Descent in $*$-autonomous categories

Bachuki Mesablishvili*
Razmadze Mathematical Institute, Tbilisi 0193, Georgia

A R T I CLE INFO

Article history:

Received 23 October 2007
Received in revised form 11 March 2008
Available online 26 June 2008
Communicated by G. Rosolini

MSC:

18B35
18C15
18C20
18D10
18D20

Abstract

We extend the result of Joyal and Tierney asserting that a morphism of commutative algebras in the $*$-autonomous category of sup-lattices is an effective descent morphism for modules if and only if it is pure, to an arbitrary $*$-autonomous category \mathcal{V} (in which the tensor unit is projective) by showing that any \mathcal{V}-functor out of \mathcal{V} is precomonadic if and only if it is comonadic.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

General descent theory, as originally developed by Grothendieck [5] in the abstract setting of fibred categories, is an invaluable tool in algebraic geometry, which one can also apply to various situations in Galois theory, topology and topos theory. A general aim of descent theory is to give characterizations of the so-called (effective) descent morphisms, which in the case of a fibred category satisfying the Beck-Chevalley condition reduces to monadicity of a suitable functor.

A basic example of Grothendieck's descent theory involves modules over commutative rings. Consider a homomorphism of commutative rings $i: A \rightarrow B$ and the corresponding extension-of-scalars functor $i_{*}=B \otimes_{A}-: \operatorname{Mod}_{A} \rightarrow \operatorname{Mod}_{B}$. It is well known that this functor admits as a right adjoint the underlying functor $i^{*}: \operatorname{Mod}_{B} \rightarrow \operatorname{Mod}_{A}$. The problem of Grothendieck's descent theory for modules is concerned with the characterization of those B-modules M for which there exists an A-module N and an isomorphisms $i_{*}(N) \simeq M$ of B-modules. To be more specific, let M be a B-module and let $\theta_{M}: M \otimes_{A} B \rightarrow B \otimes_{A} M$ be a homomorphism of $B \otimes_{A} B$-modules, where $B \otimes_{A} B$ acts on $M \otimes_{A} B$ by $\left(b_{1} \otimes b_{2}\right)(m \otimes b)=b_{1} m \otimes b_{2} b$ and on $B \otimes_{A} M$ by $\left(b_{1} \otimes b_{2}\right)(b \otimes m)=b_{1} b \otimes b_{2} m$. Define

$$
\begin{aligned}
& \left(\theta_{M}\right)_{1}: B \otimes_{A} M \otimes_{A} B \rightarrow B \otimes_{A} B \otimes_{A} M, \\
& \left(\theta_{M}\right)_{2}: M \otimes_{A} B \otimes_{A} B \rightarrow B \otimes_{A} B \otimes_{A} M, \\
& \left(\theta_{M}\right)_{3}: M \otimes_{A} B \otimes_{A} B \rightarrow B \otimes_{A} M \otimes_{A} B
\end{aligned}
$$

by tensoring θ_{M} with 1_{B} in the first, second and third positions respectively. Descent data on a B-module M is an isomorphism $\theta_{M}: M \otimes_{A} B \rightarrow B \otimes_{A} M$ of $B \otimes_{A} B$-modules such that $\left(\theta_{M}\right)_{2}=\left(\theta_{M}\right)_{1} \cdot\left(\theta_{M}\right)_{3} . \operatorname{Des}(i)$ denotes the category of pairs (M, θ_{M}), θ_{M} descent data on a B-module M, where morphisms $\left(M, \theta_{M}\right) \rightarrow\left(M^{\prime}, \theta_{M^{\prime}}\right)$ are morphisms $f: M \rightarrow M^{\prime}$ of B-modules that commute with descent data in the obvious way. For any A-module N, there is an isomorphism $\theta_{i_{*}(N)}: N \otimes_{A} B \otimes_{A} B \rightarrow$ $B \otimes_{A} N \otimes_{A} B$, arising from

$$
\left(i_{1}\right)_{*}\left(i_{*}(N)\right)=\left(i_{1} i\right)_{*}(N)=\left(i_{2} i\right)(N)=\left(i_{2}\right)_{*}\left(i_{*}(N)\right)
$$

[^0]where $i_{1}, i_{2}: B \rightarrow B \otimes_{A} B$ are the maps defined by $i_{1}(b)=1 \otimes_{A} b$ and $i_{2}(b)=b \otimes_{A} 1$. Explicitly $\theta_{i_{*}(N)}$ is the map given by
$$
n \otimes_{A} b_{1} \otimes_{A} b_{2} \longmapsto b_{1} \otimes_{A} n \otimes_{A} b_{2}
$$

Thus one has a functor

$$
K_{i}: \operatorname{Mod}_{A} \rightarrow \operatorname{Des}(i) .
$$

One says that $i: A \rightarrow B$ is an (effective) descent homomorphism of commutative rings if the functor K_{i} is full and faithful (an equivalence of categories). So that, when i is an effective descent morphism, to specify an A-module is to specify a B-module M together with descent data $\theta_{M}: M \otimes_{A} B \rightarrow B \otimes_{A} M$ of $B \otimes_{A} B$-modules. The descent theory for modules is thus the study of which homomorphisms of commutative rings $i: A \rightarrow B$ are (effective) descent morphisms. Grothendieck [5] proved that faithfully flat extensions of commutative rings are effective. A full characterization of effective descent morphisms for modules was given by A. Joyal and M. Tierney (unpublished, but see [12]) and by Olivier [13]: a morphism $i: A \rightarrow B$ of commutative rings is an effective descent morphism iff i is a pure morphism of A-modules. For example, if i is a split monomorphism of A-modules, then it is effective for descent (see, for example, [6]).

According to the theorem of Bénabou and Roubaud [1] and J. Beck (unpublished), the category Des(i) is equivalent to the Eilenberg-Moore category of \mathbf{G}_{i}-coalgebras, where \mathbf{G}_{i} is the comonad on the category Mod_{B} generated by the adjunction $i_{*} \dashv i^{*}: \operatorname{Mod}_{B} \rightarrow \operatorname{Mod}_{A}$. Modulo this equivalence, the functor $K_{i}: \operatorname{Mod}_{A} \rightarrow \operatorname{Des}(i)$ can be identified with the comparison functor $K_{\mathbf{G}_{i}}: \operatorname{Mod}_{A} \rightarrow\left(\operatorname{Mod}_{B}\right)_{\mathbf{G}_{i}}$, and thus to say that i is an (effective) descent morphism is to say that the extension-ofscalars functor $i_{*}: \operatorname{Mod}_{A} \rightarrow \operatorname{Mod}_{B}$ is precomonadic (comonadic).

Since purity of any homomorphism of commutative rings is equivalent to precomonadicity of the corresponding extension-of-scalars functor, Grothendieck's descent theory for modules over commutative rings can be conceived by interpreting a descent result as a statement asserting that for a given homomorphism of commutative rings, precomonadicity of the corresponding extension-of-scalars functor implies (and hence is equivalent to) comonadicity.

Identifying the homomorphism $i: A \rightarrow B$ with the algebra B in the monoidal category Mod_{A} and considering the monad \mathbf{T}_{i} on Mod_{A} given by tensoring with B, the category Mod_{B} can be seen as the Eilenberg-Moore category of \mathbf{T}_{i}-algebras and the functor i_{*} as the comparison functor $K_{\mathbf{T}_{i}}: \operatorname{Mod}_{A} \rightarrow\left(\operatorname{Mod}_{A}\right)^{\mathbf{T}_{i}}$. Thus the problem of effectiveness of i is equivalent to the one of the comonadicity of the functor i_{*}. This motivates to call a monad \mathbf{T} on a category \mathcal{A} to be of (effective) descent type if the free \mathbf{T}-algebra functor $F^{\mathbf{T}}: \mathcal{A} \rightarrow \mathcal{A}^{\mathbf{T}}$ is precomonadic (comonadic). Hence, in the language of monads, the Joyal-Tierney theorem can be paraphrased as follows: For any pure homomorphism of commutative rings $i: A \rightarrow B$, the monad \mathbf{T}_{i} is an effective descent morphism iff it is of descent type.

