <

d(x, 	x′) for all x, x′ ∈ H+. We call H+ and H− the positive and negative half-spaces
associated with 	. By convention, we always choose H+ to contain the distinguished
point x∗ of X in its closure. The two-point rearrangement, or polarization of a real-
valued function u with respect to a reflection 	 is defined by

u	(x) =
{

max{u(x), u(	x)}, x ∈ H+ ∪ H0,

min{u(x), u(	x)}, x ∈ H−.

This definition makes sense, and the two-point versions of Eqs. (1.3) and (1.4) hold
for any space with a reflection symmetry.

On X = Rn, Sn, and Hn, any pair of points is connected by a unique reflection. The
space of reflections forms an n-dimensional submanifold of the n(n+1)/2-dimensional
space of isometries, and thus has a natural uniform metric. If u is measurable, both
the composition u◦	 and the rearrangement u	 depend continuously on 	 in the sense
that 	k → 	 implies that u ◦ 	k → u ◦ 	 and u	k → u	 in measure.

Two-point rearrangements are particularly well-suited for identifying symmetric de-
creasing functions, because

u = u∗ ⇐⇒ u = u	 for all 	. (6.1)

Functions that are radially decreasing about some point are characterized by

u = u∗ ◦ � for some translation � ⇐⇒ for all 	, either u = u	 or u = u	 ◦ 	 (6.2)

(see [11, Lemma 2.8]).
Integral inequalities for two-point rearrangements typically reduce to elementary com-

binatorial inequalities for the integrands. The following lemma supplies the elementary
inequality for the Hardy–Littlewood and Riesz functionals.

Lemma 6.1 (Lorentz two-point inequality). A real-valued function F on Rm+ is super-
modular, if and only if for every pair of points z, w ∈ Rm+.

F(z1, . . . , zm) + F(w1, . . . , wm)

�F(min{z1, w1}, . . . , min{zm, wm}) + F(max{z1, w1}, . . . , max{zm, wm}).
(6.3)

If �ijF > 0 for some i �= j then Eq. (6.3) is strict unless (zi − wi)(zj − wj)�0.
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Proof. Given z, w ∈ Rm+, define y, h ∈ Rm+ by yi = min{zi, wi} and hi = |zi − wi | for
i = 1, . . . , m. If I ⊂ {1, . . . , m}, we use the notation hI = ∑

i∈I hiei . Subtracting the
left-hand side of Eq. (6.3) from the right-hand side results in the equivalent statement

�IJ F (y; hI , hJ ) := F(y + hI∪J ) − F(y + hI ) − F(y + hJ ) + F(y)�0, (6.4)

where I = {i : zi < wi}, and J = {i : zi > wi}. If either I or J is empty, Eq. (6.4)
is trivially satisfied. If I and J each have exactly one element, Eq. (6.4) is equivalent
to Eq. (1.5). If one of the sets, say I, has several elements, then decomposing it into
disjoint subsets as I = I ′ ∪ I ′′ gives

�IJ F (y; hI , hJ ) = �I ′J F (y + hI ′′ , hI ′ , hJ ) + �I ′′J F (y, hI ′ , hJ ),

and Eq. (6.4) follows by recursion. The same recursion implies that if �ijF > 0 and
zi − wi and zj − wj have opposite signs, then the inequality in Eq. (6.4) is strict
whenever I contains i, J contains j, and hi, hj > 0. �

Brock proved that the left-hand side of Eq. (1.3) increases under two-point rear-
rangement [8]:

Lemma 6.2 (Hardy–Littlewood two-point inequality). Let F be a supermodular Borel
measurable function on Rm+, and let u1, . . . , um be nonnegative measurable functions
on X satisfying the integrability condition in Eq. (2.1). Then, for any reflection 	 on
X,

∫
X

F
(
u1(x), . . . , um(x)

)
dx�

∫
X

F
(
u	

1(x), . . . , u	
m(x)

)
dx. (6.5)

Assume furthermore that �ijF > 0 on Rm+ × (0, ∞)2 for some i �= j . If Eq. (6.5)
holds with equality and the integrals are finite, then

(
ui(x) − ui(	x)

)(
uj (x) − uj (	x)

)
�0 a.e. .

