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ABSTRACT

This paper provides conditions, and a sense, in which the matrix of a system of
linear differential or linear difference equations can be assumed to be similar to a
diagonal matrix.

INTRODUCTION

The primary motivation of this paper came from the classical paper of
Simon and Ando [3] which introduced nearly decomposable matrices. They
studied the behavior of a solution x, to an equation x,(k+1)=x(k)A
where A was a nearly decomposable matrix, showing that for a short time x,
behaves approximately as if A were completely decomposable and afterward
approximately like a reduced system. In the analysis, the authors assumed
that A was similar to a diagonal matrix, remarking that “this assumption is
not too restrictive as a description of reality” [3, p. 115]. Of course, the
analysis of a matrix system is much simpler when the matrix is similar to a
diagonal matrix.

Concerning the above matrix system, the following question can be
asked. Given € > 0, when there is a matrix A arbitrarily close to A, similar to
a diagonal matrix, and such that |x (k)— x (k)| < € for all k > 0. When this
occurs, the behavior of x, is within € of that of x,, and so, at least for many
behavior problems, the analysis can be done on

x;(k +1) =x,(k)A,
a much simpler matrix system.
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The content of this paper provides some answers to the above question.
We present the work for the differential matrix system. The corresponding
theorems for difference matrix systems, obtained by similar proof techniques,
can be found by replacing e4* with A¥ in the theorems.

RESULTS

In the context of the system x’'= Ax, an eigenvalue A of A is called
stable if and only if Re A <0, while for the system x(k +1)= Ax(k), A is
stable if and only if |A| < 1. The corresponding system matrix A is stable if
and only if all of its eigenvalues are stable.

Given the system x'= Ax, we now present a sequence of results which
show when there is a system y'= By for which B is similar to a diagonal
matrix and arbitrarily close to A, and |x(¢)— y(#)|, is arbitrarily small for all
t > 0. Thus, y tracks x, and hence we call these results tracking theorems.

The first such result follows.

LemMa 1. Let € be a positive number, and let A be an n X n stable
matrix. Then there is a neighborhood N of A such that if B € N then

ledt — Bty <€ forall t>0.

Proof. Let €, be any positive number. Let A be an eigenvalue of A for
which Re A is largest. Since e®* <1, we can find a norm |[|-|| such that
lle4ll <1 [5, p. 174]. Let y be a positive number such that |leA|| <y <1.
Define

K= {C:C is an n X n matrix and ||e€|| < 'y}.

Thus, K’ is an open set about A. Let K C K’ be an open set about A such
that K, the closure of K, is compact. Define

M= max |l

CekK
0t

Let T be a positive number such that for t > T, My* ™' < €, /2. Now, for
any t > T, write t =r + 5, where r €(0,1) and s is an integer. Then, for any
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CeKk,
llell = lleC*|

= “eCi‘eCs”

<lle“ el

< Mile€|

< My?

<e€,/2.

Thus, for t > T and any C € K,

lled” — el < lle®* [+ lle |l

<2(€,/2)

< €.

We now consider the interval [0, T ]. Suppose that in each open set about
A there is a C such that [le4 — e“!|| > ¢, for some ¢ in [0,T). Then there is a
sequence C,,C,,... of matrices in K and a sequence ,,t,,... of numbers in
[0, T] such that lim, _, ,C, = A while

lledt — eCiti|| > €.
Choose any subsequence ¢, of these numbers so that lim, _,, t;, = to Then

klim ” exp(Atik) —exp(Ciktik) ” = |leAto — eA%|| = 0.

Thus, we have a contradiction, and so there is an open set @ about A such

that if B<€ 0O then
le?* — el < ¢, forall t=0.

Finally, it is known [5, p. 170] that there are positive numbers @ and B8 such
that alX|, <] X|l < BIXlz for all n X n matrices X. Thus, choosing €, = ea
yields the result. ]
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For nonstable eigenvalues we have the following

Tueorem 1.  Let € be a positive number, and let A be an n X n matrix
with nonstable eigenvalues having linear elementary divisors. Then there
exists a neighborhood N of A such that if BEN and B has nonstable
eigenvalues and corresponding eigenspaces exactly those of A, then
leAt — eB!l, <€ for all t > 0.

