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1. Introduction

General descent theory, as originally developed by Grothendieck [5] in the abstract setting of fibred categories, is an
invaluable tool in algebraic geometry, which one can also apply to various situations in Galois theory, topology and topos
theory. A general aim of descent theory is to give characterizations of the so-called (effective) descent morphisms, which in
the case of a fibred category satisfying the Beck-Chevalley condition reduces to monadicity of a suitable functor.

A basic example of Grothendieck’s descent theory involves modules over commutative rings. Consider a homomorphism
of commutative ringsi : A — B and the corresponding extension-of-scalars functor i, = B®; — : Mods — Modp. It is well
known that this functor admits as a right adjoint the underlying functor i* : Modz — Mod,. The problem of Grothendieck’s
descent theory for modules is concerned with the characterization of those B-modules M for which there exists an A-module
N and an isomorphisms i, (N) ~ M of B-modules. To be more specific, let M be a B-module and let 6y, : M ®4 B — B®y M
be a homomorphism of B ®,4 B-modules, where B®, B acts on M ®,4 B by (b; ® b,)(m ® b) = bym ® b,b and on B®4 M by
(b1 ® by)(b ® m) = b1b ® b,m. Define

(Om)1: BRAM 4B — BRAaABRaM,
(Om)2 : M @aBRaB— BRAaABRaM,
(QM)3 1M®AB®AB—) B®AM®AB

by tensoring 8 with 1z in the first, second and third positions respectively. Descent data on a B-module M is an isomorphism
Oy - M ®4yB — B®sM of B4 B-modules such that (6y)2 = (6u)1 - (Bu)3.Des(i) denotes the category of pairs (M, 6y),
Oy descent data on a B-module M, where morphisms (M, 6y;) — (M’, 6yy) are morphisms f : M — M’ of B-modules
that commute with descent data in the obvious way. For any A-module N, there is an isomorphism 6;, vy : N @4 B®s B —
B®a N ®4 B, arising from

(i) (1 (N)) = (i11)(N) = (20)(N) = (i)« (i(N)),
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where iy, i : B— B ®, B are the maps defined by i1(b) = 1®,4 b and iy(b) = b ®, 1. Explicitly 6;, (v, is the map given by
nQ®ab1 ®aby > b1 ®an®aby.

Thus one has a functor
K; : Mods — Des(i).

One says thati : A — Bis an (effective) descent homomorphism of commutative rings if the functor K; is full and faithful (an
equivalence of categories). So that, when i is an effective descent morphism, to specify an A-module is to specify a B-module
M together with descent data 6y, : M ®4 B — B®4 M of B®4 B-modules. The descent theory for modules is thus the study
of which homomorphisms of commutative ringsi : A — B are (effective) descent morphisms. Grothendieck [5] proved
that faithfully flat extensions of commutative rings are effective. A full characterization of effective descent morphisms for
modules was given by A. Joyal and M. Tierney (unpublished, but see [12]) and by Olivier [13]: a morphismi : A — B
of commutative rings is an effective descent morphism iff i is a pure morphism of A-modules. For example, if i is a split
monomorphism of A-modules, then it is effective for descent (see, for example, [6]).

According to the theorem of Bénabou and Roubaud [1] and J. Beck (unpublished), the category Des(i) is equivalent to
the Eilenberg—Moore category of G;-coalgebras, where G; is the comonad on the category Modp generated by the adjunction
i, -1 i* : Modg — Mod,. Modulo this equivalence, the functor K; : Mod, — Des(i) can be identified with the comparison
functor K¢, : Mods — (Modg)g;, and thus to say that i is an (effective) descent morphism is to say that the extension-of-
scalars functor i, : Mody, — Modg is precomonadic (comonadic).

Since purity of any homomorphism of commutative rings is equivalent to precomonadicity of the corresponding
extension-of-scalars functor, Grothendieck’s descent theory for modules over commutative rings can be conceived
by interpreting a descent result as a statement asserting that for a given homomorphism of commutative rings,
precomonadicity of the corresponding extension-of-scalars functor implies (and hence is equivalent to) comonadicity.

Identifying the homomorphismi : A — B with the algebra B in the monoidal category Mod, and considering the monad
T; on Mod, given by tensoring with B, the category Modp can be seen as the Eilenberg-Moore category of T;-algebras and
the functor i, as the comparison functor Ky, : Mod, — (Mod,)™. Thus the problem of effectiveness of i is equivalent to the
one of the comonadicity of the functor i,. This motivates to call a monad T on a category 4 to be of (effective) descent type if
the free T-algebra functor FT : 4 — 4T is precomonadic (comonadic). Hence, in the language of monads, the Joyal-Tierney
theorem can be paraphrased as follows: For any pure homomorphism of commutative ringsi : A — B, the monad T; is an
effective descent morphism iff it is of descent type.

