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Abstract

We study the existence of vector spaces of dimension at least two of continuous functi
(subsets of)R, every non-zero element of which admits one and only one absolute maximum.
 2004 Elsevier Inc. All rights reserved.
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Introduction

In [1], the authors begin by the following: “In many different settings one encount
problem which, at first glance, appears to have no solution at all. And, in fact, it frequ
happens that there is a large linear subspace of solutions to the problem.”

A set M in a linear topological spaceX is said to ben-lineable (respectivelyline-
able, spaceable) in X if M ∪ {0} contains a vector spaceY with dimY = n (respectively
dimY = dimN, dimY = dimN andY is closed). If the maximum cardinality of such
vector space exists it is called thelineability of M and denoted byλ(M). The setM is
said to betotally non-lineableor very non-linearif λ(M) � 1. In [1], they give numbe
of such results of “linearity in non-linear problems” in many different fields of anal
(e.g., [3,14] concerning zeros of polynomials, [5,9] concerning hypercyclic operators, [
concerning non-extendible holomorphic functions. . . ). One of the first results in this spir
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is the lineability of the set of nowhere differentiable functions on[0,1], proved by the firs
author in [10]. This work has been intensively continued ([8,11] which prove the spac
ability, [15] which proves that any separable Banach space is isometrically isomorp
such a subspace, [12]). Recently, several papers were devoted to the study of the l
ity of sets of functions on[0,1] or R which satisfy other special properties. For exam
P. Enflo and the first author have proved in [7] that for any infinite dimensional sub
X of the spaceC[0,1] of continuous functions on[0,1], the set of functions inX having
infinitely many zeros in[0,1] is spaceable inX and R. Aron, J. Seoane and the first aut
have shown in [2] that the set of everywhere surjective functions fromR to R is lineable
(in fact, the lineability of this set is equal to 2c, the cardinality of the set of all function
from R to R).

This article takes its place in that program. We study the following question: is it
sible to find a vector space of dimension at least two of real-valued continuous fun
with (except for the zero function) one and only one absolute maximum? The main r
are the following.

Theorem 6. The set̂C[0,1] of real-valued continuous functions which admit one and o
one absolute maximum is very non-linear inC[0,1]. In other words,λ(Ĉ[0,1]) = 1.

Theorem 9. The set̂C(R) is 2-lineable inC(R).

Theorem 16. λ(Ĉ0(R)) = 2, whereC0(R) is the space of continuous functions onR van-
ishing at infinity.

We have some other relative results, as the spaceability of the set of continuo
bounded functions onR without any absolute maximum and answers to the corresp
ing questions for sets of sequences. Also, we can complete some results obtained
concerning the lineability of the set of continuous functions which attain their supremu
norm at a unique point.

We will use the following notations for a functionx belonging toC(K) whereK is
a subset ofR: M(x) := supt∈K x(t), m(x) := inft∈K x(t), ‖x‖ := M(|x|), Mx := {t ∈ K:
x(t) = M(x)}, mx := {t ∈ K: x(t) = m(x)}. We will denote by〈x, y〉 the vector space
generated byx andy, and by|S| the cardinality of a setS.

1. The very non-linearity of Ĉ[0, 1]

The main tool in the proof of Theorem 6 will be the notions ofignorability andfence.
Let us introduce these definitions.

Definition 1. Let (xi)
n
i=1 be a finite set of functions inC[0,1]. A point t in [0,1] is said

to be ignorable for (xi)
n
i=1 if for every set(αi)

n
i=1 of strictly positive real numbers,t /∈

M∑n
i=1 αixi

. A point t in [0,1] is said to be afencebetweent1 andt2 in [0,1] for (xi)
n
i=1 if

t ∈ ]t1, t2[ andt is ignorable for(xi)
n
i=1.
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Definition 2. A pair of functions{x, y} in C[0,1] is said to becanonicalif ∃tx ∈ Mx ,
∃ty ∈ My , ∃t̃ ∈ ]tx, ty[: mx = {t̃} or my = {t̃}.

