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The well-known Blaschke-Siiss theorem states that there are at least three pairs 
of antipodal points on an oval. In this paper we prove the counterpart of that result 
for periodic functions and plane curves. 0 1990 Academic press, IX. 

PRELIMINARIES 

We recall some results from [ 1, p. 2021. A plane convex curve is called 
an oval if it is of class C2 with respect to arc length s and the curvature 
k(s) > 0 for all s E R. Two points of an oval are called an antipodal pair if 
the tangents at the two points are parallel and the curvatures are equal. 
The following result is due to W. Blaschke and W. Stiss: On every oval 
there are at least three antipodal pairs of points. 

In this paper we introduce antipodal sets for periodic functions that will 
be used in a generalization of the BlaschkeeSiiss theorem. For this purpose, 
we examine the real Hilbert space L* ,,,,(k) with weight k(s), where 

(A) 4s) > 0, 
(B) k(s+L)=k(s), for all SER, 

(C) 1; k(s) ds = 27cj, for j an integer. 

We define the function 

K(s) = 
I ” k(t) dt, 

0 

- 
s 

’ k(t) dt, 
s 

for s>O 

for s<O. 
(1) 

It can be easily noted that we have the following. 
11 
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THEOREM 1. The sequence 

1 1 
- -cos~K(r),&,sin~K(s), 
Jq& 

n= 1,2, . . . 

is an orthonormal complete system in the space L&,,(k). 

It is known from [2] that the equation 

4s) q’(s) = ~ 
k(cp(s)) 

(2) 

(3) 

has a solution given by 

q,(s) = K-‘(K(s) + 27cjc~), (4) 

where K-’ is the inverse function to K and CI > 0. The solutions (4) have 
the following properties: 

cpx” (P/h) = cpcAcpp(s)) = (P1+&), (5) 

cPI& + L) = cpl,n(S) + L (6) 

(7) 

In the case k(s) E 1 and L = 2zj, we have 

q,(s) = s + 2?rjor. (8) 

Let f be a continuous periodic function with the period L. For a fixed 
integer 2n we set 

u-times 

B(s) = ‘PI&) and p”(s) =-jgc-q(s), (9) 

for u = 1, 2, . . . and /I’(s) = s. 

DEFINITION 2. For some point so E R the set 

{so, B(so), B2(so), ...? P2”- ‘(so,} (10) 

will be called an n-antipodal set provided that the following equation 
holds: 

,I- I 
r;. Cf~~2”(~o)-f~~2”+‘(~o)1 =a (11) 
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Let k(s) G 1 and L= 2zj. In this case b(s) = s + (rrjjn) and the 
n-antipodal set is described as the set of points 

i 
s, s + y, s + 2 z, . . . . s + (2n - 1) f 

I 

for which n-l 
c [/( s+2u; -f s+(2v+l)Z =o. 

t’=O ‘) ( I (11’) 

In the sequel, two n-antipodal sets are called equivalent if one of them 
is determined by so and the second by so + iL for some integer i. 

1. EXISTENCE OF ANTIPODAL SETS 

Now we pass to the main result of the paper which is a generalization 
of the Blaschke-Stiss theorem. 

THEOREM 3. Let f be a periodic continuous function with the period 
L > 0. Zf there exists a continuous function g such that 

1” g(t+2nj)=g(t),foraZf tER, 
2” g(t - (zj/n)) = -g(t), for all t E R, 
3” g(t)>O, for O<t<nj/n, 
4” the function f is orthogonal to the function go K in the space 

JqO,L,W~ 

then there are at least three non-equivalent n-antipodal sets for the function f: 

Proof Consider the function 

A(s)=~~’ jP2”‘(‘)f.(t)k(t)dt. (12) 
” = 0 P”(.~) 