In particular, if ui = u∗
i is strictly radially decreasing and 	(x∗) �= x∗, then uj = u	

j .

Proof.
The inequality [8]: The left-hand side of Eq. (6.5) can be written as an integral over

the positive half-space,

I(u1, . . . , um) :=
∫
H+

F
(
u1(x), . . . um(x)

)+ F
(
u1(	x), . . . um(	x)

)
dx.
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By Lemma 6.1, with zi = ui(x) and wi = ui(	x), the integrand satisfies

F
(
u1(x), . . . um(x)

)+ F
(
u1(	x), . . . um(	x)

)
�F

(
u	

1(x), . . . u	
m(x)

)+ F
(
u	

1(	x), . . . u	
m(	x)

)
(6.6)

for all x ∈ H+. Integrating over H+ yields Eq. (6.5).
Equality statement: Assume that I(u1, . . . , um) = I(u	

1 , . . . , u	
m) is finite. Then

Eq. (6.6) must hold with equality almost everywhere on H+. If �ijF > 0 on Rm+ ×
(0, ∞)2, then Lemma 6.1 implies that ui(x) − ui(	x) and uj (x) − uj (	x) cannot have
opposite signs except on a set of zero measure. If moreover ui = u∗

i is strictly radially
decreasing and 	x∗ �= x∗, then ui(x) > ui(	x) for a.e. x ∈ H+, and Lemma 6.1
implies that uj (x)�uj (	x) for a.e. x ∈ H+. �

Brock completed the proof of Eq. (1.3) by approximating the symmetric decreasing
rearrangement with a sequence of two-point rearrangements à la Baernstein–Taylor [4].
We sketch his argument in the simplest case where F is a continuous supermodular
function that vanishes on the boundary of the positive cone Rm+, and u1, . . . , um are
bounded and compactly supported.

By Theorem 6.1 of [9] there exists a sequence of reflections {	k}k �1 such that

u
	1,...,	k

i → u∗
i in measure (k → ∞) (6.7)

for i = 1, . . . , m. By Lemma 6.2, the functional I increases monotonically along such
a sequence. If B is a ball centered at x∗ that contains the supports of u1, . . . , um, then
the rearranged functions u

	1,...,	k

i are also supported on B, and dominated convergence
yields

I(u1, . . . , um)�I(u
	1,...,	k

1 , . . . , u	1,...,	k
m ) → I(u∗

1, . . . , u
∗
m) (k → ∞). (6.8)

The corresponding results for Eq. (1.4) are due to Draghici [15]. The two-point
inequality is not an immediate consequence of Lemma 6.1, but requires an additional
combinatorial argument. This argument was used previously by Morpurgo [30], and a
simpler special case appears in [11].

Lemma 6.3 (Riesz two-point inequality). Assume that F is a supermodular Borel mea-
surable function on Rm+. For each pair of indices 1� i < j �m, let Kij be a nonin-
creasing function on R+, and let u1, . . . , um be nonnegative measurable functions on
X satisfying the integrability condition in Eq. (2.3). Then, for any reflection 	,∫

X
· · ·
∫

X
F
(
u1(x1), . . . , um(xm)

)∏
i<j

Kij

(
d(xi, xj )

)
dx1 . . . dxm

�
∫

X
· · ·
∫

X
F
(
u	

1(x1), . . . , u
	
m(xm)

)∏
i<j

Kij

(
d(xi, xj )

)
dx1 . . . dxm. (6.9)
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Assume additionally that Kij (t) > 0 for all i < j and all t < diam X. Let �0 be the
graph on {1, . . . , m} with an edge between i and j whenever Kij is strictly decreasing.
If �ijF > 0 for some i �= j lying in the same connected component of �0, and that
ui and uj are not symmetric under 	. If the integrals in Eq. (6.9) have the same finite
value, then either ui = u	

i and uj = u	
j , or ui = u	

i ◦ 	 and uj = u	
j ◦ 	.

