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a b s t r a c t

We extend the result of Joyal and Tierney asserting that a morphism of commutative
algebras in the ∗-autonomous category of sup-lattices is an effective descent morphism
for modules if and only if it is pure, to an arbitrary ∗-autonomous categoryV (in which the
tensor unit is projective) by showing that any V-functor out of V is precomonadic if and
only if it is comonadic.
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1. Introduction

General descent theory, as originally developed by Grothendieck [5] in the abstract setting of fibred categories, is an
invaluable tool in algebraic geometry, which one can also apply to various situations in Galois theory, topology and topos
theory. A general aim of descent theory is to give characterizations of the so-called (effective) descent morphisms, which in
the case of a fibred category satisfying the Beck–Chevalley condition reduces to monadicity of a suitable functor.
A basic example of Grothendieck’s descent theory involvesmodules over commutative rings. Consider a homomorphism

of commutative rings i : A→ B and the corresponding extension-of-scalars functor i∗ = B⊗A− : ModA → ModB. It is well
known that this functor admits as a right adjoint the underlying functor i∗ : ModB → ModA. The problem of Grothendieck’s
descent theory formodules is concernedwith the characterization of those B-modulesM for which there exists an A-module
N and an isomorphisms i∗(N) ' M of B-modules. To be more specific, letM be a B-module and let θM : M⊗A B→ B⊗AM
be a homomorphism of B⊗A B-modules, where B⊗A B acts onM⊗A B by (b1 ⊗ b2)(m⊗ b) = b1m⊗ b2b and on B⊗AM by
(b1 ⊗ b2)(b⊗m) = b1b⊗ b2m. Define

(θM)1 : B⊗AM⊗A B→ B⊗A B⊗AM,
(θM)2 : M⊗A B⊗A B→ B⊗A B⊗AM,
(θM)3 : M⊗A B⊗A B→ B⊗AM⊗A B

by tensoring θM with 1B in the first, second and third positions respectively.Descent data on a B-moduleM is an isomorphism
θM : M⊗A B → B⊗AM of B⊗A B-modules such that (θM)2 = (θM)1 · (θM)3.Des(i) denotes the category of pairs (M, θM),
θM descent data on a B-module M , where morphisms (M, θM) → (M ′, θM ′) are morphisms f : M → M ′ of B-modules
that commute with descent data in the obvious way. For any A-module N , there is an isomorphism θi∗(N) : N ⊗A B⊗A B→
B⊗A N ⊗A B, arising from

(i1)∗(i∗(N)) = (i1i)∗(N) = (i2i)(N) = (i2)∗(i∗(N)),
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where i1, i2 : B→ B⊗A B are the maps defined by i1(b) = 1⊗A b and i2(b) = b⊗A 1. Explicitly θi∗(N) is the map given by

n⊗A b1⊗A b2 7−→ b1⊗A n⊗A b2.

Thus one has a functor

Ki : ModA → Des(i).

One says that i : A→ B is an (effective) descent homomorphism of commutative rings if the functor Ki is full and faithful (an
equivalence of categories). So that, when i is an effective descent morphism, to specify an A-module is to specify a B-module
M together with descent data θM : M⊗A B→ B⊗AM of B⊗A B-modules. The descent theory for modules is thus the study
of which homomorphisms of commutative rings i : A → B are (effective) descent morphisms. Grothendieck [5] proved
that faithfully flat extensions of commutative rings are effective. A full characterization of effective descent morphisms for
modules was given by A. Joyal and M. Tierney (unpublished, but see [12]) and by Olivier [13]: a morphism i : A → B
of commutative rings is an effective descent morphism iff i is a pure morphism of A-modules. For example, if i is a split
monomorphism of A-modules, then it is effective for descent (see, for example, [6]).
According to the theorem of Bénabou and Roubaud [1] and J. Beck (unpublished), the category Des(i) is equivalent to

the Eilenberg–Moore category of Gi-coalgebras, where Gi is the comonad on the category ModB generated by the adjunction
i∗ a i∗ : ModB → ModA. Modulo this equivalence, the functor Ki : ModA → Des(i) can be identified with the comparison
functor KGi : ModA → (ModB)Gi , and thus to say that i is an (effective) descent morphism is to say that the extension-of-
scalars functor i∗ : ModA → ModB is precomonadic (comonadic).
Since purity of any homomorphism of commutative rings is equivalent to precomonadicity of the corresponding

extension-of-scalars functor, Grothendieck’s descent theory for modules over commutative rings can be conceived
by interpreting a descent result as a statement asserting that for a given homomorphism of commutative rings,
precomonadicity of the corresponding extension-of-scalars functor implies (and hence is equivalent to) comonadicity.
Identifying the homomorphism i : A→ Bwith the algebra B in the monoidal category ModA and considering the monad