The question whether a given morphism is effective for descent has been investigated for various categories. An important example of wide applicability of Grothendieck's descent theory is Joyal-Tierney's result [8] on a descent theory for open maps of locales. In [8], A. Joyal and M. Tierney looked at descent theory in the context of the $*$-autonomous category $\mathcal{C} \mathcal{L}$ of sup-lattices and indicated that there was a useful analogy with the descent theory for modules over commutative rings. A main result of [8] asserts that a morphism of commutative algebras in $\mathcal{C} \mathcal{L}$ is effective for descent iff it is pure. This is used to show that open surjections are effective in the category of locales, leading to a representation theorem for Grothendieck topoi (over a base topos) in terms of localic groupoids, which can be considered as a generalization of the fundamental theorem of Galois theory.

Our aim is to generalize the descent theorem of Joyal-Tierney for sup-lattices by showing that for any $*$-autonomous category \mathcal{V} with an injective dualizing object, a \mathcal{V}-functor is precomonadic iff it is comonadic.

The paper is organized as follows. Section 2 rather technical, and is devoted to extend classical monadicity results to the enriched setting. Section 3 contains some criteria for comonadicity that are used in the next section to generalize the theorem of Joyal-Tierney to $*$-autonomous categories.

2. Preliminaries

We let $\mathcal{V}=\left(\mathcal{V}_{0}, \otimes, I\right)$ denote a symmetric monoidal category, where $\otimes: \mathcal{V}_{0} \times \mathcal{V}_{0} \rightarrow \mathcal{V}_{0}$ is the tensor product of \mathcal{V} and where I is the tensor unit. A \mathcal{V}-functor will be called a functor if it is understood that the domain and codomain are \mathcal{V}-categories. Similarly a \mathcal{V}-natural transformation between \mathcal{V}-functors will be called simply a natural transformation. For \mathcal{V}-categories \mathcal{A} and $\mathscr{B},[\mathcal{A}, \mathscr{B}]_{0}$ will denote the ordinary category of functors from \mathcal{A} to \mathscr{B} and natural transformations between them. In our paper we follow the notation from [9], which is our general reference for enriched category theory.

We start by recalling the basic facts about \mathcal{V}-monads; all can be found in [3,4].
Given \mathcal{V}-category \mathcal{A}, a monad $\mathbf{T}=(T, \eta, \mu)$ on \mathcal{A} consists of a functor $T: \mathcal{A} \rightarrow \mathcal{A}$ together with natural transformations $\eta: 1_{\mathcal{A}} \rightarrow T$ and $\mu: T^{2} \rightarrow T$ satisfying the usual three axioms.

As in the ordinary case, every \mathcal{V}-adjunction $\eta, \epsilon: F \dashv U: \mathscr{B} \rightarrow \mathcal{A}$ induces a monad on \mathcal{A} by letting $\mathbf{T}=(U F, \eta, U \epsilon F)$.
Let $\mathbf{T}=(T, \eta, \mu)$ be a monad on a \mathcal{V}-category \mathcal{A}. Then clearly $\mathbf{T}_{0}=\left(T_{0}, \eta_{0}, \mu_{0}\right)$ is an ordinary monad on \mathcal{A}_{0}, and one has the Eilenberg-Moore category $\mathcal{A}_{0}^{\mathbf{T}_{0}}$ and the free-forgetful adjunction

$$
F^{\mathbf{T}_{0}} \dashv U^{\mathbf{T}_{0}}: \mathcal{A}_{0}^{\mathbf{T}_{0}} \rightarrow \mathcal{A}_{0}
$$

determining the monad \mathbf{T}_{0}.

When the category \mathcal{V}_{0} has equalizers (at least of pairs with a common left inverse), $\mathcal{A}_{0}^{\mathbf{T}_{0}}$ has a \mathcal{V}-category structure $\mathcal{A}^{\mathbf{T}}$: Given \mathbf{T}_{0}-algebras (a, θ) and ($a^{\prime}, \theta^{\prime}$), one defines

$$
U_{(a, \theta),\left(a^{\prime}, \theta^{\prime}\right)}^{\mathbf{T}}: \mathcal{A}^{\mathbf{T}}\left((a, \theta),\left(a^{\prime}, \theta^{\prime}\right)\right) \rightarrow \mathcal{A}\left(a, a^{\prime}\right)
$$

to be the equalizer in \mathcal{V}_{0} of the following pair of morphisms:

Moreover, one can give $F^{\mathbf{T}_{0}}$ and $U^{\mathbf{T}_{0}}$ the structure of \mathcal{V}-functors in such a way that the above adjunction is enriched in \mathcal{V}; in other words, there are \mathcal{V}-functors $F^{\mathbf{T}}: \mathcal{A} \rightarrow \mathcal{A}^{\mathbf{T}}$ and $U^{\mathbf{T}}: \mathcal{A}^{\mathbf{T}} \rightarrow \mathcal{A}$ underlying $F^{\mathbf{T}_{0}}: \mathcal{A}_{0} \rightarrow \mathcal{A}_{0}^{\mathbf{T}_{0}}$ and $U^{\mathbf{T}_{0}}: \mathcal{A}_{0}^{\mathbf{T}_{0}} \rightarrow \mathcal{A}_{0}$, respectively, such that $F^{\mathbf{T}}$ is left \mathcal{V}-adjoint to $U^{\mathbf{T}}$.
$\mathcal{A}^{\mathbf{T}}$ is called the Eilenberg-Moore category for the monad \mathbf{T}.
Given a \mathcal{V}-adjunction $\eta, \varepsilon: F \dashv U: \mathscr{B} \rightarrow \mathcal{A}$, let \mathbf{T} be the monad on \mathcal{A} induced by (U, F), and let $\eta^{\mathbf{T}}, \varepsilon^{\mathbf{T}}: F^{\mathbf{T}} \dashv U^{\mathbf{T}}: \mathcal{A}^{\mathbf{T}} \rightarrow$ \mathscr{A} be the adjunction associated to \mathbf{T} as described above. Then there is a canonical functor $K_{\mathbf{T}}: \mathcal{B} \rightarrow \mathcal{A}^{\mathbf{T}}$, called the comparison functor, for which $U^{\mathbf{T}} \circ K_{\mathbf{T}}=U$ and $K_{\mathbf{T}} \circ F=F^{\mathbf{T}}$. (Recall that $K_{\mathbf{T}}$ is given on objects by $K_{\mathbf{T}}(b)=\left(U(b), U \epsilon_{a}\right)$.)

One says that the \mathcal{V}-functor U is (pre)monadic if K_{T} is an equivalence of \mathcal{V}-categories (a fully faithful \mathcal{V}-functor).
From now on we consider only monoidal categories $\mathcal{V}=\left(\mathcal{V}_{0}, \otimes, I\right)$ with \mathcal{V}_{0} admitting all equalizers.
Let \mathcal{A} be a \mathcal{V}-category. Recall that a diagram

$$
a \xrightarrow[g]{\stackrel{f}{\longrightarrow}} b \xrightarrow{h} c
$$

in \mathcal{A}_{0} is a coequalizer diagram in \mathcal{A} (or just a \mathcal{V}-coequalizer diagram) if each

$$
\mathcal{A}(c, x) \xrightarrow{\mathcal{A}(h, x)} \mathcal{A}(b, x) \underset{A}{\mathcal{A}(f, x, x)} \mathcal{A}(a, x)
$$

is an equalizer diagram in \mathcal{V}_{0}. Recall also that a map $h: b \rightarrow c$ in \mathcal{A}_{0} is a regular epimorphism in \mathscr{A} if it is a \mathcal{V}-coequalizer of a pair of morphisms.

Theorem 2.1. A right adjoint \mathcal{V}-functor $U: \mathscr{B} \rightarrow \mathcal{A}$ is (pre)monadic if and only if the underlying ordinary functor $U_{0}: \mathscr{B}_{0} \rightarrow$ \mathcal{A}_{0} is so, provided that \mathscr{B} has coequalizers of reflexive pairs.

Corollary 2.2. Let $\eta, \varepsilon: F \dashv U: \mathscr{B} \rightarrow \mathcal{A}$ be a \mathcal{V}-adjunction and suppose that \mathscr{B} has coequalizers of reflexive pairs. Then U is premonadic if and only if each $\varepsilon_{b}: F U(b) \rightarrow b$ is a regular epimorphism in the ordinary category \mathcal{B}_{0}.
Proof. It is well known (see, for example, [10]) that an ordinary functor with left adjoint is premonadic iff each component of the counit of the adjunction is a regular epimorphism.