The question whether a given morphism is effective for descent has been investigated for various categories. An important
example of wide applicability of Grothendieck’s descent theory is Joyal-Tierney’s result [8] on a descent theory for open
maps of locales. In [8], A. Joyal and M. Tierney looked at descent theory in the context of the x-autonomous category C.£ of
sup-lattices and indicated that there was a useful analogy with the descent theory for modules over commutative rings. A
main result of [8] asserts that a morphism of commutative algebras in C£ is effective for descent iff it is pure. This is used
to show that open surjections are effective in the category of locales, leading to a representation theorem for Grothendieck
topoi (over a base topos) in terms of localic groupoids, which can be considered as a generalization of the fundamental
theorem of Galois theory.

Our aim is to generalize the descent theorem of Joyal-Tierney for sup-lattices by showing that for any *-autonomous
category V with an injective dualizing object, a V-functor is precomonadic iff it is comonadic.

The paper is organized as follows. Section 2 rather technical, and is devoted to extend classical monadicity results to
the enriched setting. Section 3 contains some criteria for comonadicity that are used in the next section to generalize the
theorem of Joyal-Tierney to x-autonomous categories.

2. Preliminaries

We let V = (Vp, ®, I) denote a symmetric monoidal category, where ® : Vo x Vg — Vj is the tensor product of V
and where [ is the tensor unit. A V-functor will be called a functor if it is understood that the domain and codomain are
V-categories. Similarly a 'V-natural transformation between V-functors will be called simply a natural transformation. For
‘V-categories 4 and B, [4A, B o will denote the ordinary category of functors from 4 to 8 and natural transformations
between them. In our paper we follow the notation from [9], which is our general reference for enriched category theory.

We start by recalling the basic facts about V-monads; all can be found in [3,4].

Given V-category »4,amonad T = (T, 1, i) on A consists of a functor T : A — « together with natural transformations
n:1, — Tand u : T> — T satisfying the usual three axioms.

As in the ordinary case, every V-adjunctionn,e: F 4 U: 8 — A induces a monad on » by letting T = (UF, n, U€eF).

Let T = (T, n, u) be a monad on a 'V-category . Then clearly To = (To, 19, /o) is an ordinary monad on g, and one

has the Eilenberg-Moore category ,A,go and the free-forgetful adjunction
FTo U™ A — A

determining the monad T,.
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When the category Vy has equalizers (at least of pairs with a common left inverse), AEO has a 'V-category structure 4T:
Given Tp-algebras (a, ) and (d’, 8'), one defines

Uiy .o : A (@ 0), (d,6")) - A, d)
to be the equalizer in Vy of the following pair of morphisms:

A(T(a), T(a'))

@“a AT (),0")

Aa, ) o A(T(a), ).

Moreover, one can give FT0 and U™ the structure of 'V-functors in such a way that the above adjunction is enriched in V;
in other words, there are 'V-functors F* : 4 — AT and UT : AT — .4 underlying FT : ¢ — A(° and U™ : A — s,
respectively, such that FT is left V-adjoint to UT.

AT is called the Eilenberg-Moore category for the monad T.

Given a V-adjunctionn, e: F 4 U: 8 — .4, let T be the monad on + induced by (U, F), and let 5T, eT: FT 4 UT: AT —
4 be the adjunction associated to T as described above. Then there is a canonical functor K : 8 — AT, called the comparison
functor, for which UT o Kt = U and Ky o F = F'. (Recall that Ky is given on objects by Kp(b) = (U(b), Ue,).)

One says that the V-functor U is (pre)monadic if Ky is an equivalence of V-categories (a fully faithful V-functor).

From now on we consider only monoidal categories V = (V,, ®, I) with Vy admitting all equalizers.

Let 4 be a 'V-category. Recall that a diagram

s n
a_—_<bhb——cC

g

in Aq is a coequalizer diagram in 4 (or just a V-coequalizer diagram) if each

A(h,x) A(f,Xx)
A(C, X) ——— A(b, X) —T) A(a, x)
A(g,X

is an equalizer diagram in Vy. Recall also thatamap h : b — c in Ay is a regular epimorphism in «#4 if it is a 'V-coequalizer
of a pair of morphisms.

Theorem 2.1. A right adjoint 'V-functor U : 8 — A is (pre)monadic if and only if the underlying ordinary functor Uy : B9 —
Ag is so, provided that B has coequalizers of reflexive pairs.