Ti on ModA given by tensoring with B, the category ModB can be seen as the Eilenberg–Moore category of Ti-algebras and
the functor i∗ as the comparison functor KTi : ModA → (ModA)Ti . Thus the problem of effectiveness of i is equivalent to the
one of the comonadicity of the functor i∗. This motivates to call a monad T on a categoryA to be of (effective) descent type if
the free T-algebra functor F T : A→ AT is precomonadic (comonadic). Hence, in the language of monads, the Joyal–Tierney
theorem can be paraphrased as follows: For any pure homomorphism of commutative rings i : A→ B, the monad Ti is an
effective descent morphism iff it is of descent type.
Thequestionwhether a givenmorphism is effective for descent has been investigated for various categories. An important

example of wide applicability of Grothendieck’s descent theory is Joyal–Tierney’s result [8] on a descent theory for open
maps of locales. In [8], A. Joyal and M. Tierney looked at descent theory in the context of the ∗-autonomous category CL of
sup-lattices and indicated that there was a useful analogy with the descent theory for modules over commutative rings. A
main result of [8] asserts that a morphism of commutative algebras in CL is effective for descent iff it is pure. This is used
to show that open surjections are effective in the category of locales, leading to a representation theorem for Grothendieck
topoi (over a base topos) in terms of localic groupoids, which can be considered as a generalization of the fundamental
theorem of Galois theory.
Our aim is to generalize the descent theorem of Joyal–Tierney for sup-lattices by showing that for any ∗-autonomous

category V with an injective dualizing object, a V-functor is precomonadic iff it is comonadic.
The paper is organized as follows. Section 2 rather technical, and is devoted to extend classical monadicity results to

the enriched setting. Section 3 contains some criteria for comonadicity that are used in the next section to generalize the
theorem of Joyal–Tierney to ∗-autonomous categories.

2. Preliminaries

We let V = (V0,⊗, I) denote a symmetric monoidal category, where ⊗ : V0 × V0 → V0 is the tensor product of V
and where I is the tensor unit. A V-functor will be called a functor if it is understood that the domain and codomain are
V-categories. Similarly a V-natural transformation between V-functors will be called simply a natural transformation. For
V-categories A and B, [A,B ]0 will denote the ordinary category of functors from A to B and natural transformations
between them. In our paper we follow the notation from [9], which is our general reference for enriched category theory.
We start by recalling the basic facts about V-monads; all can be found in [3,4].
GivenV-categoryA, a monad T = (T , η, µ) onA consists of a functor T : A→ A togetherwith natural transformations

η : 1A → T and µ : T 2 → T satisfying the usual three axioms.
As in the ordinary case, every V-adjunction η, ε : F a U : B → A induces a monad onA by letting T = (UF , η,UεF).
Let T = (T , η, µ) be a monad on a V-category A. Then clearly T0 = (T0, η0, µ0) is an ordinary monad on A0, and one

has the Eilenberg–Moore categoryA
T0
0 and the free-forgetful adjunction

F T0 a UT0 : A
T0
0 → A0

determining the monad T0.
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When the category V0 has equalizers (at least of pairs with a common left inverse),A
T0
0 has a V-category structureAT:

Given T0-algebras (a, θ) and (a′, θ ′), one defines

UT
(a,θ),(a′,θ ′) : A

T((a, θ), (a′, θ ′))→ A(a, a′)

to be the equalizer in V0 of the following pair of morphisms:

A(T (a), T (a′))

A(T (a),θ ′)

��??
??

??
??

??
??

?

A(a, a′)

Ta, a′

??�������������

A(θ,a′)
// A(T (a), a′).

Moreover, one can give F T0 and UT0 the structure of V-functors in such a way that the above adjunction is enriched in V;
in other words, there are V-functors F T : A → AT and UT

: AT
→ A underlying F T0 : A0 → A

T0
0 and U

T0 : A
T0
0 → A0,

respectively, such that F T is left V-adjoint to UT.
AT is called the Eilenberg–Moore category for the monad T.
Given aV-adjunction η, ε : F a U : B → A, let T be the monad onA induced by (U, F), and let ηT, εT : F T a UT

: AT
→

A be the adjunction associated to T as described above. Then there is a canonical functor KT : B → AT, called the comparison
functor, for which UT

◦ KT = U and KT ◦ F = F T. (Recall that KT is given on objects by KT(b) = (U(b),Uεa).)
One says that the V-functor U is (pre)monadic if KT is an equivalence of V-categories (a fully faithful V-functor).
From now on we consider only monoidal categories V = (V0,⊗, I)with V0 admitting all equalizers.
LetA be a V-category. Recall that a diagram

a
f //
g

// b
h // c

inA0 is a coequalizer diagram inA (or just a V-coequalizer diagram) if each

A(c, x)
A(h,x) // A(b, x)

A(f ,x) //
A(g,x)

// A(a, x)

is an equalizer diagram in V0. Recall also that a map h : b→ c inA0 is a regular epimorphism inA if it is a V-coequalizer
of a pair of morphisms.

Theorem 2.1. A right adjoint V-functor U : B → A is (pre)monadic if and only if the underlying ordinary functor U0 : B0 →
A0 is so, provided that B has coequalizers of reflexive pairs.

