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Graphs G1, G2, • • • ,  Gn are packed  in a graph H if the edges of H are colored 
with the colors 0, 1, 2 , . . . ,  n so that each edge of H has exactly one color, and 
the subgraph of H induced by the edges colored i, together with additional 
vertices of H not incident with edges colored i, if necessary, is isomorphic to Gi 
for each i e {1, 2 , . . . ,  n}. We prove several results about packing trees in 
complete graphs, including that three trees of different orders can be packed in 
Kn, and that if T2, T a , . . . ,  Tn are trees, at most one of which has diameter more 
than three, and if T/has order i for each i, then T 2 , . . . ,  T~ will pack in K,. 
Finally we make the new conjecture that trees T 2 , . . . ,  T~, with T/having order i, 
pack into K~_I, r½nl, and provide some support for the conjecture. 

Our terminology comes mainly from [1]. We use Lad and ra~] for the greatest 
integer and least integer functions, respectively. In a packing of G 1 , . . . ,  Gn in 
graph H, we say that the packing is done using colors O, 1, . . . ,  n. Throughout 
the rest of this paper, except where otherwise stated, a graph with subscript i has 
order i. Gy~irf~i s and Lehel [5] showed that, if T 2 , . . . ,  Tn are trees and if all but 
two of these trees are stars, then there is a packing of these trees in K~. They 
conjectured: 

Conjecture A .  I f  I " 1 , . . . ,  Tn are trees, then there is a packing o f  these trees in Kn. 

An interesting consequence of this was pointed out by Graham during the first 
author's visit to Bell Laboratories in 1981: 

Consequence B. f f  s l ,  • .  • ,  sn-~ are sequences of  posi t ive  integers such that si 

sums to 2i f o r  each i, then there is an n - 1 x n matrix M such that some reordering 
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Of S i appears in row i together with enough zeros to fill in the row and each column 

o f  M sums to n - 1. 

Consequence B follows from Conjecture A by counting the numbers of edges 
of each color at each vertex and recording the results in matrix M with one row 
for each color and one column for each vertex. 

Straight [8] proved Conjecture A for n ~< 7, and showed that if T1, T 2 , . . . ,  T~ 
are trees and if each of these trees is a path, a star, or a caterpillar with maximum 
degree 3 in which exactly [½(i-  3)] vertices have degree 3 and in which vertices 
of degree two are adjacent to end vertices, then they can be packed in K,. More 
recently, Fishburn [4] demonstrated the truth of Consequence B. As the difficulty 
of Conjecture A has become more evident, extensions have been made to 
packings of small numbers of graphs (e.g., two) with orders and sizes near n in K, 
(see, for example, [3] and [7]). 

A vertex v of a tree T is penultimate in T if it has degree greater than one and is 
adjacent to at most one vertex of degree greater than one. A matching is a graph 
M such that each component of M has exactly one edge. In this paper, if v is a 
penultimate vertex of tree T, we use T / v  to stand for a component of maximum 
order of the graph obtained from T by erasing v and all of its incident edges. 

We need three lemmas; the first two are easily proved by examining the 
possible diameters of the tree involved, and so their proofs are omitted. In the 
figures referred to in the proofs of Lemma 3 and Theorem 1, the closed curve 
always represents a complete graph with the named graphs packed in it. 

Lernma 1. If, for  every choice o f  a vertex v o f  degree one in a tree T and for  every 

choice w o f  a penultimate vertex in T, the distance between v and w is at most  two, 

then T has diameter at most three. 

Lemma 2. If, for  every choice o f  vertices v and w o f  degree one in a tree T o f  

order n, either T - {v, w } is a star, or v and w are at distance two in T, then T has 

max imum degree at least n - 2. 

Lemma 3. Suppose T and U are trees o f  orders nx < n 2  = n, respectively, suppose 

n >>- 5, suppose T and U are not stars, and suppose M is a matching o f  size <<- [½n]. 
Then T, U, and M can be packed into K, .  

Proof. By adding edges to T and M, we may suppose IMI= [n/2] and 
n l = n - 1. Let M'  be M less one component. The packings for n equal to 5 or 6 
are easily done by construction. Thus we may suppose n >I 7. Suppose T (U) has 
vertices xlj (x2j), j • {1, 2}, such that x# has degree one and is adjacent to a vertex 
a# with ai~ :/: ai2, and such that T - {x~ ,  X12 } and U - {x21, x22} are not stars. By 
induction we may pack T - {x11, x12}, U -  {x21, x22}, and M'  in Kn-2. The 
packing of T, U, and M in Kn is completed as indicated in Fig. 1. 
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Suppose U has maximum degree n - 2. Then we may, by induction, pack T and 
M'  into K,,-1. Let y be a vertex of K,,-1 which does not meet M' .  Since T is not a 
star, there is an edge y z  of Kn-1 which is not in T in the packing. Let w be a 
vertex not in K,,_~ joined to every vertex i n / ( , - 1 ,  color yw the color of M, and 
color yz  and all uncolored edges from w to vertices in K~_~ with the color of U, 
thus packing T, U, and M into K,,. 