Corollary 2.2. Llet n,e: F 4 U: 8 — 4 be a V-adjunction and suppose that B has coequalizers of reflexive pairs. Then U is
premonadic if and only if each €}, : FU(b) — b is a regular epimorphism in the ordinary category Bo.

Proof. It is well known (see, for example, [10]) that an ordinary functor with left adjoint is premonadic iff each component
of the counit of the adjunction is a regular epimorphism. H

Since any regular epimorphism in 8 is of course a regular epimorphism in 8By, we have:

Proposition 2.3. Let B admit coequalizers of reflexive pairs and let U: 8 — 4 be a right adjoint functor with left adjoint
F: A — B and counit ¢ : FU — 1. Ifeach ¢, : FU(b) — b is a regular epimorphism in B, then U is premonadic.

Proposition 2.4. Let B be a V-category admitting coequalizers of reflexive pairs and let U : 8 — + be a premonadic 'V-functor.
Then any morphism in 8 whose image under U is a split epimorphism is a regular epimorphism in B,.

Proof. Since B is assumed to have coequalizers of reflexive pairs, it follows from Theorem 2.1 that U is premonadic iff Uy
is so. The conclusion now follows from Corollary 2.2. =

We shall need the following result of Janelidze and Tholen [6]:

Theorem 2.5. Let X and Y be ordinary categories with coequalizers and let W: X — Y be a right adjoint functor with left
adjoint V : Y — X and counit o : VW — 1. If the natural transformation o is a split epimorphism, W is monadic.

Theorem 2.6. Let A and B be V-categories admitting coequalizers and let n,e: F 4 U: 8 — A be an adjunction. If the
ordinary natural transformation gy : FoUp — 1g, is a split epimorphism, then U is monadic.
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Proof. Since &g : FoUy — 1g, is a split epimorphism, Uy is monadic by Theorem 2.5 and since 8 admits coequalizers, the
result follows from Theorem 2.1. W

A corollary follows immediately:

Corollary 2.7. In the situation of Theorem 2.6, suppose that the natural transformation ¢ : FU — 1 is a split epimorphism in
[8, B o, then the functor U is monadic.

3. Some criteria for comonadicity

Let T be a monad on a V-category + with associated Eilenberg-Moore category 4" of T-algebras, and canonical free-
forgetful adjunction FT 4 UT : AT — 4.T s called of descent type if FT is precomonadic, and T is called of effective descent
type if FT is comonadic.

As an immediate consequence of the dual of Theorem 2.1 we observe that

Theorem 3.1. Let T be a monad on a V-category A. If A admits coequalizers of reflexive pairs, then T is of (effective) descent
type iff Ty is.

Since the functor UT : AT — A detects all limits that exist in 4, it follows from (the dual of) Corollary 2.7 that
Proposition 3.2. Let A be a V-category admitting equalizers and let T = (T, n, i) be monad on A.If n : 1 — T is a split
monomorphism in [+, A lo, then T is a monad of effective descent type.

Let 4 be a 'V-category and (E, v) be a pointed endofunctor on +. (Recall that a pointed endofunctor on 4 is a pair (E, v)
where E : A4 — s isafunctorand v : 1 — E is a natural transformation.) For an object Q of 4, we get from E a functor

AE(), Q) : AP =V,
and we can consider the natural transformation

A-, Q): AE(—), Q) = A(—, Q).

Proposition 3.3. The natural transformation A4 (v_, Q) is a split epimorphism in [A°, V], if and only if the morphism vy : Q —
E(Q) is a split monomorphism in Ag.

Proof. Suppose thatv: A(—, Q) — A(E(—), Q) is a natural transformation such that A(v_y, Q) -t = 1. Then the diagram

12 (0. Q) — 2 A(EQ). Q)

\ lfe(uQ,Q)
iQ

AQ.Q)

where ip = "1p7: I — A(Q, Q) is the “name” of the unit morphism 1o : Q — Q, commutes. Hence 7q - ig: I —
A(E(Q), Q) is the name of amap E(Q) — Q in +4y that splits vq.
Conversely, suppose that t - v = 1wheret: E(Q) — Q. By the Yoneda lemma, there is a unique natural transformation

7 A(—, Q) > AE(-), Q)

for which 7o : A(Q, Q) — A(E(Q), Q) composed with the morphismig: I — A(Q, Q) is thename"t": I — A(E(Q), Q)
of t. Now the composite