Corollary 2.2. Let η, ε : F a U : B → A be a V-adjunction and suppose that B has coequalizers of reflexive pairs. Then U is
premonadic if and only if each εb : FU(b)→ b is a regular epimorphism in the ordinary categoryB0.

Proof. It is well known (see, for example, [10]) that an ordinary functor with left adjoint is premonadic iff each component
of the counit of the adjunction is a regular epimorphism. �

Since any regular epimorphism inB is of course a regular epimorphism inB0, we have:

Proposition 2.3. Let B admit coequalizers of reflexive pairs and let U : B → A be a right adjoint functor with left adjoint
F : A→ B and counit ε : FU → 1. If each εb : FU(b)→ b is a regular epimorphism inB , then U is premonadic.

Proposition 2.4. LetB be aV-category admitting coequalizers of reflexive pairs and let U : B → A be a premonadic V-functor.
Then any morphism inB whose image under U is a split epimorphism is a regular epimorphism inB0.

Proof. Since B is assumed to have coequalizers of reflexive pairs, it follows from Theorem 2.1 that U is premonadic iff U0
is so. The conclusion now follows from Corollary 2.2. �

We shall need the following result of Janelidze and Tholen [6]:

Theorem 2.5. Let X and Y be ordinary categories with coequalizers and let W : X → Y be a right adjoint functor with left
adjoint V : Y→ X and counit σ : VW → 1X. If the natural transformation σ is a split epimorphism, W is monadic.

Theorem 2.6. Let A and B be V-categories admitting coequalizers and let η, ε : F a U : B → A be an adjunction. If the
ordinary natural transformation ε0 : F0U0 → 1B0 is a split epimorphism, then U is monadic.
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Proof. Since ε0 : F0U0 → 1B0 is a split epimorphism, U0 is monadic by Theorem 2.5 and since B admits coequalizers, the
result follows from Theorem 2.1. �

A corollary follows immediately:

Corollary 2.7. In the situation of Theorem 2.6, suppose that the natural transformation ε : FU → 1 is a split epimorphism in
[B,B ]0, then the functor U is monadic.

3. Some criteria for comonadicity

Let T be a monad on a V-category A with associated Eilenberg–Moore category AT of T-algebras, and canonical free-
forgetful adjunction F T a UT

: AT
→ A.T is called of descent type if F T is precomonadic, and T is called of effective descent

type if F T is comonadic.
As an immediate consequence of the dual of Theorem 2.1 we observe that

Theorem 3.1. Let T be a monad on a V-category A. If A admits coequalizers of reflexive pairs, then T is of (effective) descent
type iff T0 is.

Since the functor UT
: AT
→ A detects all limits that exist inA, it follows from (the dual of) Corollary 2.7 that

Proposition 3.2. Let A be a V-category admitting equalizers and let T = (T , η, µ) be monad on A. If η : 1 → T is a split
monomorphism in [A,A ]0, then T is a monad of effective descent type.

LetA be a V-category and (E, ν) be a pointed endofunctor onA. (Recall that a pointed endofunctor onA is a pair (E, ν)
where E : A→ A is a functor and ν : 1→ E is a natural transformation.) For an object Q ofA, we get from E a functor

A(E(−),Q ) : Aop → V,

and we can consider the natural transformation

A(ν−,Q ) : A(E(−),Q )→ A(−,Q ).

Proposition 3.3. The natural transformationA(ν−,Q ) is a split epimorphism in [Aop,V]0 if and only if themorphism νQ : Q →
E(Q ) is a split monomorphism inA0.

Proof. Suppose that ν : A(−,Q )→ A(E(−),Q ) is a natural transformation such thatA(ν(−),Q ) ·τ = 1. Then the diagram

I
iQ //

iQ **UUUUUUUUUUUUUUUUUUUU A(Q ,Q )
τQ // A(E(Q ),Q )

A(νQ ,Q )

��
A(Q ,Q ) ,

where iQ = p1Q q : I → A(Q ,Q ) is the ‘‘name’’ of the unit morphism 1Q : Q → Q , commutes. Hence τQ · iQ : I →
A(E(Q ),Q ) is the name of a map E(Q )→ Q inA0 that splits νQ .
Conversely, suppose that t ·νQ = 1 where t : E(Q )→ Q . By the Yoneda lemma, there is a unique natural transformation

τ : A(−,Q )→ A(E(−),Q )

for which τQ : A(Q ,Q )→ A(E(Q ),Q ) composed with the morphism iQ : I → A(Q ,Q ) is the name ptq : I → A(E(Q ),Q )
of t . Now the composite

A(−,Q ) τ // A(E(−),Q )
A(ν−,Q ) // A(−,Q )

is the identity, since the composite of its Q -component with iQ isA(νQ ,Q )(ptq) = p(t · νQ )q = p1Q q = iQ . �

Recall that an object Q of a V-categoryA is a regular cogenerator forA if the functor

A(−,Q ) : Aop → V

has a left adjoint and the unit of this adjunction is componentwise a regular monomorphism inA.