Suppose the maximum degree of U is at most n - 3 and the maximum degree 
of T is n - 3 .  Applying Lemma 2, let x and y be vertices of degree one of U 
whose adjacent vertices a and b, respectively, are distinct, and such that 
U -  {x, y } is not a star. Pack M '  and U -  {x, y} into Kn-2. If both a and b have 
degree at most n - 5 in U - {x, y }, let r be a vertex o f / ( , - 2  such that ra does not 
have the color of M '  or of U in the packing in Kn-2. (r exists because at most 
n - 5 edges of U are at a and M '  uses up only one more edge at a; thus at most 
n - 4  edges are used at a in the packing of Kn-2 and one more neighbor of a is 
available.) The required extension to a packing of T, U, and M is indicated in the 
two cases shown in Fig. 2. 

Otherwise, one of a or b (say a) has degree n - 4 in U - {x, y}. Then the cases 
of the packing of M '  and U - {x, y } into K,-2 are indicated in Fig. 3(a) and their 
extensions to a packing of M, T, and U into K~ are shown in Fig. 3(b). The 
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possible locations of vertex b are labelled b in Fig. 3(a). In Fig. 3, vertex e is 

omitted if n is odd. [] 

In the theorems, we use color i for the color of the edges corresponding to tree 
T/in the packing. 

Theorem 1. Trees T,2, T,,, and T, of orders n2<n I < n, respectively, can be 
packed into K,. 

Proof. By Straight's result, we may suppose n > 7. By adding edges and new 
vertices to the smaller trees, we can suppose ni = n - i. 

If one of T,, T,-I, or T~-2 is a star, the packing exists by the Gy~rf: is-Lehel  
result. If T, has a penult imate vertex of degree exceeding two, let v be such a 
vertex adjacent to a vertex a of degree exceeding one. Pack T~/v, T,_I, and T~-2 
into K~_I. Add a vertex x not in K,_I  and color xa and all edges from x to K~_ 1 
not meeting T~/v with color n. Thus we may suppose T, has diameter at least 4; 
by Lemma I it follows that T. has a penult imate vertex and a vertex of degree 1 

whose distance apart is at least three. Further ,  every penult imate vertex of T~ has 
degree two. 

If T~ has two penult imate vertices u and v adjacent to vertices a and b, 
respectively, of TJ{u, v} with a ~ b, let r and s be the vertices of degree 1 of T~ 
adjacent to u and v, respectively, and let w and x be two vertices of degree one in 
T.-I whose adjacent vertices c and d are distinct. We note that T~/{u, v} has 
n - 4 vertices, T~-t - {w, x} has n - 3 vertices, and T~-2 has n - 2- vertices. Pack 
these three trees into K~-2. Then we may  construct a packing of T,, T~-I, and 
T~-2 into K~ as indicated in Fig. 4. In Fig. 4, if a = c and d is one of the vertices of 
K , -2  not included in T,/{u, v}, we can freely choose d to be s. 

Finally, suppose all penultimate vertices of T. are adjacent to the same vertex z 



Packing trees in complete graphs 31 

EOGES IN T 
t~ 

U , . , W  V--~ 

( . . ,  
r a c 6 

n-2. 

EDGES IN Tn_ t . . . . . . . . .  

( 

uk= ~ V ~- X u~= Vv V-- X 

, ,  -,,-, ; )  (. -.. ,) 
o, C d - r  /o c=S J , ' r  

K._ z Kn_~ 

i~,,.~. Kn_~. I~,.~. 

Fig. 4. 

of T,. Then T , - z  is a matching together with, perhaps, some isolated vertices. 
Since n > 6, we may use Lemma 3. Pack Tn - z less its isolated vertices, T,_I, and 
T.-2 into K,-1 in accordance with that lemma, coloring the edges in T, - z  with 
color n. We can complete the packing by adding a vertex x not in K,-1 and 
coloring with color n one edge from x to each of the edges of the matching T, - z 
and the edges from x to the vertices not in the packing of T, - z. [] 

Suppose graph G has edges colored with colors from {2, 3, . . . ,  k}. A part o f  

color i at vertex v of G is any one vertex v of G and all of the edges colored i 
which are incident with that vertex. The degree of a part is the number of edges of 
that part. If v is a vertex of G, S is a set of parts at v, and V S l , . . . ,  VSl are all of 
the edges in the parts in S, and if w is a vertex not in G but joined to every vertex 
of G, we lift the parts in S to (a new vertex) w by erasing the colors from 
VSl, • • • ,  VSl and coloring the edges W S x , . . . ,  wst so that ws~ receives color j if 
and only if vsi was colored j. 

Our next theorem, on partitions of integers, is the key to Theorems 4 and 5. 

Theorem 2. I f  n is a posi t ive  integer, i f  p l  ~ P 2  >~ " " " >~ P k  is a partition o f  n with 

k > ½n, and i f  m is any integer in {1, 2 , . . . ,  n}, then there exist i l , . .  • ,  i¢ such 

that m = Ef=lPi/ .  