Proof. Let P be a nonsingular matrix such that

I _[D o
A=PJP~, where ] [0 K]’

D a diagonal matrix with main _diagonal consisting of the unstable eigenval-
ues of A. Using Lemma 1, let N be a neighborhood of K such that if Re N
then

leXt — eBtly < (IPIsIP7'5) e forall £30.

Suppose D is an r X r matrix. Let M, denote the set of all k X k matrices.
Define I1: M, = M, _, by II(X) =Y, where Y is obtained from P~'XP by
deleting the first r rows and the first r columns. Then IT(A) = K. Since II is
continuous, N = II"'(N) is neighborhood of A.

Let BEN be such that the nonstable eigenvalues and corresponding
eigenspaces are exactly those of A. Then

P“‘BP=C=[D 9],
0 R

where D’ is an rXr diagonal matrix with unstable eigenvalues. Now
II(B)= R € N. Thus

|eK'—eﬁ'|2<(|P|2|P_1|2)—le forall ¢>0.
Hence
e?' — ePy <|Plale’" — eyl P 5
< |P|2|P—1|2|BK' - em|2

<IPlalP M 5(1PalP7Y5) e

<e€ forall ¢t>0. [ ]
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Assuming the hypothesis of Theorem 1, to describe the behavior of the
system

x'= Ax,

x(0) = x

we have that there is a matrix B, similar to a diagonal matrix and arbitrarily
close to A, such that the solution to

y'= By,
y(0) = x,
satisfies
|x(t) - y(t) |2 = |eAtx0 - ethOIZ
<le? ~ eBalxgls

< €lxgls forall t>0.

So y describes x to within €|xyls. This, of course, always occurs if A is a
stable matrix.

To give another interesting special case of Theorem 1, we need two
lemmas. The first lemma, with other versions in [4], uses the notation f for
the n-component column vector all of whose entries are 1/vn .

LemMa 2. Let A be an n X n stochastic matrix. Then there is an n X n
orthogonal matrix Q with first column f, a 1X(n —1) matrix h, and an
(n —1)X(n —1) matrix H such that

it

Proof. Choose gq,,...,q, n-component column vectors so that Q=
[f g, "+ q,]is orthogonal. Then there is a 1X(n —1) matrix h and an
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(n —1)X(n —1) matrix H such that

ro=oft 4]

Thus, A=Q[(1) Z]Q‘. -

Lemma 3. Let A be an n X n stochastic matrix. Given any number € > 0,
there is an n X n stochastic matrix B, with distinct eigenvalues, such that
|A - B|2 <e€.

Proof. Let C be any n X n positive stochastic matrix such that |A — Cl,
< € /2. Now, using Lemma 2, factor

_nll Rhine
C Q[O H]Q .
Choose an (n —1)X(n — 1) matrix G so that G has distinct eigenvalues and
so that
6 &l ell<
0 H 0 Gl 2’
and

s-ol} 2o

is positive. Let e be the n-eomponent column vector of 1’s, and €, the
n-component (0,1) column vector with a 1 only in the first position. Then

ool Ao

“oly &5l
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and it follows that B is stochastic. Finally, since

IA-Blz=|A—-C+C—-Bl,

<|A-Cls+|C—Bl;
€ 1'h]_P
<2+H0-H 0

+

[l

<

M| M
o] m

<E,
the result follows. ™

An interesting corollary to Theorem 1, which shows that the Simon-Ando
assumption of P being similar to a diagonal matrix is acceptable, follows.

CoroLLaRY 1. Let A be an n X n regular stochastic matrix and € a
positive number. Then there is an n X n, regular stochastic matrix B, with
distinct eigenvalues, such that |A* — B¥|; <e for k=1,2,....

Proof. Using the difference equation version of Theorem 1, there is a
neighborhood N about A such that for any B € N having 1 as an eigenvalue
and having the same eigenspace for 1 as does A,

[AF — B¥, < € forall k>1.

Now, from Lemma 3, such a B can be chosen so that it is stochastic and has
distinct eigenvalues. The result follows. [ ]

A similar result can be given for primitive nonnegative matrices.