Proof.
The inequality [15]: The left-hand side of Eq. (6.9) can be written as an m-fold

integral over the positive half-space

I(u1, . . . , um) :=
∫
H+

· · ·
∫
H+

∑
εi∈{0,1},i=1,...,m

{
F
(
u1(	

ε1x1), . . . , um(	εmxm)
)

×
∏
i<j

Kij

(
d(	εi xi, 	

εj xj )
)}

dx1 . . . dxm. (6.10)

Fix x1, . . . , xm ∈ H+. For each i < j , set aij = Kij

(
d(xi, 	xj )

)
and bij = Kij(

d(xi, xj )
)− Kij

(
d(xi, 	xj )

)
, so that

Kij

(
d(	εi xi, 	

εj xj )
) = aij + bij 1εi=εj

.

The product term in Eq. (6.10) expands to

∏
i<j

Kij

(
d(	εi xi, 	

εj xj )
) =

∑
�

(∏
ij /∈E

aij

)(∏
ij∈E

bij 1εi=εj

)
=: C�1εi=εj ,ij∈E,

where � runs over all proper graphs on the vertex set V = {1, . . . , m}, and E is the
set of edges of �. Inserting the expansion into Eq. (6.10) and exchanging the order of
summation, shows that each graph contributes a nonnegative term

C�

∑
εi∈{0,1},i∈V

F
(
u1(	

ε1x1), . . . , um(	εmxm)
)
1εi=εj ,ij∈E (6.11)

to the integral in Eq. (6.10). If � is connected, then

∑
εi∈{0,1},i∈V

F
(
u1(	

ε1x1), . . . , um(	εmxm)
)
1εi=εj ,ij∈E

= F
(
u1(x1), . . . , um(xm)

)+ F
(
u1(	x1), . . . , um(	xm)

)
�F

(
u	

1(x1)), . . . , u
	
m(xm)

)+ F
(
u	

1(	x1)), . . . , u
	
m(	xm)

)
=

∑
εi∈{0,1},i∈V

F
(
u	

1(	ε1x1), . . . , u
	
m(	εmxm)

)
1εi=εj ,ij∈E, (6.12)

where the second step follows from Lemma 6.1 with zi = ui(xi) and wi = ui(	xi).
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If � is not connected, choose a connected component �′ and let �′′ be its comple-
ment. Let E′, E′′, V ′, and V ′′ be the corresponding edge and vertex sets. The sum in
Eq. (6.11) can be decomposed as

∑
εi∈{0,1},i∈V ′′

{ ∑
εi∈{0,1},i∈V ′

F
(
u1(	

ε1x1), . . . , um(	εmxm)
)
1εi=εj ,ij∈E′

}
1εi=εj ,ij∈E′′ .

The key observation is that Eq. (6.12) applies to the term in braces for fixed εi, i ∈ V ′′;
in other words, the contribution of � can only increase if ui is replaced by u	

i for all
i ∈ V ′. An induction over the connected components of � shows that

∑
εi∈{0,1},i∈V

F
(
u1(	

ε1x1), . . . , um(	εmxm)
)
1εi=εj ,ij∈E

�
∑

εi∈{0,1},i∈V

F
(
u	

1(	ε1x1), . . . , u
	
m(	εmxm)

)
1εi=εj ,ij∈E

for any graph � = (E, V ). Adding the contributions of all graphs shows that the
integrand in Eq. (6.10) increases pointwise under two-point rearrangement, and Eq.
(6.9) follows.