Proof. Suppose Pl ,  • • • ,  Pt are the members of the partition greater than 2, and 
suppose the partition includes exactly s twos and r ones. Then 

t 

p i + r + 2 s  
i=1 n n 

r + s + t  k (½n) 
=2.  (A) 

Hence r > E~=I (Pi - 2) I> 0. In particular, ff t > 0, then r >~Pl - 1. In this case we 
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can use ones  to obta in  any n u m b e r  in { 1 , . . . ,  P l -  1}; then use P l  for  Pl ;  then  

use P l  and  ones to obtain  the integers be tween  P l  and p l  +P2- We  cont inue until  

we ob ta in  P l  + P 2  . . . .  + P t ,  and finally we use this sum with ones  and  twos as 
descr ibed in the next  case to construct  the o ther  integers up to n. 

If  t = 0, we use the  ones to construct  the integers f rom 1 th rough  r. Then  use 

r - 1 ones  and 1 two for r + 1, then  r ones and 1 two for r + 2, then  r - 1 ones 

and  2 twos for r + 3 ,  etc. ,  unti l  all integers in { 1 , 2 , . . . , n }  have been 

const ructed.  [] 

If the  in teger  n is even,  this t heo rem can be ex tended  to part i t ions with exactly 

½n parts  as follows: 

T h e o r e m  3. L e t  n b e  even .  L e t  p~ >~ P2 >I " " " ~ P½~ be  a p a r t i t i o n  o f  n ,  a n d  let m 

b e  a n y  m e m b e r  o f  {1, 2 , . . .  , n }. T h e n  e i ther  

( 1 )  P l  = P 2  = " • • = p½,, = 2 ,  o r  

(2) P l  = ½n + 1 a n d  p z  = p3  = • • " = p½, = 1, o r  

(3) t he re  ex i s t  i l ,  • . . ,  i r s u c h  t ha t  ~ = 1 P i j  = m .  

P r o o f .  Suppose p l ,  • • • ,  P, exceed 2, suppose that  there  are s twos, and suppose 

there  are r ones  in the par t i t ion.  Then ,  by (A) in the p roof  of  Theo rem  2, 

r = E~=I (Pi  - 2). Suppose ne i the r  conclusion (1) nor  conclusion (2) holds. Then  

t 1 > l  and  r1> l .  If  t = l ,  then  there  are p l - 2  ones and ½ n - ( p l - 2 ) - l =  

½n + 1 - P l  twos. Since P l  :/:½n + 1, we can use ones to p roduce  any positive 

in teger  up to P l  - 2, then  use P l  - -  3 ones and a two to produce  P l  - 1, then use 

P l, and finally P l and a suitable combina t ion  of  ones and twos to produce all 

larger  integers  up to n. If t I> 2, then  r = p l  + ~ = 2  ( P i -  2) - 2  ~>p~ - 1. Then  we 

const ruct  m as in T h e o r e m  2. [] 

T h e o r e m  2 is used in the next  two theorems ,  on packing trees of  d iameter  

three :  

T h e o r e m  4. S u p p o s e  7"1, T 3 , . . .  , T~ are  trees,  s u p p o s e  T2, T 3 , . . .  , T , - a  can  be  

p a c k e d  in  K , - I ,  a n d  s u p p o s e  Tn has  d i a m e t e r  a t  m o s t  three .  T h e n  T2, • • • ,  T,  can  

b e  p a c k e d  in K , .  

P r o o f .  If  Tn is a star,  we can add a vertex and edges colored n f rom it to every 

ver tex  of  K , , - 1 ,  thus complet ing  the desired packing.  Suppose T~ has d iameter  3. 

In 1"2,. • • ,  T, ,_I ,  there  are E~'__-21 i = ½((n - 1) 2 + n - 3) parts ,  so the average 

n u m b e r  of  parts  at each ver tex of Kn_l in a packing of  T 2 , . . . ,  T,-1 is 

½(n - 1) + (1 - 2 / ( n  - 1)). Thus  there  is a vertex v which meets  at least ½(n - 1) 

parts .  Since these parts  par t i t ion  the n -  2 edges at v ,  by T h e o r e m  2 for any 

in teger  m f rom 1 th rough  n - 2 there  is a select ion of the parts  at v whose set of  

edges has m members .  Let  y be a penul t imate  vertex of  T~. We  can select a set S 



Packing trees in complete graphs 33 

of parts at v whose set of edges has cardinality (deg y)  - 1. We lift the parts in S 

to a new vertex w, and then color with n the edges at v that were in S and the 
edges incident with w not involved in the lifting. This completes the desired 
packing. [] 

Corollary. Suppose  T2, . . . , T~ are trees such that  T~ has order  i and  d iameter  at 

m o s t  3. T h e n  T2, . • . ,  T~ can be p a c k e d  into K,,. 

We can strengthen this corollary by allowing one tree to have diameter in 

excess of  three. 

Theorem 5. L e t  T2, T3, . . . , T,  be  trees, Ti hav ing  order  i, such that at m o s t  one  o f  

the trees has  d iameter  m o r e  than 3. Then  T2, • • . ,  T ,  can be p a c k e d  in Kn. 