A= Q) — = AE(-), Q) —=2 L 4~ Q)

is the identity, since the composite of its Q -component with ig is A(vg, Q)(Tt) ="(t-vg) =1 =ip. W
Recall that an object Q of a 'V-category + is a regular cogenerator for + if the functor
A(—,Q): AP >V
has a left adjoint and the unit of this adjunction is componentwise a regular monomorphism in +.
Theorem 3.4. Let A be a 'V-category admitting equalizers, and let n,e: F 4 U: 8 — 4 be an adjunction. Suppose that there

exists a regular cogenerator Q for . If the morphism ng : Q — UF(Q) is a split monomorphism in Ay, then F is a precomonadic
functor. If, in addition, Q is an injective object in Ao, then the converse also holds.
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Proof. If the morphism g : Q — UF(Q) is a split monomorphism, then the natural transformation
AM-, Q) AUF(—), Q) = A(—, Q)

is a split epimorphism in [4°, V ], (see Proposition 3.3). Hence, for any a € -, the morphism
A(Me, Q): A(UF(a), Q) — #4(a,Q)

is a split epimorphism. Since Q is a regular cogenerator for 4 and since » admits equalizers by hypothesis, it follows from
Proposition 2.3 that the functor 4(—, Q) is premonadic. And applying Proposition 2.4 to this premonadic functor, we see that
each n,: a — UF(a) is a regular monomorphism in »q. Then that F is precomonadic follows from the dual of Corollary 2.2.

IfF : A — 8B is precomonadic, then since 4 is assumed to have equalizers, it follows from the dual of Corollary 2.2 that
each component n, : a — UF(a) of n : 1 — UF is a regular monomorphism in +g; in particular, sois ng : Q — UF(Q).
Now, if Q is injective in 4y, then nq is evidently a split monomorphism in A;. ®

Let now V be a x-autonomous category in the sense of Barr [2]. Thus, V is a symmetric monoidal closed category together
with a so-called dualizing object Q such that the V-adjunction

V(—,Q)4AV(—,Q): VP -V (1)

is an equivalence.

Theorem 3.5. Let 'V be a *-autonomous category with dualizing object Q, and let (E, v) be a pointed 'V-endofunctor on V. Then
the morphism vy : Q — E(Q) is a split monomorphism in 'V if and only if the natural transformation v : 1 — E is a split
monomorphismin [V, V.

Proof. One direction is clear, so suppose that the morphism vg: Q — E(Q) is a split monomorphism in V,. Then, by
Proposition 3.3, the natural transformation

Vv, Q): V(E(-), Q) = V(—,Q)
is a split epimorphism in [V, V, ]o, and hence

is a split monomorphism in [V, 'V, ]o. But since (2) is an equivalence of categories, V(v(_y, Q) > v, and therefore v: 1 — E
is a split monomorphismin [V, V,]o. W

Theorem 3.6. Let 'V be a x-autonomous category with dualizing object Q and n,e: F 4 U: A — 'V be a 'V-adjunction such
that the morphism nq : Q — UF(Q) is a split monomorphism in V. Then F is a comonadic functor.

Proof. Let us first recall that for any tensored V-category -+, V-equalizers are the same things as equalizers in #g; this is
true in particular when A = V, since the V-category V, being closed, is tensored. So to say that 'V, admits all equalizers is
to say that 'V admits all 'V-equalizers. We now apply Theorem 3.5 to the pointed endofunctor (UF, n : 1 — UF) to see that
n is a split monomorphism in [V, V, Jo. And since 'V admits all equalizers by hypothesis, it follows from Corollary 2.7 that F
iscomonadic. =

Now we are ready to prove:

Theorem 3.7. Let 'V be a *x-autonomous category with dualizing object Q and let Vo admit all equalizers. For a given V-
adjunctionn, e : F 41U : A — 'V, let us consider the following statements:

(i) each component of the natural transformation n : 1 — UF is a regular monomorphism;
(ii) the morphism nq: Q — UF(Q) is a regular monomorphism;
(iii) the morphism nqg: Q — UF(Q) is a split monomorphism;
(iv) the natural transformation n: 1 — UF is a split monomorphism in [V, 'V ]o;
(v) the functor F is precomonadic;
(vi) the functor F is comonadic;
(vii) the ordinary functor Fy is precomonadic;
(viii) the ordinary functor Fy is comonadic;
(ix) the ordinary natural transformation ng : 1 — UpFy is a split monomorphism.
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Then one always has the implications
(iii) == (iv) <= (ix)

ﬂ

(vi) == (viii)

| ]

(i) W) (vii) (ii).

Moreover, all nine are equivalent when Q is an injective object in V.