Theorem 3.4. Let A be a V-category admitting equalizers, and let η, ε : F a U : B → A be an adjunction. Suppose that there
exists a regular cogenerator Q for A. If the morphism ηQ : Q → UF(Q ) is a split monomorphism inA0, then F is a precomonadic
functor. If, in addition, Q is an injective object inA0, then the converse also holds.
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Proof. If the morphism ηQ : Q → UF(Q ) is a split monomorphism, then the natural transformation

A(η−,Q ) : A(UF(−),Q )→ A(−,Q )

is a split epimorphism in [Aop,V ]0 (see Proposition 3.3). Hence, for any a ∈ A, the morphism

A(ηa,Q ) : A(UF(a),Q )→ A(a,Q )

is a split epimorphism. Since Q is a regular cogenerator forA and sinceA admits equalizers by hypothesis, it follows from
Proposition 2.3 that the functorA(−,Q ) is premonadic. And applying Proposition 2.4 to this premonadic functor,we see that
each ηa : a→ UF(a) is a regular monomorphism inA0. Then that F is precomonadic follows from the dual of Corollary 2.2.
If F : A→ B is precomonadic, then sinceA is assumed to have equalizers, it follows from the dual of Corollary 2.2 that

each component ηa : a → UF(a) of η : 1 → UF is a regular monomorphism in A0; in particular, so is ηQ : Q → UF(Q ).
Now, if Q is injective inA0, then ηQ is evidently a split monomorphism inA0. �

Let nowV be a ∗-autonomous category in the sense of Barr [2]. Thus,V is a symmetricmonoidal closed category together
with a so-called dualizing object Q such that the V-adjunction

V(−,Q ) a V(−,Q ) : Vop → V (1)

is an equivalence.

Theorem 3.5. Let V be a ∗-autonomous category with dualizing object Q , and let (E, ν) be a pointedV-endofunctor onV . Then
the morphism νQ : Q → E(Q ) is a split monomorphism in V0 if and only if the natural transformation ν : 1 → E is a split
monomorphism in [V,V]0.

Proof. One direction is clear, so suppose that the morphism νQ : Q → E(Q ) is a split monomorphism in V0. Then, by
Proposition 3.3, the natural transformation

V(ν(−),Q ) : V(E(−),Q )→ V(−,Q )

is a split epimorphism in [V,V, ]0, and hence

V(V(ν(−),Q ),Q ) : V(V(−,Q ),Q )→ V(V(E(−),Q ),Q )

is a split monomorphism in [V,V, ]0. But since (2) is an equivalence of categories,V(ν(−),Q ) ' ν, and therefore ν : 1→ E
is a split monomorphism in [V,V, ]0. �

Theorem 3.6. Let V be a ∗-autonomous category with dualizing object Q and η, ε : F a U : A → V be a V-adjunction such
that the morphism ηQ : Q → UF(Q ) is a split monomorphism in V0. Then F is a comonadic functor.

Proof. Let us first recall that for any tensored V-category A, V-equalizers are the same things as equalizers in A0; this is
true in particular whenA = V , since the V-category V , being closed, is tensored. So to say that V0 admits all equalizers is
to say that V admits all V-equalizers. We now apply Theorem 3.5 to the pointed endofunctor (UF , η : 1→ UF) to see that
η is a split monomorphism in [V,V, ]0. And sinceV admits all equalizers by hypothesis, it follows from Corollary 2.7 that F
is comonadic. �

Now we are ready to prove:

Theorem 3.7. Let V be a ∗-autonomous category with dualizing object Q and let V0 admit all equalizers. For a given V-
adjunction η, ε : F a U : A→ V , let us consider the following statements:

(i) each component of the natural transformation η : 1→ UF is a regular monomorphism;
(ii) the morphism ηQ : Q → UF(Q ) is a regular monomorphism;
(iii) the morphism ηQ : Q → UF(Q ) is a split monomorphism;
(iv) the natural transformation η : 1→ UF is a split monomorphism in [V,V ]0;
(v) the functor F is precomonadic;
(vi) the functor F is comonadic;
(vii) the ordinary functor F0 is precomonadic;
(viii) the ordinary functor F0 is comonadic;
(ix) the ordinary natural transformation η0 : 1→ U0F0 is a split monomorphism.
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Then one always has the implications

(iii) (iv)

��

+3ks (ix)+3ks

(vi)

��

+3 (viii)

��
(i) (v)+3ks +3 (vii) +3 (ii).

Moreover, all nine are equivalent when Q is an injective object in V0.