Proof. The theorem is true if n <~ 7 as shown by Straight [8]. Continuing by 

induction, if Tn has diameter  at most  3, then the trees pack by Theorem 4. T h u s  
we may suppose Tn has diameter  at least 4. Let w be a vertex of degree one in T~ 

and let its neighbor be x. Pack T 2 , . . . ,  Tn_2, T~ - w in Kn_l, using color n for 

T , -  w. If  T~-I has diameter  2, we can complete the packing in K~ by adding 

vertex w and edges from it to all vertices of K~_I, coloring wx with color n and 

coloring all of the other  edges with color n - 1. Thus we may suppose T~_I has 

diameter  3. Let y and z be the penultimate vertices of T~-I, y having the smaller 

degree of the two if their degrees differ. Then y is joined to at most ½ ( n -  3) 

vertices of degree one in Tn_x. A m o n g  T 2 , . . . ,  Tn_2 there are E7~-2 2 i = ½ ( n  2 - 3n) 
vertices, so that there is an average of ½ ( n - 2 ) -  1 / ( n -  1) parts colored 

2 , . . . ,  n - 2 at the vertices of K,,_~. 
Suppose there are at least [½nJ parts with colors in { 2 , . . . ,  n - 2} at a vertex 

v #:x. If  edge v x  is colored n, then at most n -  3 edges of color ~ n -  2 are 
parti t ioned by [½n] or more parts;  by Theorem 2, parts containing ( d e g y ) -  1 

edges can be found at v which may be lifted to w to accommodate T~_~. If v x  is 

not colored n, and recalling that T,, - w meets every vertex of K~_~, there are at 
most n - 4 edges at v not colored n and not in the part  P at v which includes vx .  

Further  there are at least [½(n - 2)] > ½(n - 4) parts other  than P in the parts at v 
and not colored n. Thus parts containing ( d e g y ) -  1 edges can be found at v 

which can be rifted to w to allow T,,-1 to be packed.  
Suppose x meets r parts with colors in { 2 , . . . ,  n - 2 } ,  and suppose s 

other vertices meet exactly [ ½ ( n -  2)J such parts.  Then there are at most r + 

sE½(n-E)J +(n-  l - s -  1)[½(n-4)J parts colored 2 , . . .  , n - 2 .  Hence r +  
s + (n - 2) [ l(n - 4)J >/1(n2 - an).  If  n is even, s >/½(an - 8) - r. Since r ~< n - 3, 

we have s >I ½(n - 2). Similarly, if n is odd, s I> 2n - 5 - r >I n - 2. Since s ~ n - 2 

also, we get s = n - 2 and r = n - 3 in this case. 

Suppose n is even, and let vertex v meet  ½ ( n - 2 )  parts with colors in 
{ 2 , . . . ,  n -  2}. If  v x  is colored n, then there are least ½ ( n -  2) parts colored 
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differently from n at at most n - 3 edges in these parts, so the edge set of a subset 
of the parts at v has cardinality (degy)  - 1 and thus T~_I can be packed. If vx is 
not colored n, let P be the part at v which contains vx. Then the number  of edges 
at v not colored n and not in P is ~<n - 4, since v meets an edge of T~ - w. If P 
contains more  than one edge, or if more than one edge at v is colored n, then we 
have ½(n - 4) parts partitioning a number  less than or equal to n - 5, so the edge 

set of a subset of the parts at v has cardinality ( d e g y ) -  1 and T~_I can be 
packed. Thus vx is the only edge in P. 

It follows that x is adjacent to at least l (n  - 2 )  vertices v at which the tree T~, 
i ~< n -  2, containing edge vx has degree one at v. Since only T2 can also have 

degree one at x, x meets at least 2 (½(n-  2 ) -  1 )+  1 = n -  3 edges from these 
trees. Since x also meets an edge of T~, T2 must contain one of these edges. Thus 
one of the vertices, say v ' ,  meets ½ ( n -  2) parts with colors in ( 2 , . . . ,  n -  2}, 
and v 'x  is colored 2. Allowing the use of v 'x  at v ' ,  we can find a subset of the 
parts at v '  whose edge set has cardinality (degy)  - 1 and thus pack T~_~. Color 
wx with color n. If the part containing edge v 'x  is lifted, then there is an edge 
from w which receives neither color n nor color n -  1. This edge can be given 
color 2, thus completing the packing of T 2 , . . . ,  Tn in Kw. 

Suppose n is odd, so s = n - 2  and r = n - 3 .  Let vx be an edge colored n and 

incident with x. Since r = n -  3, T ~ -  w has degree 1 at x, so its degree at v is 
more than 1. Hence  the ½ ( n -  3) parts at v partition a number  of less than or 
equal to n - 4 .  Thus we can find a subset of the parts at v whose edge set has 
cardinality (degy)  - 1, so T~_~ can be packed by placing y at v. [] 

A connected bipartite graph has  a unique decomposition of its vertices into two 
sets so that each edge joins a vertex of one set with a vertex of the other set. We 
call these two sets the sides of the bipartite graph. If one of the sides has more 
vertices than the other, we say it is the large side and the other side is the small 
side. If the sides are of the same order, let the larger one be the one with a larger 
number of vertices of degree one, if such exists, and otherwise let the larger one 
be either side. 

A path in a tree T is maximal if both of its end vertices are of degree one in T 
and the path has length at least one. The center of a star is the only penultimate 
vertex of the star. If a tree has diameter at least three, the second and 
next-to-the-last vertices of any maximal  length path in the tree are penultimate 
vertices of the tree. 