Proof. The implications (iv) = (ix), (vi) = (v), (vi) = (viii), (viii) = (vii) (v) = (vii), and (ix) = (iii) are trivial. Since
(iii) <= (iv) by Theorem 3.5, it follows that (iii), (iv) and (ix) are equivalent. (iv) = (vi) by the dual of Corollary 2.7, while
(vii) = (ii) by the dual of Corollary 2.2. Moreover, Since V admits all equalizers and since V-equalizers are the same things
as equalizers in Vy, it follows from the dual of Proposition 2.3 that (i) and (v) are equivalent.

Finally, assume that Q is injective in V. Then the morphism 79 : Q — T(Q) is a split monomorphism if and only if it is
a regular monomorphism. Thus, in this case (ii) <= (iii) and hence the nine conditions are equivalent. ®

Theorem 3.8. Let 'V be a x-autonomous category with dualizing object Q which is injective in V. If T = (T, n, n) isa V-monad
on 'V, then the following are equivalent:

(i) the natural transformation n : 1 — T is componentwise a regular monomorphism;
(ix) the natural transformation no: 1 — Ty is a split monomorphism;
(iii) the monad T is of descent type;
(iv) the monad T is of effective descent type.

Proposition 3.9. A dualizing object Q of a x-autonomous category 'V = (Vy, ®, I) is injective in 'V, if and only if the tensor unit
1 is projective in V.

Proof. Suppose that [ is projective in V. Since the V-functor
V(—,Q): VP > v

is an equivalence of categories, the functor
V(—,Q)o: V¥ = Vo

preserves all types of limits that exist in Vy; in particular, it preserves regular epimorphisms; and that Q is injective in Vy
now follows from the fact that there is an isomorphism of ordinary functors:

VO(_» Q) i~ vO('? rv(_’ Q)O)

Conversely, suppose that Q is injective in Vy and consider a diagram

I (2)

lx
V————V

f

in Vg with f a regular epimorphism, and let

VIV, Q) —2 L v, Q) (3)
V(X,Q)ol
V{1, Q) ~ Q

be the image of this diagram under the functor
V(—, Qo : Vg’ — Vo

Since the functor V(—, Q) preserves regular monomorphisms, the morphism V(f, Q) is a regular monomorphism; and
from the assumption on Q we conclude that there is a morphism V(V, Q) — V(I, Q) ~ Q making diagram (4) commute.
Applying the functor V(—, Q) to this commutative diagram and using that V(V(—, Q)o, Q) = 1v,, we get a completion
of diagram (3) to a commutative one. Hence I is projective in Vg, as desired. ®
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Combining Theorem 3.7 and Proposition 3.9 gives the following result:

Theorem 3.10. Let 'V be a x-autonomous with dualizing object Q, and suppose that Vo admits all equalizers and that the tensor
unit I is projective in V. For a V-adjunctionn,e: F 4 U: A — V, the following are equivalent:

(i) each component of the natural transformation n : 1 — UF is a regular monomorphism;
(ii) the V-natural transformation n: 1 — UF is a split monomorphism in [V, V]o;
(iii) the functor F is precomonadic;

(iv) the functor F is comonadic.

Corollary 3.11. Let 'V be a x-autonomous with dualizing object Q and suppose that Vo admits all equalizers and that the tensor
unit I is projective in Vy. For a V-monad T = (T, n, 1), the following are equivalent:

(i) each component of the natural transformation n : 1 — T is a regular monomorphism;
(ii) the natural transformation n: 1 — T is a split monomorphism in [V, V]o;
(iii) the monad T is of descent type;
(iv) the monad T is of effective descent type.

Given a V-category -, recall that a V-monad T on » is called an enrichment of an ordinary monad T on A, when the
underlying ordinary monad To of Tis T.

Corollary 3.12. Let 'V be a *-autonomous category with dualizing object Q and let T = (T, n, &) be an (ordinary) monad on
Vo admitting an enrichment to a V-monad on V. If 1 is projective in 'V, then the following are equivalent:

(i) each component of the natural transformation n : 1 — T is a regular monomorphism;
(ii) the natural transformation n: 1 — T is a split monomorphism in [V, V]o;
(iii) T is of descent type;

(iv) T is of effective descent type

4. Applications

Fix a symmetric monoidal category V = (Vy, ®, I) witha symmetrycyy : U ® V — V ® U. Recall that an algebra in
V (or V-algebra) is an object R of Vy equipped with a multiplication mg : R® R — Rand a unitig : I — R subject to the
condition that the following diagrams commute:

mR®R

RR®R—R®R

R®mp l lmR

RQR———>R,

i 9R R
R~I®R R®R R®I~R

For a 'V-algebra R = (R, iz, mg) in 'V, one defines a V-monad TF = (T®, 5¥, X)) on V by
o T! =R® —;
. nf_):iR(g)—: 1y ~I® ——R® —;
. M’({) =m®—: RYRN X — —> R® —.
The V-algebra structure on R gives the required identities for T® to be a ‘V-monad on V. We refer to T as the V-monad

induced by the V-algebra R = (R, ig, mg).
Applying Corollary 3.11 to this situation gives the following