In view of Eqs. (3), (5) and (7), we have 

B’(s) = (Pi,&) and k(s) = k 0 /?‘(s)(b’)’ (s), (13) 

for i= 1, 2, . . . . 2n - 1. From the above relations we obtain the derivative of 
A(s), namely, 

n-1 
A’(s)=k(s) c [fop”+‘(S)-fop”(S)]. (14) 

0=0 

409!148/1-2 
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Let us define 

n-l 

By (7), it is easy to verify that GO/I(~) = -G(S) for all SER. Consequently 
there exists a point s0 such that a(~,,) =0 and then s0 determines an 
n-antipodal set. Now we examine the following integral: 

I 
P(w) 

H= a(s) go K(s) k(s) ds. 
w 

Applying the definition of a(s), we rewrite H in the form 

Next we observe that 

K~~‘(s)=K~cp;,,,(s)=K K-’ 
( ( 

K(s)+2& 
I) 

. 
= K(s) + y, i=l,2 )...) 2n-1. 

Therefore 

goK(s)=g 
( 

KQl’(s)-y 
> 

f (-l)‘goKo/P(s), 

for i = 1, 2, . . . . 2n - 1, and 

J 
B(%3) - f~~2”+‘(~)(-1)2”+‘g~Ko~2”+‘(s)k~~2”+’(s)(~2”+’)‘(~)d~ . 
“0 1 

Changing the variables according to the formula 

t = /3’(s), i=1,2 ) . . . . 2n - 1, 
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= 
s 

Ph) 
f(t)goK(t)k(t)dt = j”‘” f(t) goK(t) k(t) dt sg so 

= ‘f(t)goK(t) k(t) dt. s 0 

Finally, since J‘ and go K are orthogonal by 4”, we have 

o(s)goK(s)k(s)ds=j’f(t)goK(t)k(t)dt=O. 
0 

The same arguments as in the proof of the Blaschke-Suss theorem guaran- 
tee the existence of two further zeros si, s2 lying between so and /?(so) 
which determine two further n-antipodal sets. Obviously p(so) - so < L, and 
thus those n-antipodal sets are not equivalent. Q.E.D. 

COROLLARY 4. Zf so, sl, s2 determine the n-antipodal sets for f by the 
way described in the proof of Theorem 3, then A(s) given by (12) has the 
extremum at each of the points so, s,, s2. 

ProoJ: Obviously, A’ = ko and the function changes its sign at so, s,, s2. 
Q.E.D. 

Now we give some examples of functions g satisfying the conditions l”, 
2”, 3”, 4” of Theorem 3. 

Let f be a periodic continuous function with the period L and let the 
Fourier series with respect to the orthonormal and complete system (2) for 
the function f be given by 

f(s)=++ f A, cos ? K(s) + B, sin ? K(s). (15) 
n=l 

THEOREM 5. Zf B, = 0, then f given by (15) has at least three non- 
equivalent n-antipodal sets. 

Proof. It is easy to see that the function g(t) = sin(n/‘) t satisfies condi- 
tions l”, 2”, 3” of Theorem 3. Moreover the assumption 

B,=- h.jo’f(s)k(s)sinTK(s)ds=O 
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implies that f is orthogonal to g 0 K(s) = sin(n/‘j) K(s). Thus f has at least 
three non-equivalent n-antipodal sets. Q.E.D. 

Now we consider a functionffor which 5B, + B, = 0. Note that the func- 
tion g(t) = 5 sin t + sin 3t satisfies conditions loI 2”, 3” of Theorem 3 for 
n = 1 and j= 1. Since 5B, + B, = 0, the function f is orthogonal to 
go K(s) = 5 sin K(s) + sin 3K(s) and f has at least three non-equivalent 
1-antipodal sets. This example shows that in some special cases assumption 
4” of Theorem 3 can be expressed in the following form. 