Equality statement: Let �0 be the graph defined in the statement of the lemma, and
let E0 be its edge set. By assumption,

C�0 =
( ∏

ij /∈inE0

Kij

(
d(xi, xj )

)− Kij

(
d(	xi, xj )

))( ∏
ij∈E0

Kij

(
d(	xi, xj )

))
> 0

for a.e. x1, . . . , xm ∈ H+. If �ijF > 0, then Lemma 6.1 implies that Eq. (6.12) is strict
unless

(
ui(xi) − ui(	xi)

)(
uj (xj ) − uj (	xj )

)
�0, a.e. xi, xj ∈ H+.

If ui and uj are not symmetric under 	, the product is not identically zero. Since xi

and xj can vary independently, this means that ui(x) − ui(	x) and uj (x) − uj (	x)

cannot change sign on H+. We conclude that equality in Eq. (6.9) implies that either
ui = u	

i and uj = u	
j , or ui = u	

i ◦ 	 and uj = u	
j ◦ 	. �

Draghici also used Baernstein–Taylor approximation to obtain Eq. (1.4) from
Eq. (6.9). If F is bounded and continuous and Kij is bounded for 1� i < j �m,
then for bounded functions u1, . . . , um that are supported in a common ball B the
inequality follows from Lemma 6.3 by approximating the symmetric decreasing re-
arrangement with a sequence of two-point rearrangements, see Eq. (6.7). Dominated
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convergence applies as in Eq. (6.8), since the integrations extend only over the bounded
set Bm.

7. Proof of the main results

Proof of Theorem 1.
The inequality for Borel integrands: Let F be a supermodular Borel function with

F(0) = 0, and let and u1, . . . , um be nonnegative measurable functions that vanish at
infinity, as in the statement of the theorem. Denote by

I(u1, . . . , um) :=
∫

X
F(u1(x), . . . , um(x)) dx

the left-hand side of Eq. (1.3). Replacing F(y) by F(y)−∑m
i=1 F(yiei ) and using that

F(ui(·)ei ) and F(u∗
i (·)ei ) contribute equally to the two sides of Eq. (1.3), we may

assume F to be nondecreasing in each variable.
Fix L > 0, and replace ui by the bounded function

uL
i (x) := min {ui(x), L} 1{|x|<L}

for i = 1, . . . , m. Then

F(uL
1 , . . . , uL

m) = FL(uL
1 , . . . , uL

m), (7.1)

where FL is the function defined in Lemma 5.3. By construction, FL is bounded,
and by Lemma 5.3 it is nondecreasing and supermodular. By Lemma 5.2, there exist
nondecreasing functions �i with �i (0) = 0 and a continuous supermodular function
F̃ L on Rm+ such that

FL(y1, . . . , ym) = F̃ L(�1(y1), . . . , �m(ym)). (7.2)

Since �i is nondecreasing and vanishes at zero, uL
i is compactly supported, and

(uL
i )∗ �(u∗

i )
L pointwise by construction, we have

(�i ◦ uL
i )∗ = �i ◦ (uL

i )∗ ��i ◦ (u∗
i )

L (7.3)

for i = 1, . . . , m. By Theorem 1 of [8]

∫
X
F̃ L(�1 ◦ uL

1 (x), . . . ,�m ◦ uL
m(x)) dx�

∫
X
F̃ L((�1 ◦ uL

1 )∗(x), . . . , (�m ◦ uL
m)∗(x)) dx.
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With Eqs. (7.1)–(7.3), this becomes

I(uL
1 , . . . , uL

m)�I((u∗
1)

L, . . . , (u∗
m)L

)
.

Since uL
i (x) = ui(x) for L� max{ui(x), |x|}, we see that F(uL

i (x), . . . , uL
m(x)) con-

verges pointwise to F(u1(x), . . . , um(x)), and Eq. (1.3) follows by monotone conver-
gence.

Equality statement: Combining Eq. (6.5) with Eq. (1.3) and using that u	
i is equimea-

surable with ui , we see that

I(u1, . . . , um)�I(u	
1 , . . . , u	

m)�I(u∗
1, . . . , u

∗
m).