In attempting to determine the largest number  of trees of different orders that 
could be packed into a complete graph with n vertices, we have found it useful to 
pack trees into complete bipartite graphs. Efforts in this direction led. to the 
following conjecture: 

Conjecture C. If  trees T2, T 3 , . . . ,  T~ are chosen arbitrarily with Ti having i 
vertices for.each i, then these trees can be packed into Kn-1. [½,,1- 



Packing trees in complete graphs 35 

If n is even, the number of edges available in the complete bipartite graph of 
the conjecture is exactly the number needed to pack the trees. When n is odd, 
½(n-  1) vertices on the small side would not provide enough edges in the 
complete bipartite graph to pack the trees. Also, n - 1 vertices are needed on the 
large side in order to allow T~ to be a star. Direct construction of the packings has 
verified this conjecture if n <~ 6. 

Suppose T2,. .  •, T~ are stars, and let T1 be K~. If n is even, numbering the 
vertices on the small side of K~_~,r½~ 1 with 1, 2, 3 , . . . ,  ½n, we can pack the stars 
by packing T/and Tn+l-i with their centers on vertex i, using any i - 1 of the 
edges from vertex i for T~ and the remaining n -  i edges for T~+~-i. A similar 
packing works for n odd, although in this case some edges will not be used for 
packing the stars. Thus the conjecture is true if all of the trees are stars. 

If T2, T 3 , . . . ,  T~ are all paths and stars, T~ having order i for each i, then Zaks 
and Liu [9] have verified the conjecture for these trees when n is even, and Hobbs 
[6] has verified it for them when n is odd. Zaks and Liu's work suggests the 
conjecture might also be provable if the complete bipartite graph were K~.½<n_~) 
with n odd. We next show that two trees of different order can be packed in the 
complete bipartite graph if the orders of the trees and of the sides of the complete 
bipartite graph satisfy the conditions of the conjecture. 

Lemma 4. I f  every maximal path in a tree T has even length, then all o f  the 
vertices of  degree one in the tree are on the large side o f  T, and the large side of  T 
is strictly larger than the small side. Further, if  T has at least k penultimate vertices 
o f  degree three or more, the large side o f  T has at least k + 1 more vertices than the 

small side. 

The proof of this lemma is routine and hence is omitted. 

Theorem 6. Let Ti and Tj be trees having orders i < ], and suppose j <<- n. Then Ti 
and Tj can be packed into K~_ L [½,,1 so that their smaller sides are on the small side 

o f  K,_I, r½nl- 

Proof. Denote the complete bipartite graph Kn-l, r½n] by K. We may suppose 
i = n -  1 and j = n. We will prove this theorem by induction on n. Direct 
verification for n ~< 5 begins the induction. If Tn is a star, we can pack Tn with its 
center on one of the vertices of the small side of K. Then there remains a graph 
Kn-1, r½,1-1 in which T,_I can clearly be packed with its small side on the smaller 
side of the graph K. 

Suppose T,-1 is a star. Pack T, in K with its small side on the small side of K. If 
every vertex on the small side of K meets at least two edges colored n, then Tn 
has at least 2[½n] >t n edges, which is impossible. Thus the center of Tn_ 1 c a n  be 
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placed on a vertex of the small side of K which meets at most one edge of Tn, and 
n - 2 edges at that vertex can be colored n - 1, thus completing the packing. 

The basic idea of the rest of the proof is that we remove two vertices from T~ to 
produce Tn - {x, y} which is packed with T~_I into a complete bipartite graph K'  
smaller than K. If n is odd, K'  is formed by removing one vertex from each side 
of K. If n is even, only one vertex is removed from (the large side of) K to form 
K'. In terms of the packing, the necessity of K'  being only one vertex smaller 
than K when n is even can be seen if T,,-1 is a star and T,, - {x, y} is a path, for 
then Tn-1 uses all of the edges incident with one vertex of the small side of K'  and 
T,~- {x, y} requires ½(n -  2) other vertices on that side. Algebraically, K'  is 

Kn_l_l,[½(n_l)]. If n is odd, r½(n - 1)] = i(n - 1) = i(n + 1) - 1 = [in] - 1, while 
if n is even [i(n - 1)] = in = [In]. 

Suppose n is odd. Let K ' =  K,-2,½(,-x), let the vertex on the small side of K 
which is not in K '  be r and the vertex on the large side of K not in K'  be s (see 
Fig. 5). If T, has an odd maximal path, let x and y be the end vertices of such a 
path, and let a be the vertex adjacent to x and b the vertex adjacent to y in the 
tree. Applying induction, pack T, - {x, y} and T,_a in K'  with their smaller sides 
on the small side of K'.  Since a and b are at an odd distance in T~, they are on 
different sides in the packing; let us suppose a is on the large side. Then x and y 
can be added by coloring with n the edges ar and bs. 