We now develop two other types of tracking results. The first such result,
a relative tracking result, uses the following definition. Let A be an n X n
matrix. In the context of x' = Ax, an eigenvalue A of A such that Re A > Re 8
for all eigenvalues B of A is called an r-maximal eigenvalue of A. For the
system x(k +1) = Ax(k) an eigenvalue A of A is r-maximal if |A|> 8] for
all eigenvalues B of A.

We now develop several other types of tracking results. A result concern-
ing relative tracking follows.
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TueoreMm 2. Let € be a positive number, and let A be an n X n matrix
whose r-maximal eigenvalues correspond to linear elementary divisors. Then
there exists a neighborhood N of A such that if B€ N and B has r-maximal
eigenvalues, and corresponding eigenspaces, exactly the same as those of A,
then

‘eAt — eBtl

= <e forall t>0.
le]2

Proof. Let P be a nonsingular matrix such that

= -1 _{D 0
A= PP}, where | [0 K]

with D a diagonal matrix having as main diagonal the r-maximal eigenvalues
of A. Let A be such an eigenvalue.

Using Lemma 1, let N be a neighborhood of K —AI such that if
R—AI €N then

-1
oK —ADE _ g(R=ADI|, (|P|2|P_1|2) € forall ¢t>0.

Define N as in Theorem 1. Then if B € N and B has r-maximal eigenvalues
and corresponding eigenspaces to those of A, we can write

B= P[D Q]P“l.
0 R

Then

leAt — eBty | PlyleXt — eRto| P,

3

At|2

le le

(K—Ayt _ e(R—/\I)tlz

< |Plal P71y -
= |e /\teAtl2
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and, since 1 is an eigenvalue of ¢ *e*’, 1 <|e *'e4!|,. Thus,

At _ eBtl

lels

le .
< | Pl P Y p|eKADE — (R=ADE),

— - -1
<|PlolP7 (Pl P72) e
< E. |

To convert this result into one for a solution to a system of linear
differential equations requires a bit of work.

CoroLLARY 2. Let € be a positive number, and let A be an n X n matrix
whose r-maximal eigenvalues, denoted by A,,...,A,, correspond to linear

LA

elementary divisors. Let p',...,p° be eigenvectors corresponding to A,,...,A

8

respectively, and let P=[p' --- p"] be a nonsingular matrix for which
P~ 'AP is in Jordan form.
Let x be a vector such that if x = a,p* + - -+ + a,p" for scalars a,...,a,,

then at least one of the a,...,a, is not 0. Then there exists an n X n matrix B,
which is similar to a diagonal matrix and arbitrarily close to A, such that

leAty _eth|2
W <€ fOf al t>0.

Proof. Let A=A — A,I. We first show that there is a positive number

a such that [e4'x| > a for all £ > 0. We argue this by contradiction.
Suppose there is a sequence t,,t,,... for nonnegative numbers such that

leAtix| tends to 0. Since e4’ is bounded, the sequence has a limit point E and
so | Ex| = 0. Note that there are exactly s eigenvalues of E having modulus 1,
and these correspond to the eigenvectors p',...,p°. But this means that
|Ex| # 0, a contradiction.

Now, choose B as in Theorem 1 so that

leAtr — eB'xl, < ae forall t>0.
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Set B= B+ A,I. Then

leds — ePx|, |ex —eB'x|, ae
_ < e

leAtxly leAtxl, a

which yields the corollary. [ ]

The second result, a projected tracking result, necessitates a lemma.
Lemma 4. Let K be an m X m triangular matrix with
(i) main diagonal A,,..., A, where

ReA;>ReA; forall i<j,

(ii) superdiagonal composed of 0's and 1’s, and
(iii) all other entries 0.

Then

le®], < e®ert(gm 4+ -+ - +1) forall t=0.