Since any regular epimorphism in \mathfrak{B} is of course a regular epimorphism in \mathscr{B}_{0}, we have:
Proposition 2.3. Let \mathcal{B} admit coequalizers of reflexive pairs and let $U: \mathcal{B} \rightarrow \mathcal{A}$ be a right adjoint functor with left adjoint $F: \mathcal{A} \rightarrow \mathcal{B}$ and counit $\varepsilon: F U \rightarrow 1$. If each $\varepsilon_{b}: F U(b) \rightarrow b$ is a regular epimorphism in \mathscr{B}, then U is premonadic.

Proposition 2.4. Let \mathfrak{B} be a \mathcal{V}-category admitting coequalizers of reflexive pairs and let $U: \mathscr{B} \rightarrow \mathcal{A}$ be a premonadic \mathcal{V}-functor. Then any morphism in \mathfrak{B} whose image under U is a split epimorphism is a regular epimorphism in \mathfrak{B}_{0}.
Proof. Since \mathscr{B} is assumed to have coequalizers of reflexive pairs, it follows from Theorem 2.1 that U is premonadic iff U_{0} is so. The conclusion now follows from Corollary 2.2.

We shall need the following result of Janelidze and Tholen [6]:
Theorem 2.5. Let \mathcal{X} and \mathcal{y} be ordinary categories with coequalizers and let $W: \mathcal{X} \rightarrow \mathcal{y}$ be a right adjoint functor with left adjoint $V: \mathcal{y} \rightarrow \mathcal{X}$ and counit $\sigma: V W \rightarrow 1_{x}$. If the natural transformation σ is a split epimorphism, W is monadic.

Theorem 2.6. Let \mathcal{A} and \mathfrak{B} be \mathcal{V}-categories admitting coequalizers and let $\eta, \varepsilon: F \dashv U: \mathcal{B} \rightarrow \mathcal{A}$ be an adjunction. If the ordinary natural transformation $\varepsilon_{0}: F_{0} U_{0} \rightarrow 1_{\mathcal{B}_{0}}$ is a split epimorphism, then U is monadic.

Proof. Since $\varepsilon_{0}: F_{0} U_{0} \rightarrow 1_{\mathcal{B}_{0}}$ is a split epimorphism, U_{0} is monadic by Theorem 2.5 and since \mathscr{B} admits coequalizers, the result follows from Theorem 2.1.

A corollary follows immediately:
Corollary 2.7. In the situation of Theorem 2.6, suppose that the natural transformation $\varepsilon: F U \rightarrow 1$ is a split epimorphism in $[\mathcal{B}, \mathscr{B}]_{0}$, then the functor U is monadic.

3. Some criteria for comonadicity

Let \mathbf{T} be a monad on a \mathcal{V}-category \mathcal{A} with associated Eilenberg-Moore category $\mathcal{A}^{\mathbf{T}}$ of \mathbf{T}-algebras, and canonical freeforgetful adjunction $F^{\mathbf{T}} \dashv U^{\mathbf{T}}: \mathcal{A}^{\mathbf{T}} \rightarrow \mathcal{A} . \mathbf{T}$ is called of descent type if $F^{\mathbf{T}}$ is precomonadic, and \mathbf{T} is called of effective descent type if $F^{\mathbf{T}}$ is comonadic.

As an immediate consequence of the dual of Theorem 2.1 we observe that
Theorem 3.1. Let \mathbf{T} be a monad on a \mathcal{V}-category \mathcal{A}. If A admits coequalizers of reflexive pairs, then \mathbf{T} is of (effective) descent type iff \mathbf{T}_{0} is.

Since the functor $U^{\mathbf{T}}: \mathcal{A}^{\mathbf{T}} \rightarrow \mathcal{A}$ detects all limits that exist in \mathcal{A}, it follows from (the dual of) Corollary 2.7 that
Proposition 3.2. Let \mathfrak{A} be a \mathcal{V}-category admitting equalizers and let $\mathbf{T}=(T, \eta, \mu)$ be monad on \mathcal{A}. If $\eta: 1 \rightarrow T$ is a split monomorphism in $[\mathcal{A}, \mathcal{A}]_{0}$, then \mathbf{T} is a monad of effective descent type.

Let \mathcal{A} be a \mathcal{V}-category and (E, v) be a pointed endofunctor on \mathcal{A}. (Recall that a pointed endofunctor on \mathcal{A} is a pair (E, v) where $E: \mathcal{A} \rightarrow \mathcal{A}$ is a functor and $v: 1 \rightarrow E$ is a natural transformation.) For an object Q of \mathcal{A}, we get from E a functor

$$
\mathcal{A}(E(-), Q): \mathcal{A}^{o p} \rightarrow \mathcal{V}
$$

and we can consider the natural transformation

$$
\mathcal{A}\left(v_{-}, Q\right): \mathcal{A}(E(-), Q) \rightarrow \mathcal{A}(-, Q) .
$$

Proposition 3.3. The natural transformation $\mathcal{A}\left(v_{-}, Q\right)$ is a split epimorphism in $\left[\mathcal{A}^{o p}, \mathcal{V}\right]_{0}$ if and only if the morphism $v_{Q}: Q \rightarrow$ $E(Q)$ is a split monomorphism in A_{0}.

Proof. Suppose that $v: \mathcal{A}(-, Q) \rightarrow \mathcal{A}(E(-), Q)$ is a natural transformation such that $\mathcal{A}\left(v_{(-)}, Q\right) \cdot \tau=1$. Then the diagram

where $i_{Q}=\left\ulcorner 1_{Q}\right\urcorner: I \rightarrow \mathcal{A}(Q, Q)$ is the "name" of the unit morphism $1_{Q}: Q \rightarrow Q$, commutes. Hence $\tau_{Q} \cdot i_{Q}: I \rightarrow$ $\mathcal{A}(E(Q), Q)$ is the name of a map $E(Q) \rightarrow Q$ in \mathcal{A}_{0} that splits ν_{Q}.

Conversely, suppose that $t \cdot v_{Q}=1$ where $t: E(Q) \rightarrow Q$. By the Yoneda lemma, there is a unique natural transformation

$$
\tau: \mathcal{A}(-, Q) \rightarrow \mathcal{A}(E(-), Q)
$$

for which $\tau_{Q}: \mathcal{A}(Q, Q) \rightarrow \mathcal{A}(E(Q), Q)$ composed with the morphism $i_{Q}: I \rightarrow \mathcal{A}(Q, Q)$ is the name $\ulcorner t\urcorner: I \rightarrow \mathcal{A}(E(Q), Q)$ of t. Now the composite

$$
\mathcal{A}(-, Q) \xrightarrow{\tau} \mathcal{A}(E(-), Q) \xrightarrow{\mathcal{A}\left(v_{-}, Q\right)} \mathcal{A}(-, Q)
$$

is the identity, since the composite of its Q-component with i_{Q} is $\mathcal{A}\left(v_{Q}, Q\right)(\ulcorner t\urcorner)=\left\ulcorner\left(t \cdot v_{Q}\right)\right\urcorner=\left\ulcorner 1_{Q}\right\urcorner=i_{Q}$.
Recall that an object Q of a \mathcal{V}-category \mathcal{A} is a regular cogenerator for \mathscr{A} if the functor

$$
\mathcal{A}(-, Q): \mathcal{A}^{o p} \rightarrow \mathcal{V}
$$

has a left adjoint and the unit of this adjunction is componentwise a regular monomorphism in \mathcal{A}.
Theorem 3.4. Let \mathcal{A} be a \mathcal{V}-category admitting equalizers, and let $\eta, \varepsilon: F \dashv U: \mathscr{B} \rightarrow \mathcal{A}$ be an adjunction. Suppose that there exists a regular cogenerator Q for \mathcal{A}. If the morphism $\eta_{Q}: Q \rightarrow U F(Q)$ is a split monomorphism in \mathcal{A}_{0}, then F is a precomonadic functor. If, in addition, Q is an injective object in \mathscr{A}_{0}, then the converse also holds.