Suppose T, has no odd maximal paths but that it has a penultimate vertex x of 
degree two in T~. Let a and y be the vertices adjacent to x, y being of degree one. 
Pack T, - {x, y} and T,,_~ in K'  with their smaller sides on the small side of K'.  
Observe that we have removed one vertex from each side of T, so that the 
vertices on the small side of T. - {x, y } are on the small side of Tn. Hence a is on 
the large side of K' .  Complete the packing in K by coloring the edges ar and rs 

with n. 
Thus we may suppose every maximal path in T. has even length, T,, is not a 

star, and no penultimate vertex of T,, has degree two. Let x and y be vertices of 
degree one of T~ joined to a penultimate vertex a of T~. By Lemma 4, the larger 
side of T. has at least three more vertices than the smaller side, so the vertices in 
the smaller side of T,, - {x, y} are in the smaller side of T~. Pack T~ - {x, y} and 
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T,-1 in K '  so that the smaller  sides of the trees are on the small side of K ' ;  note 

that a is on the small side of K' .  Since T, - {x, y} has n - 2 vertices, at least one 
vertex c on the large side of K '  does not meet T,, - {x, y}. Then lift the part in 
K '  colored n at a to r in K and add the color n to edges rs and rc. The  result is a 
packing of T~_I and T~ in K. 

Suppose n is even. Delete  a vertex s from the large side of K to produce 
K '  = K,,-2.½, (see Fig. 6). Suppose T,, has an odd maximal path; let its ends be x 
and y, with x adjacent to a and y adjacent to b. Pack T. - {x, y} and Tn_l in K '  
and suppose a is on the larger side of K' .  Since T,, - {x, y } has n - 2 vertices, its 
smaller side has at most i n -  1 vertices, and so there is a vertex c on the small 

side of K '  which meets no edge colored n. If ca is not colored n - 1, color it n 
and color bs with n, thus completing the packing of T._~ and T~ in K. If ba is not 

colored n - 1, lift the part colored n at a in K'. to s and add the color n to edges 
ba and sc in K, thus completing the packing. Thus we may suppose ba has color 
n - 1 .  

T,, - {x, y} is not a star since it has an odd maximal path, so T, - {x, y } has at 

most n - 4  vertices on the large side of K' .  Le t  s l ,  s2, • . . ,  Sk be the vertices on 
the large side of K '  which do not meet  an edge colored n. If some stb is not 
colored n - 1, lift the part colored n at a in K '  to s and add the color n to the 
edges sc and stb in K, completing the packing in K. Thus we may suppose all of 

S l b , . . . ,  Skb have color n - 1. 
We note that sic cannot be colored n - 1  for any i, for then a cycle 

(st, c, a, b, st) would be present in Tn_t. Suppose there is a vertex st such that, for 

every vertex f other than b, if si is joined to f by an edge colored n - 1, then f is 
not joined to a by an edge colored n. Lift the part colored n in K '  at a to s and 
the part colored n -  1 in K '  at si to s, and color sc and stb with color n to 
complete the packing in K. Thus we may suppose each of s a , . . . ,  Sk meets an 
edge colored n - 1 which is incident with a vertex joined to a by an edge colored 
/I. 

But if i :~j, si and sj cannot be joined to the same vertex f by edges colored 
n - 1, for then the cycle (st, f ,  sj, b, si) would be present in T~-I. Thus a is joined 
to at least k vertices by edges colored n. But then there are at least k + 1 vertices 
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of Tn - {x, y } on the small side of K' ,  so there are at most n - k - 3 vertices of T 

on the large side. Hence k >/k  + 1, which is impossible. Thus T~_I and T~ can be 
packed in K if Tn has an odd maximal path. 

Suppose every maximal  path of T~ has even length, and suppose Tn has a 

penultimate vertex x of degree two. Let x be adjacent to a and y, with y having 
degree one. Since y is on the large side of T~, so is a. Hence a is on the large side 

of Tn - {x, y}. Since T~ - {x, y} has no odd maximal paths, it has more  vertices 

in its larger side than its smaller side, by Lemma 4. Thus it has at most ½ n -  2 

vertices on its smaller side. Pack T ~ -  {x, y} and T,_I in K '  so that  the smaller 

sides of the trees are on the small side of K '  and let Cl, • • • ,  cp be the vertices of 
the smaller side of K '  which do not meet  an edge colored n; then p I> 2. If any 

edge aci is not colored n - 1, color ac i and cis with color n, thus completing the 
packing of T~_~ and T~ in K. Since T~ - {x, y} has a vertex on the small side of 

K ' ,  there is at least one vertex s '  on the large side which meets no edge colored 

n. If  an edge s'ci is not colored n - 1, then we can color sci and s'c~ with color n 

to complete the packing. But otherwise, T~_~ includes the cycle (s ' ,  c~, a, c2, s ' ) .  

Thus we may suppose Tn has no odd maximal paths and no penult imate vertices 
of degree two. 

Let a be a smallest degree penult imate vertex of T~, and suppose a is joined to 

exactly the vertices x l ,  • • • ,  Xd of degree one in T~. Let the other neighbor of a in 

T~ be b. Let T'  = T~ - {Xl, • • • ,  Xd}. Since T~ has no odd maximal paths,  T' - a 
has none,  so its larger side includes all of its vertices of degree one. Further,  

T ' - a  that  at least one penult imate vertex of degree greater than two, so by 

L e m m a  4 T ' - a  has at least two more  vertices on its larger side than on its 
smaller side. It follows that  T'  has a strictly larger side, and a is on its smaller 

side. Pack T'  and T~_I in K '  so that  the smaller sides of the trees are on the small 
side of K ' .  