Theorem 4.1. Let 'V be a x-autonomous category with dualizing object Q, and suppose that I is projective in 'V,. For an algebra
R = (R, i, my) in 'V, the following statements are equivalent:

(i) the morphism i : I — Ris a split monomorphism in Vy;
(ii) the morphismig : I — R pure; that is, for any V € Vy, the morphism

RQV:V~I®V >RV

is a regular monomorphism;
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(iii) the monad TR is of descent type;
(iv) the monad TR is of effective descent type.

Let R = (R, ig, mg) be an algebra in V. Recall that a left R-module is an object M € V, equipped with a (left) action
Ay : R® M — M making commutative the following diagrams:

mr®M iR®M
RIR®M ——RQM M~IQM—RQ®QM
R®le i“” \Ml
RIM ——M, M.
Am

The category of left R-modules is denoted by V. The category of right R-modules V¢ is defined similarly.
Note that the evident forgetful functor
U gV —>V
is right adjoint, with the left adjoint sending V € VotoR® V € ;V, where R ® V is an object in 'V via the morphism
MOV :RIRKQRV - RRQV.
It is well known that the functor RU is monadic and that the monad on V generated by the adjunction R ® — - U is
just the monad TX. In other words, the category VT is just the category of left R-modules and the free T®-algebra functor

Vv — VT is just the functor R® — : V — V.
It follows from Theorem 3.10 that

Theorem 4.2. Let 'V be a x-autonomous category whose tensor unit I is projective in Vo, and let R = (R, ig, mg) be an V-algebra.
Then the following statements are equivalent:
(i) the functor R® — : 'V — 'V is precomonadic;
(ii) the functor RQ — : V — 'V is comonadic;
(iii) the morphismi : I — R is a pure morphismin V; that is, for any v € 'V, the morphismi® v : | ® v — R ® v is a regular
monomorphism in Vy;
(iv) the morphismi : I — R is a split monomorphism in Vy;
(v) the monad TX is of effective descent type.
Assume now that Vg has coequalizers and that all functors V ® — : Vo — Vgaswellas — ® V : Vo — V, preserve
these coequalizers, as they surely do when 'V is closed. Then there is a well-defined functor
—®R—Z'VRXR'V—> VO
which assigns to any pair (N, M) (N € Vg and M € ;V) the coequalizer of the two morphisms
NO®RQIM _—ZN®M

induced by the actions of R on N and M.
Recall that a V-algebra R = (R, ig, mg) is called commutative if the multiplication morphism is unchanged when
composed with the symmetry (i.e. if mg - cg g = mg).
For any commutative V-algebra R = (R, iz, mg), the assignment
M, ) —> (M, Ay - Bu.g)
defines a functor
oV — Vg (4)
that identifies the category p V of left R-modules with the category Vi of right R-modules, and we simply speak of R-modules.
In this case, the tensor product over R of two R-modules is another R-module and tensoring over R makes 'V (as well as Vi)
into a monoidal category, and the symmetry ¢ induces a symmetry on V. Hence 'V is a symmetric monoidal category.
Moreover, if 'V is closed (i.e. there is a right adjoint functor [V, —] : Vo — V, for every functor V® — : Vo — Vy), then 'V
is also closed: The internal Hom object ;[M, N] of two R-modules M and N is the equalizer of two morphisms

[M,N]—=X[R®M, NJ,
where the first morphism is induced by the action of R on M, while the second morphism is the composition of
(R® —)un : [M,N] - [R®M,R® N]
followed by the morphism induced by the action of R on N. Note that, for any V € V,, the object [R, V] becomes a left R-

module and that the assignment V —— [R, V] defines a functor [R, —] : 'V — 'V which is a right adjoint of the underlying
functor jU : 'V — V. See [14] for a reference on algebras and modules in a symmetric monoidal category.

Theorem 4.3. Let 'V be a x-autonomous category. Then, for any commutative algebraR = (R, iz, mg) in 'V, ;'V is a x-autonomous
category. Moreover, if tensor unit I is projective in Vo, then R is projective in V.
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Proof. First, since Ris assumed to be commutative, 'V is a symmetric monoidal closed category by the discussion preceding
the theorem.

Next, it is easy to check by using the adjunction ;U I [R, —] : V — 'V thatif Q is a dualizing object for V, then [R, Q]
is a dualizing object for V.