Proof. The implications (iv)⇒ (ix), (vi)⇒ (v), (vi)⇒ (viii), (viii)⇒ (vii) (v)⇒ (vii), and (ix)⇒ (iii) are trivial. Since
(iii)⇐⇒ (iv) by Theorem 3.5, it follows that (iii), (iv) and (ix) are equivalent. (iv)⇒ (vi) by the dual of Corollary 2.7, while
(vii)⇒ (ii) by the dual of Corollary 2.2. Moreover, SinceV admits all equalizers and sinceV-equalizers are the same things
as equalizers in V0, it follows from the dual of Proposition 2.3 that (i) and (v) are equivalent.
Finally, assume that Q is injective in V0. Then the morphism ηQ : Q → T (Q ) is a split monomorphism if and only if it is

a regular monomorphism. Thus, in this case (ii)⇐⇒ (iii) and hence the nine conditions are equivalent. �

Theorem 3.8. Let V be a ∗-autonomous category with dualizing object Q which is injective inV0. If T = (T , η, µ) is aV-monad
on V , then the following are equivalent:
(i) the natural transformation η : 1→ T is componentwise a regular monomorphism;
(ix) the natural transformation η0 : 1→ T0 is a split monomorphism;
(iii) the monad T is of descent type;
(iv) the monad T is of effective descent type.

Proposition 3.9. A dualizing object Q of a ∗-autonomous categoryV = (V0,⊗, I) is injective inV0 if and only if the tensor unit
I is projective in V0.

Proof. Suppose that I is projective in V0. Since the V-functor

V(−,Q ) : Vop → V

is an equivalence of categories, the functor

V(−,Q )0 : V
op
0 → V0

preserves all types of limits that exist in V0; in particular, it preserves regular epimorphisms; and that Q is injective in V0
now follows from the fact that there is an isomorphism of ordinary functors:

V0(−,Q ) ' V0(I,V(−,Q )0).

Conversely, suppose that Q is injective in V0 and consider a diagram

I

x

��
V

f
// V ′

(2)

in V0 with f a regular epimorphism, and let

V(V ′,Q )0

V(x,Q )0
��

V(f ,Q )0 // V(V ,Q )0

V(I,Q )0 ' Q

(3)

be the image of this diagram under the functor

V(−,Q )0 : V
op
0 → V0.

Since the functor V(−,Q )0 preserves regular monomorphisms, the morphism V(f ,Q ) is a regular monomorphism; and
from the assumption on Q we conclude that there is a morphism V(V ,Q )→ V(I,Q ) ' Q making diagram (4) commute.
Applying the functor V(−,Q )0 to this commutative diagram and using that V(V(−,Q )0,Q )0 ' 1V0 , we get a completion
of diagram (3) to a commutative one. Hence I is projective in V0, as desired. �
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Combining Theorem 3.7 and Proposition 3.9 gives the following result:

Theorem 3.10. Let V be a ∗-autonomous with dualizing object Q , and suppose that V0 admits all equalizers and that the tensor
unit I is projective in V0. For a V-adjunction η, ε : F a U : A→ V , the following are equivalent:

(i) each component of the natural transformation η : 1→ UF is a regular monomorphism;
(ii) the V-natural transformation η : 1→ UF is a split monomorphism in [V,V]0;
(iii) the functor F is precomonadic;
(iv) the functor F is comonadic.

Corollary 3.11. Let V be a ∗-autonomous with dualizing object Q and suppose that V0 admits all equalizers and that the tensor
unit I is projective in V0. For a V-monad T = (T , η, µ), the following are equivalent:
(i) each component of the natural transformation η : 1→ T is a regular monomorphism;
(ii) the natural transformation η : 1→ T is a split monomorphism in [V,V]0;
(iii) the monad T is of descent type;
(iv) the monad T is of effective descent type.

Given a V-category A, recall that a V-monad T on A is called an enrichment of an ordinary monad T on A0 when the
underlying ordinary monad T0 of T is T .

Corollary 3.12. Let V be a ∗-autonomous category with dualizing object Q and let T = (T , η, µ) be an (ordinary) monad on
V0 admitting an enrichment to a V-monad on V . If I is projective in V0, then the following are equivalent:

(i) each component of the natural transformation η : 1→ T is a regular monomorphism;
(ii) the natural transformation η : 1→ T is a split monomorphism in [V,V]0;
(iii) T is of descent type;
(iv) T is of effective descent type

4. Applications

Fix a symmetric monoidal category V = (V0,⊗, I) with a symmetry cU,V : U ⊗ V → V ⊗ U . Recall that an algebra in
V (or V-algebra) is an object R of V0 equipped with a multiplication mR : R ⊗ R → R and a unit iR : I → R subject to the
condition that the following diagrams commute:

R⊗ R⊗ R

R⊗mR
��

mR⊗R // R⊗ R

mR
��

R⊗ R mR
// R,

R ' I ⊗ R

RRRRRRRRRRRRRRR

RRRRRRRRRRRRRRR
iR⊗R // R⊗ R

mR
��

R⊗ I ' R
R⊗iRoo

R

lllllllllllllll

lllllllllllllll

For a V-algebra R = (R, iR,mR) in V , one defines a V-monad TR = (T R, ηR, µR) on V by

• T R(−) = R⊗−;
• ηR(−) = iR ⊗−: 1V ' I ⊗−→ R⊗−;
• µR(−) = mR ⊗−: (R⊗ R)⊗−→ R⊗−.