Proof. If the morphism $\eta_{\mathrm{Q}}: Q \rightarrow U F(Q)$ is a split monomorphism, then the natural transformation

$$
\mathcal{A}\left(\eta_{-}, Q\right): \mathcal{A}(U F(-), Q) \rightarrow \mathcal{A}(-, Q)
$$

is a split epimorphism in $\left[\mathcal{A}^{o p}, \mathcal{V}\right]_{0}$ (see Proposition 3.3). Hence, for any $a \in \mathcal{A}$, the morphism

$$
\mathcal{A}\left(\eta_{a}, Q\right): \mathcal{A}(U F(a), Q) \rightarrow \mathcal{A}(a, Q)
$$

is a split epimorphism. Since Q is a regular cogenerator for \mathcal{A} and since \mathcal{A} admits equalizers by hypothesis, it follows from Proposition 2.3 that the functor $\mathcal{A}(-, Q)$ is premonadic. And applying Proposition 2.4 to this premonadic functor, we see that each $\eta_{a}: a \rightarrow U F(a)$ is a regular monomorphism in \mathscr{A}_{0}. Then that F is precomonadic follows from the dual of Corollary 2.2.

If $F: \mathcal{A} \rightarrow \mathcal{B}$ is precomonadic, then since \mathcal{A} is assumed to have equalizers, it follows from the dual of Corollary 2.2 that each component $\eta_{a}: a \rightarrow U F(a)$ of $\eta: 1 \rightarrow U F$ is a regular monomorphism in \mathcal{A}_{0}; in particular, so is $\eta_{\mathrm{Q}}: Q \rightarrow U F(Q)$. Now, if Q is injective in \mathcal{A}_{0}, then η_{Q} is evidently a split monomorphism in \mathscr{A}_{0}.

Let now \mathcal{V} be a $*$-autonomous category in the sense of Barr [2]. Thus, \mathcal{V} is a symmetric monoidal closed category together with a so-called dualizing object Q such that the \mathcal{V}-adjunction

$$
\begin{equation*}
\mathcal{V}(-, Q) \dashv \mathcal{V}(-, Q): \mathcal{V}^{o p} \rightarrow \mathcal{V} \tag{1}
\end{equation*}
$$

is an equivalence.
Theorem 3.5. Let \mathcal{V} be $a *$-autonomous category with dualizing object Q, and let (E, v) be a pointed \mathcal{V}-endofunctor on \mathcal{V}. Then the morphism $v_{Q}: Q \rightarrow E(Q)$ is a split monomorphism in \mathcal{V}_{0} if and only if the natural transformation $v: 1 \rightarrow E$ is a split monomorphism in $[\mathcal{V}, \mathcal{V}]_{0}$.

Proof. One direction is clear, so suppose that the morphism $\nu_{Q}: Q \rightarrow E(Q)$ is a split monomorphism in \mathcal{V}_{0}. Then, by Proposition 3.3, the natural transformation

$$
\mathcal{V}\left(v_{(-)}, Q\right): \mathcal{V}(E(-), Q) \rightarrow \mathcal{V}(-, Q)
$$

is a split epimorphism in $[\mathcal{V}, \mathcal{V},]_{0}$, and hence

$$
\mathcal{V}\left(\mathcal{V}\left(\mathcal{V}_{(-)}, Q\right), Q\right): \mathcal{V}(\mathcal{V}(-, Q), Q) \rightarrow \mathcal{V}(\mathcal{V}(E(-), Q), Q)
$$

is a split monomorphism in $[\mathcal{V}, \mathcal{v},]_{0}$. But since (2) is an equivalence of categories, $\mathcal{V}\left(\nu_{(-)}, Q\right) \simeq v$, and therefore $v: 1 \rightarrow E$ is a split monomorphism in $[\mathcal{V}, \mathcal{V},]_{0}$.

Theorem 3.6. Let \mathcal{V} be $a *$-autonomous category with dualizing object Q and $\eta, \varepsilon: F \dashv U: \mathcal{A} \rightarrow \mathcal{V}$ be a \mathcal{V}-adjunction such that the morphism $\eta_{Q}: Q \rightarrow U F(Q)$ is a split monomorphism in \mathcal{V}_{0}. Then F is a comonadic functor.

Proof. Let us first recall that for any tensored \mathcal{V}-category \mathcal{A}, \mathcal{V}-equalizers are the same things as equalizers in \mathscr{A}_{0}; this is true in particular when $\mathcal{A}=\mathcal{V}$, since the \mathcal{V}-category \mathcal{V}, being closed, is tensored. So to say that \mathcal{V}_{0} admits all equalizers is to say that \mathcal{V} admits all \mathcal{V}-equalizers. We now apply Theorem 3.5 to the pointed endofunctor ($U F, \eta: 1 \rightarrow U F$) to see that η is a split monomorphism in $[\mathcal{V}, \mathcal{V},]_{0}$. And since \mathcal{V} admits all equalizers by hypothesis, it follows from Corollary 2.7 that F is comonadic.

Now we are ready to prove:
Theorem 3.7. Let \mathcal{V} be a -autonomous category with dualizing object Q and let \mathcal{V}_{0} admit all equalizers. For a given \mathcal{V} adjunction $\eta, \varepsilon: F \dashv U: \mathcal{A} \rightarrow \mathcal{V}$, let us consider the following statements:
(i) each component of the natural transformation $\eta: 1 \rightarrow U F$ is a regular monomorphism;
(ii) the morphism $\eta_{\mathrm{Q}}: Q \rightarrow U F(Q)$ is a regular monomorphism;
(iii) the morphism $\eta_{Q}: Q \rightarrow U F(Q)$ is a split monomorphism;
(iv) the natural transformation $\eta: 1 \rightarrow$ UF is a split monomorphism in $[\mathcal{V}, \mathcal{V}]_{0}$;
(v) the functor F is precomonadic;
(vi) the functor F is comonadic;
(vii) the ordinary functor F_{0} is precomonadic;
(viii) the ordinary functor F_{0} is comonadic;
(ix) the ordinary natural transformation $\eta_{0}: 1 \rightarrow U_{0} F_{0}$ is a split monomorphism.

Then one always has the implications
(iii) \Longleftrightarrow (iv) \Longleftrightarrow (ix)

Moreover, all nine are equivalent when Q is an injective object in \mathcal{V}_{0}.
Proof. The implications (iv) \Rightarrow (ix), (vi) \Rightarrow (v), (vi) \Rightarrow (viii), (viii) \Rightarrow (vii) (v) \Rightarrow (vii), and (ix) \Rightarrow (iii) are trivial. Since (iii) \Longleftrightarrow (iv) by Theorem 3.5, it follows that (iii), (iv) and (ix) are equivalent. (iv) \Rightarrow (vi) by the dual of Corollary 2.7, while (vii) \Rightarrow (ii) by the dual of Corollary 2.2. Moreover, Since \mathcal{V} admits all equalizers and since \mathcal{V}-equalizers are the same things as equalizers in \mathcal{V}_{0}, it follows from the dual of Proposition 2.3 that (i) and (v) are equivalent.

Finally, assume that Q is injective in \mathcal{V}_{0}. Then the morphism $\eta_{Q}: Q \rightarrow T(Q)$ is a split monomorphism if and only if it is a regular monomorphism. Thus, in this case (ii) \Longleftrightarrow (iii) and hence the nine conditions are equivalent.

Theorem 3.8. Let \mathcal{V} be $a *$-autonomous category with dualizing object Q which is injective in \mathcal{V}_{0}. If $\mathbf{T}=(T, \eta, \mu)$ is a \mathcal{V}-monad on \mathcal{V}, then the following are equivalent:
(i) the natural transformation $\eta: 1 \rightarrow T$ is componentwise a regular monomorphism;
(ix) the natural transformation $\eta_{0}: 1 \rightarrow T_{0}$ is a split monomorphism;
(iii) the monad \mathbf{T} is of descent type;
(iv) the monad \mathbf{T} is of effective descent type.

Proposition 3.9. A dualizing object Q of $a *$-autonomous category $\mathcal{V}=\left(\mathcal{V}_{0}, \otimes, I\right)$ is injective in \mathcal{V}_{0} if and only if the tensor unit I is projective in \mathcal{V}_{0}.