Hence equality in Eq. (1.3) implies equality in Eq. (6.5) for every choice of the
reflection 	. Given two points x, x′ in X, choose 	 such that 	(x) = x′. If �ijF > 0
for some i �= j , then ui(x) − ui(x

′) and uj (x) − uj (x
′) cannot have opposite signs by

Lemma 6.2. If ui = u∗
i is strictly radially decreasing, then it follows that u	

j = uj for
every reflection 	 that does not fix x∗. By Eq. (6.1), uj = u∗

j as claimed. �

Proof of Theorem 2.
The inequality for Borel integrands: The proof of Eq. (1.4) proceeds along the same

lines as the proof of Eq. (1.3). Let

I(u1, . . . , um) :=
∫

X
· · ·
∫

X
F(u1(x1), . . . , um(xm))

∏
i<j

Kij (d(xi, xj )) dx1 . . . dxm

be the left-hand side of Eq. (1.4). As before, we may assume that F is nondecreasing
in each variable. We replace F with F̃ L, ui with �i ◦uL

i , Kij with KL
ij = min{Kij , L},

and set

IL(u1, . . . , um) :=
∫

X
· · ·
∫

X
FL
(
u1(x1), . . . , um(xm)

)∏
i<j

KL
ij

(
d(xi, xj )

)
dx1 . . . dxm.

Applying Theorem 2.2 of [15], we obtain with the help of Eqs. (7.1)–(7.3)

IL(uL
1 , . . . , uL

m)�IL
(
(u∗

1)
L, . . . , (u∗

m)L
)
.

Eq. (1.4) follows by taking L → ∞ and using monotone convergence.
Equality statement: Consider the set Si of all reflections 	 of X that fix ui . If ui

is nonconstant, then Si is a closed proper subset of the space of all reflections on
X. This subset is nowhere dense, since any open set of reflections generates the entire
isometry group of X. If Eq. (1.4) holds with equality, then the two-point rearrangement
inequality in Eq. (6.9) holds with equality for every reflection 	. For 	 /∈ Si , Lemma
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6.3 implies that either uj = u	
j or uj = u	

j ◦ 	. Since Si is nowhere dense, it follows
from the continuous dependence of u	 on 	 that uj agrees with either u	

j or u	
j ◦ 	

also for 	 ∈ Si . By Eq. (6.2), there exists a translation � such that uj = u∗
j ◦ �. Lemma

6.3 implies furthermore that ui agrees with u	
i when uj = u	

j , and with u	
i ◦ 	 when

uj = u	
j ◦ 	. We conclude that ui = u∗

i ◦ �. �

8. Concluding remarks

In the proof of Eq. (1.4) and its two-point version in Eq. (6.9), the kernels Kij

played a very different role from the functions u1, . . . , um that enter into the integrand.
However, the Riesz functional on the left-hand side of Eq. (1.2) depends equally on u,
v, and w. We will use the connection of Riesz’ inequality with the Brunn–Minkowski
inequality to construct examples where the two-point rearrangement fails for Eq. (1.2).

The Brunn–Minkowski inequality says that the measures of two subsets A, B ⊂ Rn

are related to the measure of their Minkowski sum A + B = {a + b : a ∈ A, b ∈ B} by

�(A)1/n + �(B)1/n ��(A + B)1/n.

Recognizing the two sides of the inequality as proportional to the radii of the balls
A∗ + B∗ and (A + B)∗, we rewrite it as the rearrangement inequality

�(A∗ + B∗)��(A + B). (8.1)

Eq. (8.1) follows rather directly from Riesz’ inequality in Eq. (1.2), because the support
of the convolution of two nonnegative functions is essentially the Minkowski sum of
their supports. Conversely, the Brunn–Minkowski inequality enters into the proof of
the Brascamp-Lieb-Luttinger inequality [7], of which Eqs. (1.2) and (1.4) are special
cases.