The V-algebra structure on R gives the required identities for TR to be a V-monad on V . We refer to TR as the V-monad
induced by the V-algebra R = (R, iR,mR).
Applying Corollary 3.11 to this situation gives the following

Theorem 4.1. Let V be a ∗-autonomous category with dualizing object Q , and suppose that I is projective in V0. For an algebra
R = (R, iR,mR) in V , the following statements are equivalent:

(i) the morphism iR : I → R is a split monomorphism in V0;
(ii) the morphism iR : I → R pure; that is, for any V ∈ V0, the morphism

iR ⊗ V : V ' I ⊗ V → R⊗ V

is a regular monomorphism;
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(iii) the monad TR is of descent type;
(iv) the monad TR is of effective descent type.
Let R = (R, iR,mR) be an algebra in V . Recall that a left R-module is an object M ∈ V0 equipped with a (left) action

λM : R⊗M → M making commutative the following diagrams:

R⊗ R⊗M

R⊗mR
��

mR⊗M // R⊗M

λM

��

M ' I ⊗M

LLLLLLLLLLL

LLLLLLLLLLL
iR⊗M // R⊗M

λM

��
R⊗M

λM

// M, M.

The category of left R-modules is denoted by RV . The category of right R-modules VR is defined similarly.
Note that the evident forgetful functor

RU : RV → V

is right adjoint, with the left adjoint sending V ∈ V0 to R ⊗ V ∈ RV , where R ⊗ V is an object in RV via the morphism
mR ⊗ V : R⊗ R⊗ V → R⊗ V .
It is well known that the functor RU is monadic and that the monad on V generated by the adjunction R ⊗ − a RU is

just the monad TR. In other words, the category VTR is just the category of left R-modules and the free TR-algebra functor
V → VTR is just the functor R⊗− : V → RV .
It follows from Theorem 3.10 that

Theorem 4.2. Let V be a ∗-autonomous categorywhose tensor unit I is projective inV0, and let R = (R, iR,mR) be anV-algebra.
Then the following statements are equivalent:
(i) the functor R⊗− : V → RV is precomonadic;
(ii) the functor R⊗− : V → RV is comonadic;
(iii) the morphism i : I → R is a pure morphism in V; that is, for any v ∈ V , the morphism i⊗ v : I ⊗ v → R⊗ v is a regular

monomorphism in V0;
(iv) the morphism i : I → R is a split monomorphism in V0;
(v) the monad TR is of effective descent type.
Assume now that V0 has coequalizers and that all functors V ⊗ − : V0 → V0 as well as − ⊗ V : V0 → V0 preserve

these coequalizers, as they surely do when V is closed. Then there is a well-defined functor
−⊗R− : VR × RV → V0

which assigns to any pair (N,M) (N ∈ VR and M ∈ RV) the coequalizer of the two morphisms

N ⊗ R⊗M //// N ⊗M

induced by the actions of R on N andM .
Recall that a V-algebra R = (R, iR,mR) is called commutative if the multiplication morphism is unchanged when

composed with the symmetry (i.e. ifmR · cR,R = mR).
For any commutative V-algebra R = (R, iR,mR), the assignment
(M, λM) 7−→ (M, λM · βM,R)

defines a functor

RV 7−→ VR (4)

that identifies the category RV of left R-moduleswith the categoryVR of right R-modules, andwe simply speak of R-modules.
In this case, the tensor product over R of two R-modules is another R-module and tensoring over Rmakes RV (as well asVR)
into a monoidal category, and the symmetry c induces a symmetry on RV . Hence RV is a symmetric monoidal category.
Moreover, ifV is closed (i.e. there is a right adjoint functor [V ,−] : V0 → V0 for every functor V ⊗− : V0 → V0), then RV
is also closed: The internal Hom object R[M,N] of two R-modulesM and N is the equalizer of two morphisms

[M,N] //// [R⊗M, N],

where the first morphism is induced by the action of R onM , while the second morphism is the composition of
(R⊗−)M,N : [M,N] → [R⊗M, R⊗ N]

followed by the morphism induced by the action of R on N . Note that, for any V ∈ V0, the object [R, V ] becomes a left R-
module and that the assignment V 7−→ [R, V ] defines a functor [R,−] : V → RV which is a right adjoint of the underlying
functor RU : RV → V . See [14] for a reference on algebras and modules in a symmetric monoidal category.

Theorem 4.3. Let V be a∗-autonomous category. Then, for any commutative algebra R = (R, iR,mR) inV , RV is a∗-autonomous
category. Moreover, if tensor unit I is projective in V0, then R is projective in RV .
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Proof. First, since R is assumed to be commutative, RV is a symmetricmonoidal closed category by the discussion preceding
the theorem.
Next, it is easy to check by using the adjunction RU a [R,−] : V → RV that if Q is a dualizing object for V , then [R,Q ]

is a dualizing object for RV .
Finally, since the functor RU : RV → V admits as a left adjoint the functor R ⊗ − : V → RV , there is a natural

isomorphism

RV(R⊗ V ,M) ' V0(V , RU(M)), for all V ∈ V and M ∈ RV .