Proof. Suppose that I is projective in \mathcal{V}_{0}. Since the \mathcal{V}-functor

$$
\mathcal{V}(-, Q): \mathcal{V}^{o p} \rightarrow \mathcal{V}
$$

is an equivalence of categories, the functor

$$
\mathcal{V}(-, Q)_{0}: \mathcal{V}_{0}^{o p} \rightarrow \mathcal{V}_{0}
$$

preserves all types of limits that exist in \mathcal{V}_{0}; in particular, it preserves regular epimorphisms; and that Q is injective in V_{0} now follows from the fact that there is an isomorphism of ordinary functors:

$$
\mathcal{V}_{0}(-, Q) \simeq \mathcal{V}_{0}\left(I, \mathcal{V}(-, Q)_{0}\right)
$$

Conversely, suppose that Q is injective in \mathcal{V}_{0} and consider a diagram

in \mathcal{V}_{0} with f a regular epimorphism, and let

$$
\begin{align*}
& \quad \mathcal{V}\left(V^{\prime}, Q\right)_{0} \xrightarrow{\mathcal{V}(f, Q)_{0}} \mathcal{V}(V, Q)_{0} \tag{3}\\
& \mathcal{V}(x, Q)_{0}{ }_{V} \\
& \mathcal{V}(I, Q)_{0} \simeq Q
\end{align*}
$$

be the image of this diagram under the functor

$$
\mathcal{V}(-, Q)_{0}: \mathcal{V}_{0}^{o p} \rightarrow \mathcal{V}_{0}
$$

Since the functor $\mathcal{V}(-, Q)_{0}$ preserves regular monomorphisms, the morphism $\mathcal{V}(f, Q)$ is a regular monomorphism; and from the assumption on Q we conclude that there is a morphism $\mathcal{V}(V, Q) \rightarrow \mathcal{V}(I, Q) \simeq Q$ making diagram (4) commute. Applying the functor $\mathcal{V}(-, Q)_{0}$ to this commutative diagram and using that $\mathcal{V}\left(\mathcal{V}(-, Q)_{0}, Q\right)_{0} \simeq 1_{\mathcal{V}_{0}}$, we get a completion of diagram (3) to a commutative one. Hence I is projective in \mathcal{V}_{0}, as desired.

Combining Theorem 3.7 and Proposition 3.9 gives the following result:
Theorem 3.10. Let \mathcal{V} be $a *$-autonomous with dualizing object Q, and suppose that \mathcal{V}_{0} admits all equalizers and that the tensor unit I is projective in \mathcal{V}_{0}. For a \mathcal{V}-adjunction $\eta, \varepsilon: F \dashv U: \mathcal{A} \rightarrow \mathcal{V}$, the following are equivalent:
(i) each component of the natural transformation $\eta: 1 \rightarrow$ UF is a regular monomorphism;
(ii) the \mathcal{V}-natural transformation $\eta: 1 \rightarrow U F$ is a split monomorphism in $[\mathcal{V}, \mathcal{V}]_{0}$;
(iii) the functor F is precomonadic;
(iv) the functor F is comonadic.

Corollary 3.11. Let \mathcal{V} be $a *$-autonomous with dualizing object Q and suppose that \mathcal{V}_{0} admits all equalizers and that the tensor unit I is projective in \mathcal{V}_{0}. For a \mathcal{V}-monad $\mathbf{T}=(T, \eta, \mu)$, the following are equivalent:
(i) each component of the natural transformation $\eta: 1 \rightarrow T$ is a regular monomorphism;
(ii) the natural transformation $\eta: 1 \rightarrow T$ is a split monomorphism in $[\mathcal{V}, \mathcal{V}]_{0}$;
(iii) the monad \mathbf{T} is of descent type;
(iv) the monad \mathbf{T} is of effective descent type.

Given a \mathcal{V}-category \mathcal{A}, recall that a \mathcal{V}-monad \mathbf{T} on \mathcal{A} is called an enrichment of an ordinary monad T on \mathcal{A}_{0} when the underlying ordinary monad \mathbf{T}_{0} of \mathbf{T} is T.

Corollary 3.12. Let \mathcal{V} be $a *$-autonomous category with dualizing object Q and let $T=(T, \eta, \mu)$ be an (ordinary) monad on \mathcal{V}_{0} admitting an enrichment to a \mathcal{V}-monad on \mathcal{V}. If I is projective in \mathcal{V}_{0}, then the following are equivalent:
(i) each component of the natural transformation $\eta: 1 \rightarrow T$ is a regular monomorphism;
(ii) the natural transformation $\eta: 1 \rightarrow T$ is a split monomorphism in $[\mathcal{V}, \mathcal{V}]_{0}$;
(iii) T is of descent type;
(iv) T is of effective descent type

4. Applications

Fix a symmetric monoidal category $\mathcal{V}=\left(\mathcal{V}_{0}, \otimes, I\right)$ with a symmetry $c_{U, V}: U \otimes V \rightarrow V \otimes U$. Recall that an algebra in \mathcal{V} (or \mathcal{V}-algebra) is an object R of \mathcal{V}_{0} equipped with a multiplication $m_{R}: R \otimes R \rightarrow R$ and a unit $i_{R}: I \rightarrow R$ subject to the condition that the following diagrams commute:

For a \mathcal{V}-algebra $R=\left(R, i_{R}, m_{R}\right)$ in \mathcal{V}, one defines a \mathcal{V}-monad $\mathbf{T}^{R}=\left(T^{R}, \eta^{R}, \mu^{R}\right)$ on \mathcal{V} by

- $T_{(-)}^{R}=R \otimes-$;
- $\eta_{(-)}^{R}=i_{R} \otimes-: 1_{\nu} \simeq I \otimes-\rightarrow R \otimes-$;
- $\mu_{(-)}^{R}=m_{R} \otimes-:(R \otimes R) \otimes-\rightarrow R \otimes-$.

The \mathcal{V}-algebra structure on R gives the required identities for \mathbf{T}^{R} to be a \mathcal{V}-monad on \mathcal{V}. We refer to \mathbf{T}^{R} as the \mathcal{V}-monad induced by the \mathcal{V}-algebra $R=\left(R, i_{R}, m_{R}\right)$.

Applying Corollary 3.11 to this situation gives the following
Theorem 4.1. Let \mathcal{V} be $a *$-autonomous category with dualizing object Q, and suppose that I is projective in \mathcal{V}_{0}. For an algebra $R=\left(R, i_{R}, m_{R}\right)$ in \mathcal{V}, the following statements are equivalent:
(i) the morphism $i_{R}: I \rightarrow R$ is a split monomorphism in \mathcal{V}_{0};
(ii) the morphism $i_{R}: I \rightarrow R$ pure; that is, for any $V \in \mathcal{V}_{0}$, the morphism

$$
i_{R} \otimes V: V \simeq I \otimes V \rightarrow R \otimes V
$$

is a regular monomorphism;
(iii) the monad \mathbf{T}^{R} is of descent type;
(iv) the monad \mathbf{T}^{R} is of effective descent type.

Let $R=\left(R, i_{R}, m_{R}\right)$ be an algebra in \mathcal{V}. Recall that a left R-module is an object $M \in \mathcal{V}_{0}$ equipped with a (left) action $\lambda_{M}: R \otimes M \rightarrow M$ making commutative the following diagrams:

The category of left R-modules is denoted by ${ }_{R} \mathcal{V}$. The category of right R-modules \mathcal{V}_{R} is defined similarly.
Note that the evident forgetful functor

$$
{ }_{R} U:_{R} \mathcal{V} \rightarrow \mathcal{V}
$$

is right adjoint, with the left adjoint sending $V \in \mathcal{V}_{0}$ to $R \otimes V \in{ }_{R} \mathcal{V}$, where $R \otimes V$ is an object in ${ }_{R} \mathcal{V}$ via the morphism $m_{R} \otimes V: R \otimes R \otimes V \rightarrow R \otimes V$.

It is well known that the functor ${ }_{R} U$ is monadic and that the monad on \mathcal{V} generated by the adjunction $R \otimes-\dashv_{R} U$ is just the monad \mathbf{T}^{R}. In other words, the category $\mathcal{V}^{\mathbf{T}^{R}}$ is just the category of left R-modules and the free \mathbf{T}^{R}-algebra functor $\mathcal{V} \rightarrow \mathcal{V}^{\mathrm{T}^{R}}$ is just the functor $R \otimes-: \mathcal{V} \rightarrow_{R} \mathcal{V}$.