Finally, since the functor ;U : ;V — 7V admits as a left adjoint the functor R ® — : V — 7V, there is a natural
isomorphism

RVRQV, M) = Vo(V, UM)), forallVeVandM € V.

Putting V = I and using the fact that jU, being right adjoint, preserves regular epimorphisms, we see that R is projective in
z V. provided that I is projective in Vo. H

For a commutative V-algebraR = (R, ig, mg), an R-algebra is defined to be an algebra in the symmetric monoidal category
g V. Itis well known that specifying an R-algebra structure on an object S € V; is the same as giving S a V-algebra structure
together with a morphismi : R — S of V-algebras which is central in the sense that the diagram

Br.s SQi
R®S——SQ®R——=S®S

@ l " \L
ms

S®S S

is commutative. (Quite obviously, any morphism of commutative V-algebras is central.) Thus, if i : R — S is a central
morphism of V-algebras, then S can be viewed as an object of ;'V via

R®S Lo s@s = »5,

or, equivalently (since i is central), via

BR, i
R®S > s@R—Fssgs = >,

and then the multiplication ms : S® S — S factors through the quotient S ® S — S ®g S (that is, there is some (necessarily
unique) morphism mg : S ® S — S making the diagram

S®S ——=S XS

N

M

commute), and it is easy to see that the triple S? = (S, i, myg) is a commutative algebra in the symmetric monoidal category
v
2

Theorem 4.4. Let 'V be a x-autonomous category whose tensor unit is projective in Vo, let R be a commutative V-algebra, and
let i : R — S be a central morphism of 'V-algebras. Then the following are equivalent:

(i) the functor S Qg — : x'V —s 'V is precomonadic;
(i) the functor S @ — : 'V — 'V is comonadic;
(iii) iis a pure morphism of (left) R-modules, i.e. for any (left) R-module M, the morphismi @M : M ~© RQr M — SQ@rM isa
regular monomorphism;

(iv) iis a split monomorphism of (left) R-modules.
Proof. We begin by noticing that, since R is a commutative V-algebra and since I is assumed to be projective in Vy, 'V is
a x-autonomous category whose tensor unit R is projective (see Proposition 3.9). Next, writing Sk = (S,i : R — S, m;)
for the R-algebra corresponding to the central morphism i, it is easy to see that the category (R (s'V) can be identified with
the category 'V, and that, modulo this identification, S ®¢ — : 'V — 'V corresponds to SR@p—: RV = (sR)(SV). Now,
applying Theorem 4.2 gives that (i)—(iv) are equivalent. ®

Now let V be a symmetric monoidal category whose underlying ordinary category Vy is locally small, complete, and
cocomplete. Then recall that, for any small V-category +, there exists the so-called V-functor category [+, V], which is

an enrichment of the ordinary category [, V]o over V, and that [4, V] is a V-tensored category in the sense that any
representable functor

[F, =] =[A, VI(F, =) : [A, V] >V
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is right adjoint: The left adjoint to the functor [F, —] is the functor
FQ—:V — [4, V],
v —> [a — F(a) ® v].

Recall also that F : A — 'V is small projective if the functor [F, —] preserves all small (indexed) colimits. Fix such a functor F,
and write Tr for the V-monad on V generated by the adjunction F ® — - [F, —]. Since F is assumed to be small projective,
it follows that Tr(v) = v ® [F, F] for all v € Vy. Thus, tensoring with the V-algebra [F, F] is isomorphic to the monad
T; in other words, the monads Tr and T*f! are isomorphic. So the category V'F is (isomorphic to) the category of right
[F, F]-modules, V¢ f, and the free Tg-algebra functor vV — VTF is (isomorphic to) the functor — ® [F,F] : V — VIF.F]-
Since 'V has all equalizers, and since any category with all equalizers is Cauchy complete (in the sense that every idempotent
endomorphism e has a factorization e = ij with ji = 1), Theorem 3.20 in [11] and Theorem 2.1 together give the following:

Theorem 4.5. Let A be a small V-category. If F : A4 — 'V is small projective, then the functor
FR—:V —> [A,V]
is (pre)comonadic if and only if the functor

—®[F,F] 1V - V[F,F]

Combining this with Corollary 4.1 in [6], we conclude that

Corollary 4.6. In the situation of the previous theorem, if the morphism
17 : 1 — [F, F]

is a split monomorphism, then the functor
FR—:V > [A,V]

is comonadic.