Case 1. If  b is the center  o f  T~ and if b has degree two in Tn, let a '  be its other 

neighbor in T~. Since n is even and d < ½(n - 3 ) ,  d ~< ½(n - 4 ) .  Let  the vertices of 

the large side of K '  not meeting an edge colored n form a set A.  Then A has 

n - 2 - (n - d - 2) = d elements.  The vertex a is joined to at least two vertices of 

A by edges colored n - 1, for otherwise we could color d - 1 of the edges from a 

to A with color n and color sa with color n, thus completing the packing of Tn_l 

and T h i n K .  

Suppose a vertex y other  than a or a '  on the small side of K '  exists such that yb  

is not colored n - 1 and at most one edge from y to A has color n - 1. Then erase 
the color from edge ba, and color edges yb,  ys, and d - 1 uncolored edges from y 
to A with color n. The result is a packing of T~-I and T~ in K. Thus each of the 

½ ( n -  4) vertices other  than a and a '  on the small side of K '  meets  at least two 
edges of T~_I, and a meets  two edges of T~-I, so T~_I has at least n -  2 edges 
joined to A t.J {b}. Since this is the number  of edges in T,,-1, the vertices met by 
these edges are the n - 1 vertices of T~_~. Hence ½(n - 4) + 1 + d + 1 = n - 1, or  
d = ½(n - 2). Since d ~< ½(n - 4), we have a contradiction. 
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Case 2. Hence either b is the center of T~ but with degree at least three, or T, has 

diameter at least six. In ei ther case, the small side of T'  has at least three 
vertices, so there is a set A of d + 1 vertices on the large side of K '  which do not 
meet an edge colored n. 

If a is joined to at most two of these by edges colored n -  1, we may color 
d - 1 edges from a to A and the edge sa with color n to complete the packing in 
K. Thus a meets at least three edges colored n - 1 whose other ends are in A. 
Since T'  has n - d vertices, the small side of T'  has fewer than ½(n - d) vertices, 
so at least [½dJ + 1 vertices of the small side of K '  meet  no edges colored n. Let 

B be a set of exactly [½dJ + 1 such vertices. If there is y e B such that yb  has no 
color and at most two edges from y to A have color n - 1, then we can erase the 
color from edge ba and color yb,  ya, and d - 1 edges from y to A with color n to 

complete the packing in K. If there is y e B such that yb  has color n - 1 and at 
most one edge from y to A has color n - 1, lift the part colored n in K '  at b to s, 
erase the color from edge sa, and color with n edge sy, and d edges from y to A, 

thus completing the packing in K. Finally, we may suppose each vertex of 
B U  {a} meets at least three edges colored n - 1 which have their other ends in 

A U {b}. The number  of vertices in these two sets is d + L½dJ + 4, and the 
number  of edges colored n -  1 that have both ends in these sets is at least 

3([½dJ + 2 ) >  d + L½dJ + 3. Since this latter number  is the maximum number  of 
edges T~_I could have joining pairs of these vertices, we have a contradiction, 
and the theorem is proved. [] 

We next study how large an integer t can be chosen with a given value of 

integer n such that trees T 2 , . . . ,  Tt with T/having order i can be packed into 
K~_~. [½~1- If we could show t = n, we would have proved our conjecture. We have 
not done so well, but we do have: 

Theorem 7. Let  n be an integer >16. Then t ~ -2V~n  trees can be packed  into 

K,,-1, [½"I" 

Proof. By construction, we have packed each set of trees T2, • • •, T6 in K5.3, so 

the conjecture is true for n = 6. In K17,9, pack T 2 , . . . ,  T6 in a/(5.3 subgraph and 
pack T7 and T8 by Theorem 6 in a K12,6 vertex-disjoint from the selected Ks,  3. 

Thus we can set tl 1 = 6, tl = 6 and n2=  18, t 2 = 8 for the construction of a 
recurrence relation. If ni is even and ni >I t~ + 7, we can add ti + 6 vertices to the 
large side of K,,-1.½,,, and ½(ti + 6) vertices to the small side. Then, by using the 
above theorem, we can pack Tt,+~ and Tti+2 between the small side of K,,,-~.~n, 
and the newly added ti + 6 vertices, pack Tt,+3 and Tt,+4 between the large side of 
K,,,_a,½n, and the newly added ½(t~ + 6) vertices, and pack Tt,+5 and Tt~+6 between 
the two sets of newly added vertices. Then n~+~ = n~ + ti + 6 and t~+x = 6 + 6. We 
have n~ I> ti + 7, so n~+~ I> 2t~ + 13 = t~+~ + ti + 7 > ti+l + 7. Thus, for i I> 2, ni+~ = 

ni + ti + 6 and t~+l = ti + 6. Solving this relation, we find tl = 6, ti = 6i - 4 if i >/2, 