It follows from Theorem 3.10 that
Theorem 4.2. Let \mathcal{V} be $a *$-autonomous category whose tensor unit I is projective in \mathcal{V}_{0}, and let $R=\left(R, i_{R}, m_{R}\right)$ be an \mathcal{V}-algebra. Then the following statements are equivalent:
(i) the functor $R \otimes-: \mathcal{V} \rightarrow{ }_{R} \mathcal{V}$ is precomonadic;
(ii) the functor $R \otimes-: \mathcal{V} \rightarrow{ }_{R} \mathcal{V}$ is comonadic;
(iii) the morphism $i: I \rightarrow R$ is a pure morphism in \mathcal{V}; that is, for any $v \in \mathcal{V}$, the morphism $i \otimes v: I \otimes v \rightarrow R \otimes v$ is a regular monomorphism in \mathcal{V}_{0};
(iv) the morphism $i: I \rightarrow R$ is a split monomorphism in \mathcal{V}_{0};
(v) the monad \mathbf{T}^{R} is of effective descent type.

Assume now that \mathcal{V}_{0} has coequalizers and that all functors $V \otimes-: \mathcal{V}_{0} \rightarrow \mathcal{V}_{0}$ as well as $-\otimes V: \mathcal{V}_{0} \rightarrow \mathcal{V}_{0}$ preserve these coequalizers, as they surely do when \mathcal{V} is closed. Then there is a well-defined functor

$$
-\otimes_{R}-: \mathcal{V}_{R} \times_{R} \mathcal{V} \rightarrow \mathcal{V}_{0}
$$

which assigns to any pair $(N, M)\left(N \in \mathcal{V}_{R}\right.$ and $\left.M \in{ }_{R} \mathcal{V}\right)$ the coequalizer of the two morphisms

$$
N \otimes R \otimes M \Longrightarrow N \otimes M
$$

induced by the actions of R on N and M.
Recall that a \mathcal{V}-algebra $R=\left(R, i_{R}, m_{R}\right)$ is called commutative if the multiplication morphism is unchanged when composed with the symmetry (i.e. if $m_{R} \cdot c_{R, R}=m_{R}$).

For any commutative \mathcal{V}-algebra $R=\left(R, i_{R}, m_{R}\right)$, the assignment

$$
\left(M, \lambda_{M}\right) \longmapsto\left(M, \lambda_{M} \cdot \beta_{M, R}\right)
$$

defines a functor

$$
\begin{equation*}
{ }_{R} \mathcal{V} \longmapsto \mathcal{V}_{R} \tag{4}
\end{equation*}
$$

that identifies the category ${ }_{R} \mathcal{V}$ of left R-modules with the category \mathcal{V}_{R} of right R-modules, and we simply speak of R-modules. In this case, the tensor product over R of two R-modules is another R-module and tensoring over R makes ${ }_{R} \mathcal{V}$ (as well as \mathcal{V}_{R}) into a monoidal category, and the symmetry c induces a symmetry on ${ }_{R} \mathcal{V}$. Hence ${ }_{R} \mathcal{V}$ is a symmetric monoidal category. Moreover, if \mathcal{V} is closed (i.e. there is a right adjoint functor $[V,-]: \mathcal{V}_{0} \rightarrow \mathcal{V}_{0}$ for every functor $V \otimes-: \mathcal{V}_{0} \rightarrow \mathcal{V}_{0}$), then ${ }_{R} \mathcal{V}$ is also closed: The internal Hom object ${ }_{R}[M, N]$ of two R-modules M and N is the equalizer of two morphisms

$$
[M, N] \Longrightarrow[R \otimes M, N],
$$

where the first morphism is induced by the action of R on M, while the second morphism is the composition of

$$
(R \otimes-)_{M, N}:[M, N] \rightarrow[R \otimes M, R \otimes N]
$$

followed by the morphism induced by the action of R on N. Note that, for any $V \in \mathcal{V}_{0}$, the object $[R, V]$ becomes a left R module and that the assignment $V \longmapsto[R, V]$ defines a functor $[R,-]: \mathcal{V} \rightarrow_{R} \mathcal{V}$ which is a right adjoint of the underlying functor ${ }_{R} U:{ }_{R} \mathcal{V} \rightarrow \mathcal{V}$. See [14] for a reference on algebras and modules in a symmetric monoidal category.

Theorem 4.3. Let \mathcal{V} be $a *$-autonomous category. Then, for any commutative algebra $R=\left(R, i_{R}, m_{R}\right)$ in $\mathcal{V},_{R} \mathcal{V}$ is $a *$-autonomous category. Moreover, if tensor unit I is projective in \mathcal{V}_{0}, then R is projective in ${ }_{R} \mathcal{V}$.

Proof. First, since R is assumed to be commutative, ${ }_{R} \mathcal{V}$ is a symmetric monoidal closed category by the discussion preceding the theorem.

Next, it is easy to check by using the adjunction ${ }_{R} U \dashv[R,-]: \mathcal{V} \rightarrow{ }_{R} \mathcal{V}$ that if Q is a dualizing object for \mathcal{V}, then $[R, Q]$ is a dualizing object for ${ }_{R} \mathcal{V}$.

Finally, since the functor ${ }_{R} U:{ }_{R} \mathcal{V} \rightarrow \mathcal{V}$ admits as a left adjoint the functor $R \otimes-: \mathcal{V} \rightarrow{ }_{R} \mathcal{V}$, there is a natural isomorphism

$$
{ }_{R} \mathcal{V}(R \otimes V, M) \simeq \mathcal{V}_{0}\left(V,{ }_{R} U(M)\right), \quad \text { for all } V \in \mathcal{V} \text { and } M \in{ }_{R} \mathcal{V} .
$$

Putting $V=I$ and using the fact that ${ }_{R} U$, being right adjoint, preserves regular epimorphisms, we see that R is projective in ${ }_{R} \mathcal{V}$, provided that I is projective in \mathcal{V}_{0}.

For a commutative \mathcal{V}-algebra $R=\left(R, i_{R}, m_{R}\right)$, an R-algebra is defined to be an algebra in the symmetric monoidal category ${ }_{R} \mathcal{V}$. It is well known that specifying an R-algebra structure on an object $S \in \mathcal{V}_{0}$ is the same as giving S a \mathcal{V}-algebra structure together with a morphism $i: R \rightarrow S$ of \mathcal{V}-algebras which is central in the sense that the diagram

is commutative. (Quite obviously, any morphism of commutative \mathcal{V}-algebras is central.) Thus, if $i: R \rightarrow S$ is a central morphism of \mathcal{V}-algebras, then S can be viewed as an object of ${ }_{R} \mathcal{V}$ via

$$
R \otimes S \xrightarrow{i \otimes S} S \otimes S \xrightarrow{m_{S}} S
$$

or, equivalently (since i is central), via

$$
R \otimes S \xrightarrow{\beta_{R, S}} S \otimes R \xrightarrow{S \otimes i} S \otimes S \xrightarrow{m_{S}} S
$$

and then the multiplication $m_{S}: S \otimes S \rightarrow S$ factors through the quotient $S \otimes S \rightarrow S \otimes_{R} S$ (that is, there is some (necessarily unique) morphism $m_{S}^{\prime}: S \otimes_{R} S \rightarrow S$ making the diagram

commute), and it is easy to see that the triple $S^{R}=\left(S, i, m_{S}^{\prime}\right)$ is a commutative algebra in the symmetric monoidal category ${ }_{R} \mathcal{V}$.

Theorem 4.4. Let \mathcal{V} be $a *$-autonomous category whose tensor unit is projective in \mathcal{V}_{0}, let R be a commutative \mathcal{V}-algebra, and let $i: R \rightarrow S$ be a central morphism of \mathcal{V}-algebras. Then the following are equivalent:
(i) the functor $S \otimes_{R}-:{ }_{R} \mathcal{V} \rightarrow_{S} \mathcal{V}$ is precomonadic;
(ii) the functor $S \otimes_{R}-:{ }_{R} \mathcal{V} \rightarrow_{S} \mathcal{V}$ is comonadic;
(iii) i is a pure morphism of (left) R-modules, i.e. for any (left) R-module M, the morphism $i \otimes_{R} M: M \simeq R \otimes_{R} M \rightarrow S \otimes_{R} M$ is a regular monomorphism;
(iv) i is a split monomorphism of (left) R-modules.