Putting V = I and using the fact that RU , being right adjoint, preserves regular epimorphisms, we see that R is projective in

RV , provided that I is projective in V0. �

For a commutativeV-algebraR = (R, iR,mR), anR-algebra is defined to be an algebra in the symmetricmonoidal category
RV . It is well known that specifying an R-algebra structure on an object S ∈ V0 is the same as giving S aV-algebra structure
together with a morphism i : R→ S of V-algebras which is central in the sense that the diagram

R⊗ S

i⊗S

��

βR,S // S ⊗ R
S⊗i // S ⊗ S

mS

��
S ⊗ S

mS // S

is commutative. (Quite obviously, any morphism of commutative V-algebras is central.) Thus, if i : R → S is a central
morphism of V-algebras, then S can be viewed as an object of RV via

R⊗ S
i⊗S // S ⊗ S

mS // S ,

or, equivalently (since i is central), via

R⊗ S
βR,S // S ⊗ R

S⊗i // S ⊗ S
mS // S ,

and then the multiplicationmS : S⊗ S → S factors through the quotient S⊗ S → S⊗R S (that is, there is some (necessarily
unique) morphismm′S : S⊗R S → S making the diagram

S ⊗ S

mS
$$IIIIIIIII

// S ⊗R S

m′S
��
M

commute), and it is easy to see that the triple SR = (S, i,m′S) is a commutative algebra in the symmetric monoidal category

RV .

Theorem 4.4. Let V be a ∗-autonomous category whose tensor unit is projective in V0, let R be a commutative V-algebra, and
let i : R→ S be a central morphism of V-algebras. Then the following are equivalent:

(i) the functor S⊗R− : RV→S V is precomonadic;
(ii) the functor S⊗R− : RV→S V is comonadic;
(iii) i is a pure morphism of (left) R-modules, i.e. for any (left) R-module M, the morphism i⊗RM : M ' R⊗RM → S⊗RM is a

regular monomorphism;
(iv) i is a split monomorphism of (left) R-modules.

Proof. We begin by noticing that, since R is a commutative V-algebra and since I is assumed to be projective in V0, RV is
a ∗-autonomous category whose tensor unit R is projective (see Proposition 3.9). Next, writing SR = (S, i : R → S,m′S)
for the R-algebra corresponding to the central morphism i, it is easy to see that the category

(SR)(SV) can be identified with
the category SV , and that, modulo this identification, S⊗R− : RV → SV corresponds to S

R
⊗R− : RV → (SR)(SV). Now,

applying Theorem 4.2 gives that (i)–(iv) are equivalent. �

Now let V be a symmetric monoidal category whose underlying ordinary category V0 is locally small, complete, and
cocomplete. Then recall that, for any small V-category A, there exists the so-called V-functor category [A,V], which is
an enrichment of the ordinary category [A,V]0 over V , and that [A,V] is a V-tensored category in the sense that any
representable functor

[F ,−] = [A,V](F ,−) : [A,V] → V
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is right adjoint: The left adjoint to the functor [F ,−] is the functor

F ⊗− : V → [A,V],
v −→ [a→ F(a)⊗ v].

Recall also that F : A→ V is small projective if the functor [F ,−] preserves all small (indexed) colimits. Fix such a functor F ,
and write TF for the V-monad on V generated by the adjunction F ⊗− a [F ,−]. Since F is assumed to be small projective,
it follows that TF (v) = v ⊗ [F , F ] for all v ∈ V0. Thus, tensoring with the V-algebra [F , F ] is isomorphic to the monad
TF ; in other words, the monads TF and T[F ,F ] are isomorphic. So the category VTF is (isomorphic to) the category of right
[F , F ]-modules, V[F ,F ], and the free TF -algebra functor V → VTF is (isomorphic to) the functor − ⊗ [F , F ] : V → V[F ,F ].
SinceV has all equalizers, and since any category with all equalizers is Cauchy complete (in the sense that every idempotent
endomorphism e has a factorization e = ijwith ji = 1), Theorem 3.20 in [11] and Theorem 2.1 together give the following:

Theorem 4.5. Let A be a small V-category. If F : A→ V is small projective, then the functor

F ⊗− : V → [A,V]

is (pre)comonadic if and only if the functor

−⊗ [F , F ] : V → V[F ,F ]

is.

Combining this with Corollary 4.1 in [6], we conclude that

Corollary 4.6. In the situation of the previous theorem, if the morphism

p1F q : I → [F , F ]

is a split monomorphism, then the functor

F ⊗− : V → [A,V]

is comonadic.