Let & be an elementary topos with the subobject classifier £2, and let C.£(&) denote the category of internal sup-lattices
(i.e. internally complete lattices and sup-preserving morphisms) in &. It is well known (see, [8]) that C.L£(&) is a symmetric
monoidal closed category, in fact x-autonomous. We recall that the unit object for the tensor product in C.£(8) is §2, while
the dualising object is £2°P, the sup-lattice provided with the partial order opposite to that one of £2.

Recall also that C.£(€) is a monadic category over &: If we consider the covariant power set functor #: & — &, then
it is a monad via the morphisms f: X — £(X) of taking singletons and U: £ (X) — #(X) of taking the internal union,
respectively; an object X € & is an algebra for this monad precisely if X is an internal sup-lattice in &, and thus C.L(&)
is (isomorphic to) the category of #-algebras. Moreover, since the forgetful functor C.£L(€§) — & takes epimorphisms to
split epimorphisms [8], the free J-algebras (=the free complete lattices) are projective in C.L(€), [15]; in particular, £2 is
projective in CL(&),, since $(1) = §2 - here 1 is the terminal object of & - and hence the dualizing object £2° is injective
in CL(€), by Proposition 3.9. Finally, since C.£(&) is monadic on &, all small limits (and hence all small colimits) exist in
CL(8) provided they existin &.

Recall that a morphism i : R — S of commutative C.L-algebras is an effective descent morphism for modules if the
(ordinary) functor S ®g — : RCL(E) — (CL(E) is comonadic.

Applying Theorem 3.4, we obtain the following result of Joyal and Tierney [8]:

Theorem 4.7. Let & be an elementary topos with small limits. A morphism i : R — S of commutative algebras in CL(&) is an
effective descent morphism for modules if and only if i is a split monomorphism of R-modules.

We now look at the case where & = Sets, and write simply C.£ for the category C.L(Sets). It is well known (see, for
example [8]) that, in C.L, (small) coproducts are biproducts; that is, the coproduct of {X;, i € I} in C.L is the same as the
product [ [,, Xi. We will write €, , X; for this biproduct. It is also a well-known fact (see [7]) that, for any small C£-category
o, the functor P = @, Ao A(a, —) is small projective, and thus, by Theorem 4.5, the functor

P® —:CL — [A,CL]
is comonadic iff the functor

—QI[P,P]: CL — CLppp
is. One easily sees that the underlying object of the C£-algebra [P, P] is )
i:1—[P,P]= 69004116%0 A(ag, ay) is given as follows:

1y, ifap =ay,
0, ifao ;é(11

a1 0 A(ap, ay), and that the unit morphism

({(1))ag,a; = and  (i(0))gy,q;, =0 forallag, a; € Ay.
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Theorem 4.8. For any small C L-category 4, the functor

P —:CL — [A, CL,
where P = @aeAO A(a, —), is comonadic if and only if there exists an object a € 4 such that the morphism™1,7 : I — A(a, a)
is a split monomorphism.

Proof. We claim that the morphismi : I — [P,P] = @ao,mem A(ag, ay) is a split monomorphism in €L if and only if
there exists an object a € g such that the morphism 1,7 : I — +(a, a) is a split monomorphism in C£. Indeed, since
one direction is clear, suppose that i is split by somej : € A(ag, a;) — . Then, writing e,, a € Ay, for the image of
1 € I under the composite

ap,ay €4

I LN A(a, a) e, D A, @),
ap,a1 €A
it is easy to see that Ve 4, €, = i(1), and since ji = 1, this implies that 1 = ji(1) = j(Vaea, ) = Vaesoj(€q). Now, if each
j(eq) = 0,then 1 = V4eu, j(eq) = 0, a contradiction. Therefore, there exists an object a € Ao with j(ez) = 1, which just
means that the morphism ™13 : I — «A(a, a) is a split monomorphism. The result now follows from Theorems 4.4 and 4.7.
|

In order to understand the meaning of this theorem, we consider the comonad G, on the category [4, C.L] generated
by the adjunction

P® — [P, —]:[A,CL] = CL.

It is not hard to see that the functor-part of this comonad takes any C.L-functor F : A — CL to the C.L-functor
PR (D, Ao F (a)). Now, we can interpret Theorem 4.8 as saying that G 4-coalgebras are exactly the C.£-functors of the form

P ® X with X € C.L iff there exists an object a € A such that the morphism "1, : I — «A(a, a) is a split monomorphism.
Another way of interpreting the meaning of Theorem 4.8 is the following:

Theorem 4.9. For any algebra in CL of the form [P, P], where P = €p

monad T "1 on £ is of effective descent type if and only if there exists an object a € g such that the morphism *1,7 : [ —
A(a, a) is a split monomorphism.

A(a, —) for a small CL-category A, the induced
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