Proof. We begin by noticing that, since R is a commutative \mathcal{V}-algebra and since I is assumed to be projective in $\mathcal{V}_{0},{ }_{R} \mathcal{V}$ is a $*$-autonomous category whose tensor unit R is projective (see Proposition 3.9). Next, writing $S^{R}=\left(S, i: R \rightarrow S, m_{S}^{\prime}\right)$ for the R-algebra corresponding to the central morphism i, it is easy to see that the category ${ }_{\left(S^{R}\right)}\left({ }_{S} \mathcal{V}\right)$ can be identified with the category ${ }_{S} \mathcal{V}$, and that, modulo this identification, $S \otimes_{R}-:_{R} \mathcal{V} \rightarrow{ }_{S} \mathcal{V}$ corresponds to $S^{R} \otimes_{R}-:{ }_{R} \mathcal{V} \rightarrow{ }_{\left(S^{R}\right)}\left({ }_{S} \mathcal{V}\right)$. Now, applying Theorem 4.2 gives that (i)-(iv) are equivalent.

Now let \mathcal{V} be a symmetric monoidal category whose underlying ordinary category \mathcal{V}_{0} is locally small, complete, and cocomplete. Then recall that, for any small \mathcal{V}-category \mathcal{A}, there exists the so-called \mathcal{V}-functor category $[\mathcal{A}, \mathcal{V}]$, which is an enrichment of the ordinary category $[\mathcal{A}, \mathcal{V}]_{0}$ over \mathcal{V}, and that $[\mathcal{A}, \mathcal{V}]$ is a \mathcal{V}-tensored category in the sense that any representable functor

$$
[F,-]=[\mathcal{A}, \mathcal{V}](F,-):[\mathcal{A}, \mathcal{V}] \rightarrow \mathcal{V}
$$

is right adjoint: The left adjoint to the functor $[F,-]$ is the functor

$$
\begin{aligned}
& F \otimes-: \mathcal{V} \rightarrow[\mathcal{A}, \mathcal{V}] \\
& v \longrightarrow[a \rightarrow F(a) \otimes v] .
\end{aligned}
$$

Recall also that $F: \mathcal{A} \rightarrow \mathcal{V}$ is small projective if the functor $[F,-]$ preserves all small (indexed) colimits. Fix such a functor F, and write \mathbf{T}_{F} for the \mathcal{V}-monad on \mathcal{V} generated by the adjunction $F \otimes-\dashv[F,-]$. Since F is assumed to be small projective, it follows that $T_{F}(v)=v \otimes[F, F]$ for all $v \in \mathcal{V}_{0}$. Thus, tensoring with the \mathcal{V}-algebra $[F, F]$ is isomorphic to the monad \mathbf{T}_{F}; in other words, the monads \mathbf{T}_{F} and $\mathbf{T}^{[F, F]}$ are isomorphic. So the category $\mathcal{V}^{\mathbf{T}_{F}}$ is (isomorphic to) the category of right $[F, F]$-modules, $\mathcal{V}_{[F, F]}$, and the free \mathbf{T}_{F}-algebra functor $\mathcal{V} \rightarrow \mathcal{V}^{\mathbf{T}_{F}}$ is (isomorphic to) the functor $-\otimes[F, F]: \mathcal{V} \rightarrow \mathcal{V}_{[F, F]}$. Since \mathcal{V} has all equalizers, and since any category with all equalizers is Cauchy complete (in the sense that every idempotent endomorphism e has a factorization $e=i j$ with $j i=1$), Theorem 3.20 in [11] and Theorem 2.1 together give the following:

Theorem 4.5. Let \mathcal{A} be a small \mathcal{V}-category. If $F: \mathcal{A} \rightarrow \mathcal{V}$ is small projective, then the functor

$$
F \otimes-: \mathcal{V} \rightarrow[\mathcal{A}, \mathcal{V}]
$$

is (pre)comonadic if and only if the functor

$$
-\otimes[F, F]: \mathcal{V} \rightarrow \mathcal{V}_{[F, F]}
$$

is.
Combining this with Corollary 4.1 in [6], we conclude that
Corollary 4.6. In the situation of the previous theorem, if the morphism

$$
\left\ulcorner 1_{F}\right\urcorner: I \rightarrow[F, F]
$$

is a split monomorphism, then the functor

$$
F \otimes-: \mathcal{V} \rightarrow[\mathcal{A}, \mathcal{V}]
$$

is comonadic.
Let \mathcal{E} be an elementary topos with the subobject classifier Ω, and let $\mathcal{C} \mathcal{L}(\mathcal{E})$ denote the category of internal sup-lattices (i.e. internally complete lattices and sup-preserving morphisms) in \mathcal{E}. It is well known (see, [8]) that $\mathcal{C} \mathcal{L}(\mathcal{E})$ is a symmetric monoidal closed category, in fact $*$-autonomous. We recall that the unit object for the tensor product in $\mathcal{C} \mathcal{L}(\mathcal{E})$ is Ω, while the dualising object is $\Omega^{o p}$, the sup-lattice provided with the partial order opposite to that one of Ω.

Recall also that $\mathcal{C} \mathcal{L}(\mathcal{E})$ is a monadic category over \mathcal{E} : If we consider the covariant power set functor $\mathcal{P}: \mathcal{E} \rightarrow \mathcal{E}$, then it is a monad via the morphisms $f: X \rightarrow \mathcal{P}(X)$ of taking singletons and $\cup: \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ of taking the internal union, respectively; an object $X \in \mathcal{E}$ is an algebra for this monad precisely if X is an internal sup-lattice in \mathcal{E}, and thus $\mathcal{C} \mathcal{L}(\mathscr{E})$ is (isomorphic to) the category of \mathcal{P}-algebras. Moreover, since the forgetful functor $\mathcal{C} \mathcal{L}(\mathcal{E}) \rightarrow \mathcal{E}$ takes epimorphisms to split epimorphisms [8], the free \mathcal{P}-algebras (=the free complete lattices) are projective in $\mathcal{C} \mathcal{L}(\mathscr{E})_{0}$ [15]; in particular, Ω is projective in $\mathcal{C} \mathcal{L}(\mathcal{E})_{0}$, since $\mathcal{P}(1)=\Omega$ - here 1 is the terminal object of \mathcal{E} - and hence the dualizing object $\Omega^{o p}$ is injective in $\mathcal{C} \mathcal{L}(\mathcal{E})_{0}$ by Proposition 3.9. Finally, since $\mathcal{C} \mathcal{L}(\mathscr{E})$ is monadic on \mathcal{E}, all small limits (and hence all small colimits) exist in $\mathcal{C} \mathcal{L}(\mathscr{E})$ provided they exist in \mathcal{E}.

Recall that a morphism $i: R \rightarrow S$ of commutative $\mathcal{C} \mathcal{L}$-algebras is an effective descent morphism for modules if the (ordinary) functor $S \otimes_{R}-:{ }_{R} \mathcal{C} \mathcal{L}(\mathcal{E}) \rightarrow{ }_{S} \mathcal{C} \mathcal{L}(\mathscr{E})$ is comonadic.

Applying Theorem 3.4, we obtain the following result of Joyal and Tierney [8]:
Theorem 4.7. Let \mathcal{E} be an elementary topos with small limits. A morphism $i: R \rightarrow S$ of commutative algebras in $\mathcal{C} \mathcal{L}(\mathcal{E})$ is an effective descent morphism for modules if and only if i is a split monomorphism of R-modules.