Let E be an elementary topos with the subobject classifierΩ , and let CL(E) denote the category of internal sup-lattices
(i.e. internally complete lattices and sup-preserving morphisms) in E . It is well known (see, [8]) that CL(E) is a symmetric
monoidal closed category, in fact ∗-autonomous. We recall that the unit object for the tensor product in CL(E) isΩ , while
the dualising object isΩop, the sup-lattice provided with the partial order opposite to that one ofΩ .
Recall also that CL(E) is a monadic category over E : If we consider the covariant power set functor P : E → E , then

it is a monad via the morphisms f : X → P (X) of taking singletons and ∪: PP (X)→ P (X) of taking the internal union,
respectively; an object X ∈ E is an algebra for this monad precisely if X is an internal sup-lattice in E , and thus CL(E)
is (isomorphic to) the category of P -algebras. Moreover, since the forgetful functor CL(E) → E takes epimorphisms to
split epimorphisms [8], the free P -algebras (=the free complete lattices) are projective in CL(E)0 [15]; in particular,Ω is
projective in CL(E)0, since P (1) = Ω – here 1 is the terminal object of E – and hence the dualizing objectΩop is injective
in CL(E)0 by Proposition 3.9. Finally, since CL(E) is monadic on E , all small limits (and hence all small colimits) exist in
CL(E) provided they exist in E .
Recall that a morphism i : R → S of commutative CL-algebras is an effective descent morphism for modules if the

(ordinary) functor S⊗R− : RCL(E)→ SCL(E) is comonadic.
Applying Theorem 3.4, we obtain the following result of Joyal and Tierney [8]:

Theorem 4.7. Let E be an elementary topos with small limits. A morphism i : R → S of commutative algebras in CL(E) is an
effective descent morphism for modules if and only if i is a split monomorphism of R-modules.

We now look at the case where E = Sets, and write simply CL for the category CL(Sets). It is well known (see, for
example [8]) that, in CL, (small) coproducts are biproducts; that is, the coproduct of {Xi, i ∈ I} in CL is the same as the
product

∏
i∈I Xi. Wewill write

⊕
i∈I Xi for this biproduct. It is also awell-known fact (see [7]) that, for any smallCL-category

A, the functor P =
⊕
a∈A0

A(a,−) is small projective, and thus, by Theorem 4.5, the functor

P ⊗− : CL→ [A,CL]

is comonadic iff the functor

−⊗ [P, P] : CL→ CL[P,P]

is. One easily sees that the underlying object of the CL-algebra [P, P] is
⊕
a0,a1∈A0

A(a0, a1), and that the unit morphism
i : I → [P, P] =

⊕
a0,a1∈A0

A(a0, a1) is given as follows:

(i(1))a0,a1 =
{
1a0 , if a0 = a1,
0, if a0 6= a1

and (i(0))a0,a1 = 0 for all a0, a1 ∈ A0.
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Theorem 4.8. For any small CL-categoryA, the functor

P ⊗− : CL→ [A,CL],

where P =
⊕
a∈A0

A(a,−), is comonadic if and only if there exists an object a ∈ A0 such that the morphism p1aq : I → A(a, a)
is a split monomorphism.

Proof. We claim that the morphism i : I → [P, P] =
⊕
a0,a1∈A0

A(a0, a1) is a split monomorphism in CL if and only if
there exists an object a ∈ A0 such that the morphism p1aq : I → A(a, a) is a split monomorphism in CL. Indeed, since
one direction is clear, suppose that i is split by some j :

⊕
a0,a1∈A0

A(a0, a1)→ I . Then, writing ea, a ∈ A0, for the image of
1 ∈ I under the composite

I
p1aq // A(a, a)

ia,a //
⊕

a0,a1∈A0
A(a0, a1),

it is easy to see that ∨a∈A0 ea = i(1), and since ji = 1, this implies that 1 = ji(1) = j(∨a∈A0 ea) = ∨a∈A0 j(ea). Now, if each
j(ea) = 0, then 1 = ∨a∈A0 j(ea) = 0, a contradiction. Therefore, there exists an object ā ∈ A0 with j(eā) = 1, which just
means that the morphism p1āq : I → A(ā, ā) is a split monomorphism. The result now follows from Theorems 4.4 and 4.7.
�

In order to understand the meaning of this theorem, we consider the comonad GA on the category [A,CL] generated
by the adjunction

P ⊗− a [P,−] : [A,CL] → CL.

It is not hard to see that the functor-part of this comonad takes any CL-functor F : A → CL to the CL-functor
P⊗ (

⊕
a∈A0

F(a)). Now, we can interpret Theorem 4.8 as saying that GA-coalgebras are exactly theCL-functors of the form
P ⊗ X with X ∈ CL iff there exists an object a ∈ A0 such that the morphism p1aq : I → A(a, a) is a split monomorphism.
Another way of interpreting the meaning of Theorem 4.8 is the following:

Theorem 4.9. For any algebra in CL of the form [P, P], where P =
⊕
a∈A0

A(a,−) for a small CL-category A, the induced
monad T [P, P] on CL is of effective descent type if and only if there exists an object a ∈ A0 such that the morphism p1aq : I →
A(a, a) is a split monomorphism.
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