Equality in the Brunn–Minkowski inequality implies that A and B differ only by sets
of measure zero from two independently scaled and translated copies of a convex body
[18]. Let A = B be an ellipsoid in Rn with n > 1 that is centered at a point c �= 0,
so that Eq. (8.1) holds with equality. If 	 is the reflection at a hyperplane through c
that is not a hyperplane of symmetry for A and B, then A	 and B	 are nonconvex,
and therefore

�(A	 + B	) > �(A∗ + B∗) = �(A + B).

Choosing u, v, and w as the characteristic functions of A, A+B, and B provides an ex-
ample where the Riesz functional strictly decreases under two-point rearrangement. For
an example of this phenomenon in one dimension, consider the symmetric decreasing
functions

u(x) = 1|x−2|<ε, v(x) = w(x) = 1|x−1|<ε,
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and let 	 be the reflection at x = 1. Then

u	(x) = 1|x|<ε, v	(x) = w	(x) = 1|x−1|<ε,

and if 0 < ε� 1
2 , Riesz’ inequality fails for 	,

∫
R

∫
R

u(x)v(x′)w(x − x′) dx dx′ > 0 =
∫

R

∫
R

u	(x)v	(x)w	(x − x′) dx dx′.

While the two-point rearrangement is not useful for Eq. (1.2), the layer-cake repre-
sentation of Crowe–Zweibel–Rosenbloom shows that

∫
Rn

∫
Rn

F
(
u(x), v(x′), w(x − x′)

)
dx dx′

�
∫

Rn

∫
Rn

F
(
u∗(x), v∗(x′), w∗(x − x′)

)
dx dy (8.2)

for any integrand that can be written as the joint distribution function of a Borel
measure �F on R3+,

F(y1, y2, y3) = �F

([0, y1) × [0, y2) × [0, y3)
)
.

Such integrands are left continuous, vanish at the origin, and satisfy �i1,...,i�F �0 for
every choice of ��3 distinct indices. Lemma 5.2 allows to accommodate integrands
in Eq. (8.2) that are only Borel measurable. The main condition is that �123F �0; the
second-order monotonicity conditions can be replaced by integrability assumptions on
the negative part F− similar to Eq. (2.3). To ensure that the functional is finite at least
when u, v, w are bounded and compactly supported, F should vanish on the coordinate
axes. For example, Eq. (8.2) holds for

F(u, v, w) = uvw

(1 + u)(1 + v)(1 + w)
− (uv + uw + vw)

since �123F > 0, even though �ijF < 0 for all i �= j .
For Borel integrands satisfying �123F > 0, equality in Eq. (8.2) implies that every

triple of level sets of u, v, w produces equality in Eq. (1.2). These equality cases were
described in [10]. In particular, if two of the three functions u, v, w are known to have
continuous distribution functions and the value of the functional is finite, then equality
implies that u, v, w are equivalent to u∗, v∗, w∗ under the symmetries of the functional
(see [10, Theorem 2]).
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By the same line of reasoning, the Brascamp–Lieb–Luttinger inequality [7] implies
that

I(u1, . . . , um) :=
∫

Rn
· · ·
∫

Rn
F

(
u1

(
k∑

j=1

a1j xj

)
, . . . ,

um

(
k∑

j=1

amjxj

))
dx1 . . . dxk

increases under symmetric decreasing rearrangement, if �i1,...,i�F �0 for all choices
of distinct indices i1, . . . , i� with ��m. Interesting examples are integrands of the
form in Eq. (3.3), where � is completely monotone in the sense that all its distribu-
tional derivatives are nonnegative. If �i1...i�F > 0 for all choices of i1, . . . , i�, then
the last statement of Lemma 5.3 can be used to show that the extended Brascamp–
Lieb–Luttinger inequality has the same equality cases as the original inequality. The
characterization of these equality cases remains an open problem.
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