Proof. Let B,,...,B,,, be numbers such that ReB,> --- =Ref,, .
Consider the differential equations

z1(t) = Brz () + z4(2),
z5(1) = Bazy(t) + 25(1),

2(t) = B,z,(t) +2,..(1),
Z'r+1(t) = Br+1zr+l(t)

with z,(0)=a,,...,2,, (0 =a,,, and |a,| <1 for all i.
Solving these equations yields that

zr+ 1( t) = eﬂrﬂta"l



TRACKING IN MATRIX SYSTEMS 243

and hence
|z, 1 (£) |, < R
Continuing,
(1) = e [fe s, (0 de
0
and

|z,(t)| < e(ReB'”[‘/:e'(“eB')‘e(ReB')‘ dt + Ia,I]
< e®efr-i(r 1),
By further continuing this technique we have
|2,(t)| < e®eB(tm+ -+ +1).
This leads to
|z:(8) [ < e®eP(em+ - +1),
for all i. Applying this result to
y'(t) =Ky(t),
where |y,(0)] <1 for all 4, yields that
()| < (e 4 - 1),

Now, let ¢, denote the m-component (0, 1) vector with a 1 only in the ith
position. Then

y'(t) = Ky(2),

y(0)=e¢,
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has solution eX‘e; for all i. Thus

IeKtll = maxlexteih < e(Re)‘l)’(tm 4o 4 1)_ -
i

We now develop a projected tracking result.

Lemma 3. Let A be an n X n matrix such that all r-maximal eigenvalues
of A have linear elementary divisors. Then, given any positive number e,
there is a neighborhood N of A such that if BE N and B has r-maximal
eigenvalues and corresponding eigenspaces, exactly those of A, then

eAt eBt

v <e forall t>0.
e |1

1

|eBt|1

Proof. 1t is sufficient to prove this result in the norm defined by

IClp =P~ 'CPl,,
where

e _[D 0

pap=( ]]’

where D is an r X r diagonal matrix containing the r-maximal eigenvalues of
A on its main diagonal and J a Jordan submatrix. Let € be a positive number.
Let A be an r-maximal eigenvalue of A. Set A = A ~ AL Then e?* = ¢ g4t

Define N as in Theorem 1, and such that, if B€ N and the r-maximal
eigenvalues and corresponding eigenspaces are exactly as those of A, and if
B =B — Al then |e*' — e?"|p <€ for all ¢ > 0. Now,

eAt eBt e e

P

le2t],  le®|, ledt,  leBy |,

and, by using Lemma 4, there is a positive number M such that |eA’], =

|e§‘|1 =1 for all ¢ > M. Thus,

eAt eBt

Tstl

<e€ forall t=>M.

P

At‘l

le le
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Now suppose that there is a sequence of numbers ¢,,¢,,... in [0, M] and
a sequence of matrices By, B,,... satisfying the same properties as B, so that
lim;_, B, = A while

{i—x

oAt g Biti

|6At‘|1 - |eB‘t" >€ for all 1.

Without loss of generality we can assume lim, _, . ¢, = t'. Then, taking limits,
we have
eAt' eAt'

— ——| > €
|€At|1 |6At|1 ’

P

a contradiction. Thus, there is a neighborhood N’ of A such that if BE N’
and B has r-maximal eigenvalues and corresponding eigenspaces exactly the
same as those of A, then

eAt eBt

—— <€ forall t>0. [ |
|eAt|1 |eBtll ~

P

Converting this theorem to a solution result yields the following.

CoroLrary 3.  Let A be a n X n matrix such that all r-maximal eigenval-
ues, denoted by A,,...,A,, of A have linear elementary divisors. Let p',..., p*

be eigenvectors corresponding to Ay, ...,A, respectively, and let
P=[p' --- p"]be anonsingular matrix for which P~'AP is in Jordan form.
Let x be a vector such that if x = a,p' + -+ + a,p" for scalars a,,...,a,,

then one of a,,...,a, is not 0. Then, given any positive number ¢, there is an
n X n matrix B, similar to a diagonal matrix and arbitrarily close to A, such

that

oAty By
<e forall t>0.
1

le'xl, leB'xl;

Proof. Let A=A— Al By the proof of Corollary 2, there is a positive
number a such that @ <le4'x|, for all £ > 0. Let a, = ja. We first show that
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there are n X n matrices_E, with r-maximal eigenvalues and corresponding
eigenvectors as those of A, similar to diagonal matrices, and sufficiently close
to A that a, <le®x|, for all ¢ > 0. We argue this by contradiction.