We now look at the case where $\mathcal{E}=$ Sets, and write simply $\mathcal{C} \mathcal{L}$ for the category $\mathcal{C} \mathcal{L}$ (Sets). It is well known (see, for example [8]) that, in $\mathcal{C} \mathcal{L}$, (small) coproducts are biproducts; that is, the coproduct of $\left\{X_{i}, i \in I\right\}$ in $\mathcal{C} \mathcal{L}$ is the same as the product $\prod_{i \in I} X_{i}$. We will write $\bigoplus_{i \in I} X_{i}$ for this biproduct. It is also a well-known fact (see [7]) that, for any small $\mathcal{C} \mathcal{L}$-category \mathcal{A}, the functor $P=\bigoplus_{a \in \mathcal{A}_{0}} \mathcal{A}(a,-)$ is small projective, and thus, by Theorem 4.5, the functor

$$
P \otimes-: \mathcal{C} \mathcal{L} \rightarrow[\mathcal{A}, \mathcal{C} \mathscr{L}]
$$

is comonadic iff the functor

$$
-\otimes[P, P]: \mathcal{C} \mathscr{L} \rightarrow \mathcal{C} \mathscr{L}_{[P, P]}
$$

is. One easily sees that the underlying object of the $\mathcal{C} \mathcal{L}$-algebra $[P, P]$ is $\bigoplus_{a_{0}, a_{1} \in \mathcal{A}_{0}} \mathcal{A}\left(a_{0}, a_{1}\right)$, and that the unit morphism $i: I \rightarrow[P, P]=\bigoplus_{a_{0}, a_{1} \in \mathcal{A}_{0}} \mathcal{A}\left(a_{0}, a_{1}\right)$ is given as follows:

$$
(i(1))_{a_{0}, a_{1}}=\left\{\begin{array}{ll}
1_{a_{0}}, & \text { if } a_{0}=a_{1}, \\
0, & \text { if } a_{0} \neq a_{1}
\end{array} \quad \text { and } \quad(i(0))_{a_{0}, a_{1}}=0 \quad \text { for all } a_{0}, a_{1} \in \mathcal{A}_{0}\right.
$$

Theorem 4.8. For any small $\mathcal{C} \mathcal{L}$-category \mathcal{A}, the functor

$$
P \otimes-: \mathcal{C} \mathcal{L} \rightarrow[\mathcal{A}, \mathcal{C} \mathcal{L}]
$$

where $P=\bigoplus_{a \in \mathcal{A}_{0}} \mathcal{A}(a,-)$, is comonadic if and only if there exists an object $a \in \mathcal{A}_{0}$ such that the morphism $\left\ulcorner 1_{a}\right\urcorner: I \rightarrow \mathcal{A}(a, a)$ is a split monomorphism.

Proof. We claim that the morphism $i: I \rightarrow[P, P]=\bigoplus_{a_{0}, a_{1} \in \mathcal{A}_{0}} \mathcal{A}\left(a_{0}, a_{1}\right)$ is a split monomorphism in $\mathcal{C} \mathcal{L}$ if and only if there exists an object $a \in \mathcal{A}_{0}$ such that the morphism $\left\ulcorner 1_{a}\right\urcorner: I \rightarrow \mathcal{A}(a, a)$ is a split monomorphism in $\mathcal{C} \mathcal{L}$. Indeed, since one direction is clear, suppose that i is split by some $j: \bigoplus_{a_{0}, a_{1} \in \mathcal{A}_{0}} \mathcal{A}\left(a_{0}, a_{1}\right) \rightarrow I$. Then, writing $e_{a}, a \in \mathcal{A}_{0}$, for the image of $1 \in I$ under the composite

$$
I \xrightarrow{\left\ulcorner 1_{a}\right\urcorner} \mathcal{A}(a, a) \xrightarrow{i_{a, a}} \bigoplus_{a_{0}, a_{1} \in \mathcal{A}_{0}} \mathcal{A}\left(a_{0}, a_{1}\right),
$$

it is easy to see that $\vee_{a \in \mathcal{A}_{0}} e_{a}=i(1)$, and since $j i=1$, this implies that $1=j i(1)=j\left(\vee_{a \in \mathcal{A}_{0}} e_{a}\right)=\vee_{a \in \mathcal{A}_{0}} j\left(e_{a}\right)$. Now, if each $j\left(e_{a}\right)=0$, then $1=\vee_{a \in \mathcal{A}_{0}} j\left(e_{a}\right)=0$, a contradiction. Therefore, there exists an object $\bar{a} \in \mathcal{A}_{0}$ with $j\left(e_{\bar{a}}\right)=1$, which just means that the morphism $\left\ulcorner 1_{\bar{a}}\right\urcorner: I \rightarrow \mathcal{A}(\bar{a}, \bar{a})$ is a split monomorphism. The result now follows from Theorems 4.4 and 4.7.

In order to understand the meaning of this theorem, we consider the comonad $\mathbf{G}_{\mathcal{A}}$ on the category $[\mathcal{A}, \mathcal{C} \mathcal{L}]$ generated by the adjunction

$$
P \otimes-\dashv[P,-]:[\mathcal{A}, \mathcal{C} \mathcal{L}] \rightarrow \mathcal{C} \mathcal{L} .
$$

It is not hard to see that the functor-part of this comonad takes any $\mathcal{C} \mathcal{L}$-functor $F: \mathcal{A} \rightarrow \mathcal{C} \mathcal{L}$ to the $\mathcal{C} \mathcal{L}$-functor $P \otimes\left(\bigoplus_{a \in \mathcal{A}_{0}} F(a)\right)$. Now, we can interpret Theorem 4.8 as saying that $\mathbf{G}_{\mathcal{A}^{\prime}}$-coalgebras are exactly the $\mathcal{C} \mathcal{L}$-functors of the form $P \otimes X$ with $X \in \mathcal{C} \mathcal{L}$ iff there exists an object $a \in \mathcal{A}_{0}$ such that the morphism $\left\ulcorner 1_{a}\right\urcorner: I \rightarrow \mathcal{A}(a, a)$ is a split monomorphism.

Another way of interpreting the meaning of Theorem 4.8 is the following:
Theorem 4.9. For any algebra in $\mathcal{C} \mathcal{L}$ of the form $[P, P]$, where $P=\bigoplus_{a \in \mathcal{A}_{0}} \mathcal{A}(a,-)$ for a small $\mathcal{C} \mathcal{L}$-category \mathcal{A}, the induced monad $\mathbf{T}^{[P, P]}$ on $\mathcal{C} \mathcal{L}$ is of effective descent type if and only if there exists an object $a \in \mathcal{A}_{0}$ such that the morphism $\left\ulcorner 1_{a}\right\urcorner: I \rightarrow$ $\mathcal{A}(a, a)$ is a split monomorphism.

Acknowledgements

This research was supported by the research project "Algebraic and Topological Structures in Homotopical and Categorical Algebra, K-theory and Cyclic Homology", with the financial support of the grant GNSF/ST06/3-004.

References

[1] J. Bénabou, J. Roubaud, Monades et descente, Comptes Rendus de l'Academie des Sciences 270 (1970) 96-98.
[2] M. Barr, *-Autonomous Categories, in: Lecture Notes in Mathematics, vol. 752, Springer-Verlag, 1979.
[3] M. Bunge, Relative functor categories and categories of algebras, Journal of Algebra 11 (1969) 64-101.
[4] E. Dubuc, Kan Extensions in Enriched Category Theory, in: Lecture Notes in Mathematics, vol. 145, Springer-Verlag, 1970.
[5] A. Grothendieck, Technique de descente et théoremes d'existence en géometrie algébrique I, Séminaire Bourbaki 190 (1959).
[6] G. Janelidze, W. Tholen, Facets of descent, III: Monadic descent for rings and algebras, Applied Categorical Structures 12 (2004) 461-476.
[7] S.R. Johnson, Small Cauchy completions, Journal of Pure and Applied Algebra 62 (1989) 35-45.
[8] A. Joyal, M. Tierney, An extension of the Galois theory of Grothendieck, Memoirs of the American Mathematical Society (309) (1984).
[9] G.M. Kelly, Basic Concepts of Enriched Category Theory, Cambridge University Press, Cambridge, 1982.
[10] G.M. Kelly, A.J. Power, Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads, Journal of Pure and Applied Algebra 89 (1993) 163-179.
[11] B. Mesablishvili, Monads of effective descent type and comonadicity, Theory and Applications of Categories 16 (2006) 1-45.
[12] B. Mesablishvili, Pure morphisms of commutative rings are effective descent morphisms for modules - A new proof, Theory and Applications of Categories 7 (2000) 38-42.
[13] J.-P. Olivier, Descente par morphismes purs, Comptes Rendus de l'Academie des Sciences Paris Serie A-B 271 (1970) $821-823$.
[14] B. Pareigis, Non-additive rings and module theory I. General theory of monoids, Publicationes Mathematicae (Debrecen) 24 (1977) $189-204$.
[15] E. Vitale, On the characterization of monadic categories over SET, Cahiers de Topologie et Géométrie Différentielle Catégoriques 35 (1994) $351-358$.

[^0]: * Corresponding address: Mathematical Institute of the Georgian Academy of Sciences, M. Alexidze Str. 1, 380093 Tbilisi, Georgia.

 E-mail address: bachi@rmi.acnet.ge.