Iff is a function for which a certain linear combination vanishes, i.e., 

i b,B,=O 
c=l 

and if 

g(t)= f b,siny t 
c=l 

satisfies conditions l”, 2”, 3” of Theorem 3, then there exist at least three 
non-equivalent n-antipodal sets for the function J: 

2. APPLICATIONS TO GEOMETRY OF PLANE CURVES 

Let f(s) > 0 be a continuous periodic function with the period L > 0. 
We define the plane curve c,-(s) = (x(s), y(s)) by 

J df(t) k(t) cos K(t) dt, for $20, 

x(s) = 

1 
- J ,;f(t) k(t) cos K(t) dt, for s < 0, 

(16) 

1 

J ‘f(t) k(t) sin K(t) dt, for s>O, 
0 

Y(S) = 
- :)f(t) sin K(t) dt, J for s<O. 

If f belongs to the Cl-class, then rf(s) is a curve of the C2-class with the 
curvature f(s) equal to l/f(s). S’ mce k(s) > 0, rf is a locally convex curve. 

In the case when f(s) = l/k(s), then Eqs. (16) give the well-known 
representation of the plane C2-curve with the curvature k(s) (see for 
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instance [3]). If the curve ri,J~) is closed, then for j= 1 the curve r,,,(s), 
is an oval [3], and for j> 1 the curve is a rosette [2]. 

Putting k(s) = 1 and L = 2nj in (16) we obtain 

s ; f(t) cos t dl, for s>O 

x(s) = 

- ‘f(t) cos t dt, 
s for s<O 
s 

for $20 

for s<O. 

(17) 

Equations (17) are well known as the angle-integral representation of the 
plane curves. On the other hand, with the aid of the standard change of 
variable rule u = K(s) in (16), we obtain the angle-integral representation of 
the curve r,r in the form 

s 
e 

r(u) cos u du, for 830 
0 

x(u) = 
0 

- 
.r r(u) cos u du, for 0<0 
8 

Y(U) = I 
5 8 

r(u) sin u du, 
0 

s 

0 
- r(u) sin u du, 

8 

for 

for 

eao 

0 < 0, 

(18) 

where r(u) =f(K-l(u)) and 0 = K(s). 
This means that formulae (16) and (18) give the same class of curves in 

a plane wheneverfand r are continuous. 
In view of arguments from the proof of Lemma 17 [3], it is not cumber- 

some to prove the following. 

THEOREM 6. For every function f with the period L > 0 the curve r,-(s) is 
closed if and only if 

I ,’ f(s) k(s) cos K(s) ds = Jo’ f(s) k(s) sin K(s) ds = 0, 
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where k(s) satisfies conditions (A), (B), (C). Moreover, the length of the 
curve rf(s) is equal to 

I ,’ f(s) k(s) n’s, 

Evidently, Theorem 6 can be rewritten in terms of the Fourier coef- 
ficients off: Indeed, 

Aj= -& loL f(s) k(s) ~0s K(s) ds, 

thus we get the following result, 

THEOREM 7. Let k(s) satisfy conditions (A), (B), (C). The curve r,.(s) is 
closed if and only if the Fourier coefficients Aj and B, for f vanish, i.e., 

Ai= Bi=O. 

Note that 

Tf(S + 2L) - 29(s + L) + rr(s) = 0. (19) 

This means that for every fixed parameter s the points r,.(s + nL), n = 0, 
+1, &2, . . . form an arithmetical progression, i.e., 

rf(s + nL) = rf(s) + n. W, 

where W = (a Aj, & Bj). 

(20) 

Hence one can construct the graph of rf in the following way. Let rL be 
the part of the graph of rf(s) for 0 <s d L. Then the whole graph can be 
obtained translating rL by the vectors n. W, n = 0, & 1, rfI 2, . . . 

Now we define an n-antipodal set on a curve r.f(s). 