40 A.M. Hobbs et al. 

nl = 6, ni = 3i 2 - i + 8 if i I> 2. Combining and solving for t / in terms of ni, we get 
t /=  - 3  + ~ / 1 2 n / -  95, of which the stated result is a simplification. [] 

Let us now consider the Gy~rf~is-Lehel conjecture. Suppose we have t / t r ees  
T 2 , . . . ,  Tt, packed in K,,,. To form a recurrence relation, we can pack Tt,+l, 
Tti+2, and T,,+3 in K,,+3. Between K,, and Kti+3 there is a complete bipartite 
graph Kn,,,/+3 with uncolored edges. If we partition the n i vertices of K,,, into 
subsets of orders ti + 4, t~ + 6 , . . . ,  ti + 2r and a remainder set of fewer than 
t~ + 2r + 2 vertices, then we can pack trees Tt,+4 and Tt,+5 in the subgraph of 
Kn,,ti+3 whose small side is the small side of the complete bipartite graph and 
whose large side is the set of t~ + 4 vertices. We can pack Tt~+6 and Tti+7 in the 
subgraph using the small side of the complete bipartite graph and the t /+  6 vertex 
set of the partit ion. We continue, finally packing Tt,+2~ and Tt~+Er+l in the 
subgraph using the small side of the complete bipartite graph and the t~ + 2r 
vertex set of the partition. Then we have packed ti+~ = t /+  2r + 1 trees of orders 
1, 2, 3 , . . . ,  t / +  2r + 1 into K,,+ 1 with ni+l = n / +  t /+  3. This recursion is valid if n/ 
is large enough compared to t~; specifically it is valid for n2 = 17 and t2 = 11 and 
for all n~ with i > 2. The values n~ = 7, t~ = 7 were used to obtain n 2 and t2; the 
validity of nx - 7 and tx = 7 was shown by Straight [8]. Algebraic manipulation to 
eliminate r shows 

t i +  1 - -  t i a t- 1 + 2 [--l(t~ + 1) + ½~/(ti + 3) 2 + 4hi I . 

The next two lemmas follow by replacing the binomials by their expansions as 
power series and then replacing the series, which are alternating after the first few 
terms, by the first two, three,  or four terms of those series. Since the preceding 
recursion formulas do not arise from a complete solution to the tree packing 
problem, it is sufficient to find rough bounds for ti in terms of ni from the 
recursions. In particular, the bounds on n~ in the next two lemmas could be 
improved, as could the coefficients of n/2/3 in Theorem 8, but the improvements 
would not be interesting. 

Lemma 5. I f  n i >i 8000, then 

4 n . f q / a ) _ ( l l . 4 ) n ~ 3 _ 9 > O .  (1.9)2n~r3(1 + n f - l / 3 )  4/3 _ (1.9)2n4/3(1 + 

Lemma 6. I f  ni >I 27, then 

n~/3(1 + 4n~ -1/3) + 6 n ~  + 5 -  n/4/3(1 + 2n~-V3)4c3 - 4n/2/3(1 + 2n~-1/3)2/3 > 0. 

Theorem 8. I f  ti is the number o f  trees packed into K,, i by the preceding 
construction, then (1 .9 )n~  > ti > ni 2r3 for  i >I 2. 

Proof. Using the recursion formulas found in the preceding work, the result of 
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this theorem has been directly verified for 2~<i~<36. Further, n36=8120.  
Suppose this theorem is true for one value of i such that ni I> 8000. Then 
ti+~ ~< X/(ti + 3) 2 + 4n~. Hence 

~+ l <- ~ + 4ni + 6ti + 9 

< (1.9)2n~/3 + 4ni + 6(1.9)n~ 3 + 9 

4 - 1 / 3 ~  =(1.9)2n 4/3 1 +~.-.-.~n~ / +(11.4)n~3+9 

~< (1.9)2n~/3(1 + ni-1/3) 4/3, by Lemma 5, 

~< (1.9)2n/2/3 

because ni+l = ni + ti + 3 >I ni + n/2/3 = n/2/3(1 + ni-lc3). Thus ti+l < (1.9)n/2/+31. 
Also ti+~ + 2 > ~/(ti + 3) 2 + 4hi, so 

(t~+l + 2) 2 > t 2 + 4hi + 6ti + 9 
_. 4/3 >n~ + 4ng + 6n~3 + 9 

> 4 + n4/3(1 + 2n~-1/3) 4/3 + 4n/2/3(1 + 2n~1/3) 2/3, 

by Lemma 6. But ni÷ l = ni + ti + 3 < n~ + 2n/2/3 if ti + 3 < 2n~i 3, which occurs for 
_ 4/3 n~ i> 165. Hence the preceding formula is greater than 4 + n~÷l + 4n~1 = (n/Z+31 + 

2) 2. Thus ti+ 1 > n~i+31 . [] 

There are many edges not used in Kti+3 and K,, in the preceding packing. We 
attempted to take advantage of these edges by using Turan's Theorem to find a 
set of vertices with no colored edges between them, usually in K, , ,  and then have 
two complete graphs overlap on those vertices. However, because the number of 
trees that can be inserted in the complete bipartite graph is thereby reduced, 
there was little improvement over the results described in the preceding 
paragraphs. 
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