Write

_=_1DO
A P[O ]P,

where D is an r X r diagonal matrix containing the r-maximal eigenvalues of
A, and J a Jordan submatrix. Let K, = J + E,, where E; is a diagonal matrix
with sufficiently small entries and such that K; has distinct eigenvalues and
lim, . E, = 0. Set

i

- D O
—_ p-1
B,=P [o K{]P.

Now, suppose there is a sequence of nonnegative numbers ¢,,¢,,... such that
leBitix], < a,
We now argue cases.

Case 1: t,,t,,... is a bounded sequence. For this case we can assume
t,=t. Then

i—oo Y

lim

lim |eBitix|, = |eAix], > a > a,.

i—>®

This yields a contradiction.

Case 2: t,,t,,... is an unbounded sequence. Here, we need only argue
the case where lim, _, ¢, =. In this case, by inspecting the form of ¢+ and
applying Lemma 4, we see that e is arbitrarily close to e** for sufficiently
large t,. Thus |e®%|, > a, for sufficiently large t,, a contradiction.

Similarly, a %, can be found such that any nXn matrix B having
r-maximal eigenvalues and corresponding eigenvectors to those of A, and
sufficiently close to A, satisfies |e®x|, < B, for all ¢ > 0.

Now, using Theorem 1, an n X n matrix B can be chosen, satisfying the
hypothesis of this corollary, and such that

g

A

A rt
ety —eBx|, <

€.
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Define B =B + A,I. Then

eAtx eth eAtx eth

L |le®xly JePixly |,

leAtxl;  lePixly

eBix|eMx — |eAtx| ety

leAxl e xl .

leBtx] ety — |eBtx|,eBtx + |eBtx| e Btx — le’r'xlle’_”x

leAx|;leBx]

leBx| leAtx — eBlxl) + |eBxl, — leA x|, eBxl;

N
]

which yields the corollary. [ ]

These results cover all cases of A except the case in which an eigenvalue
having maximum real part has an corresponding nonlinear elementary divi-
sor. As shown in the example below, this case has no diagonal tracking result.

ExampLE. Let
1 1
a=[s 1]
0 1
If B is any matrix similar to a diagonal matrix, then e can be written as
eB = M1, + P11,

where A and B are eigenvalues of B and II, and II, are idempotent
matrices. We look at three cases:

Case 1: Consider

leAt — ¢Bt|, =

2

et

[e' te‘] _ eMHl _ eBtH2
0
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Without loss of generality we can assume that Re A > Re B. We look at cases.

(i) Suppose Re A < 1. In this case the te’ entry in A grows faster than the
corresponding entry in e®.
(i) Suppose Re A > 1. In this case e’* grows faster than the entries in e*’.

Thus, in any case e?! cannot be approximated by e®'.

Case 2: Consider

2

[e‘ te:] — M1, — ePII, H(l) i] — A, — B,
2 _

0 e _
i B
0 el 0 1

Analyzing as before, it can be seen that e** cannot be approximated by e?".

2

Case 3: Consider

e’ te'

0 et e'\tnl + eBtHZ
|:et tet] |e“l_[1 + EBQH2|1

0 €

1 1

Note that

for some nonsingular matrix P. Without loss of generality, suppose Re A >
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Re B. Then we can write

0 €°
a(t) = "
~P e” 0 ]P‘l
0 eB' 1
-
1 0 _
P_O e(B_W]tP !
1 o0 o
‘P_O e(ﬁ—A)t]P

Suppose Re A > Re B. Then

[1 O]P 1

1_
S
0

1

Note that tracelim,_, () =1; however, the main diagonal of [8

consists of 0’s. Thus,

e’ te'
0 . M1, + P11,

<e
,eAtHI + eml—[2|1

249

o
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where 0 is real. Then trace a(t)=1+ €'%". Now, regardless of 6, since

[g (1) has a main diagonal of 0’s, @(t) cannot approximate 8 (1) for t
large. ]

The author would like to thank E. Seneta for pointing out that Corollary 1
could be extended from primitive matrices to regular matrices.
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