DEFINITION 8. Let f be a continuous function of the period L > 0. We 
shall call an n-antipodal set on rf any set of points on the curve rf with 
coordinates 

rf(s), rfo/j(s), . . . . rfO/?‘“-‘(s), (21) 

for some s E R such that Eq. (IO) holds true, i.e., 

n-l 
c [fop(s)-f~p+‘(s)]=o. 

u=O 
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In particular, if k(s) = 1 and L = 27cj, and j is an integer, then the 
n-antipodal set on the curve T/(S) defined by (17) has a simple form 

and the function f satisfies Eq. (11’). 
In the above way the notion of an n-antipodal set for a closed curve 

represented by (18) was introduced in [4]. 

From Definitions 2 and 9 and Theorem 7, we can derive 

THEOREM 9. If the curve r,-(s) is closed, then two equivalent n-antipodal 
sets of the function f generate the same n-antipodal set on the curve rf(s). Zf 
the curve r,.(s) is not closed, then there exists a one-to-one correspondence 
between antipodal sets of the function f and antipodal sets on the curve rf(s). 

Now we shall present a geometrical interpretation of an n-antipodal set 
on the closed convex simple curve rf(s). In this case the function k(s) 
satisfies conditions (A), (B), and (C) for j = 1. Moreover its Fourier coef- 
ficients A, and B, vanish (see Theorem 7). 

Consider any n-antipodal set on the curve r (s). If f is a Cl-class func- 
tion, then the curvature of r,.(s) is equal to R (s) = l/f(s). Hence Eq. (10) 
can be rewritten as an equality for sums of curvature radii 

n-l n -~ 1 

c ’ =I l 

I;=of+?2”(s) “dOj2Uf’(S) 
(22) 

in the points defined by (21). 
But for each integer n > 1 the points (21) are points of tangency of the 

circumscribed polygon on r,(s) with 2n sides and the interior angles equal 
to 7tjn. 

In fact, by (4) and (9) we have 

Moreover, the tangent vector (r.fo /I)’ (s) in the point p(s) can be easily 
computed, namely, 

Denoting by V the rotation by the angle z/n we obtain 

(rfo /I)’ (s) =f$ V(rJs)) 
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and 

for i=2, 3, . . . . 2n- 1. 
Now we examine the case n = 1 and ,f = l/k. 
Clearly, rllk(.s) is then an oval with curvature I%(S)= k(s), so the vector 

tangent to T&S) is given by 

Hence 

r;(s) = (cos K(s), sin K(s)). 

rilk 0 p(s) = (cos Ko /3(s), sin Ko p(s)) 

= (cos(K(s) + 7c), sin(K(s) + 7~)) = -T;,~(s) 

for all SER. Thus vectors r’,,J.r) and $,0/I(s) are parallel. 
Now let s0 determine a 1-antipodal set. Substituting n = 1 in (22) we find 

that 
1 1 -=- 

k(so) k~P(so)’ 

Thus a 1-antipodal set is an antipodal pair [ 11. 
Finally, we can formulate the following counterpart of the Blaschke-Siiss 

theorem for closed curves rf(s). 

THEOREM 10. lff is a continuous periodic function with the period L > 0 
for which Fourier coefficients Aj and B, vanish, then there exist at least three 
n-antipodal sets on the closed curve r/(s). 

This theorem is a simple consequence of Theorems 5 and 9 and Detini- 
tions 2 and 8. 

Remark. Obviously, the length of the arc of r, between sI, s2 is equal to 

s ,,;fb, k(s) ds. 

Therefore the function A(s) given by (12) is the sum of the lengths of arcs 
between rfo p2”(s), r,ro fi2”+ ‘(s), v = 0, 1, . . . . 2n - 1 (without common ends). 
Hence our Corollary 4 can be reformulated as follows. 

COROLLARY 11. Let rf(s) be positively oriented. In this case the sum of 
the lengths of arcs between the points 

rfo B*“(s), rfoB 27J+ ‘(s), v=O, 1,2, . . . . 2n- 1, 

has at least three points qf extremum. 
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