Obviously, we have

Lemma 3. In the canonical situation of Definition2, t̃ is a fence for{x, y} betweentx
andty .

Proof. Let us suppose thatmx = {t̃}. Then,x(t̃) < x(ty), y(t̃) � y(ty) andt̃ /∈ Mαx+βy for
every strictly positive real numbersα andβ . �

A canonical pair of functions cannot be the basis of a two-dimensional vector spV

such thatV \ {0} is contained in̂C[0,1]. Indeed,

Proposition 4. For any canonical pair of functions{x, y} in C[0,1] there exist two positive
real numbersα andβ such that the functionαx + βy has at least two absolute maxima

In order to prove this proposition, we will need the following.

Lemma 5. If Φ is a continuous map from[0,1] to C[0,1] such that for everyα in [0,1],
MΦα is a singleton{tα}, then the mapµ defined from[0,1] to [0,1] by µ(α) = tα is
continuous.

Proof of Lemma 5. Let us suppose thatα → α0 and, by contradiction, let us suppose th
(tα) does not converge totα0. Since[0,1] is compact, up to a subsequence,(tα) converges
to a pointt̃ ∈ [0,1]. We have:|Φα(tα) − Φα0(t̃)| � ‖Φα − Φα0‖+ |Φα0(tα) − Φα0(t̃ )| → 0
whenα → α0. But we have alsoM(Φα) = Φα(tα) → M(Φα0) = Φα0(tα0). Then,Φα0(t̃ ) =
Φα0(tα0) = M(Φα0) and sinceM(Φα0) = {tα0}, we havet̃ = tα0. This concludes the
proof. �
Proof of Proposition 4. Let us suppose that there exists a canonical pair of func
{x, y} such that for every(α,β) ∈ R2+ \ {(0,0)}, Mαx+βy is a singleton. Let us consider th
mapΦ defined from[0,1] to C[0,1] by Φα = (1− α)x + αy and the mapµ defined from
[0,1] to [0,1] by µ(α) = tα where{tα} = M(1−α)x+αy . By Lemma 5,µ is continuous and
by the intermediate value property (Weierstrass theorem)µ takes all the values betwee
µ(0) = t0 andµ(1) = t1 where{t0} = Mx and {t1} = My . This is in contradiction with
Lemma 3 which asserts that there exists a fence betweent0 and t1. This concludes the
proof of Proposition 4. �

We can now prove the very non-linearity of̂C[0,1].

Theorem 6. λ(Ĉ[0,1]) = 1.

Proof. We want to prove that for any pair of linearly independent functions{x, y} in
C[0,1] there exists(α,β) in R2 \ {(0,0)} such that the functionαx + βy admits at
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least two absolute maxima. Let us suppose that it is not true and considerx and y in
C[0,1] such that for every(α,β) in R2 \ {(0,0)}, Mαx+βy is a singleton. Let us de
fine ε(x, y) := Mx ∪ My ∪ mx ∪ my . Obviously,ε(x, y) contains at most four points
|ε(x, y)| � 4. We have to consider two cases:

(1) If |ε(x, y)| � 3, one of the four pairs of functions{x, y}, {x,−y}, {−x, y} or {−x,−y}
is canonical and, by Proposition 4, we have a contradiction.

(2) If |ε(x, y)| = 2. Let us fixx and, ifMx = My andmx = my , let us replacey by −y.
Using Lemma 5 as in the proof of Proposition 4, we can findα ∈ ]0,1[ such that
M(1−α)x+αy is different fromMx andmx . So,|ε(x, (1− α)x + αy)| � 3 and the first
case gives the contradiction.�

Remark 7. Let us note that we can deduce from [16] thatλ(Ĉ[0,1]) � 2 and, actually, even
more: the subset‖Ĉ[0,1]‖ of C[0,1] of functions which attain their supremum norm a
unique point is very non-linear. This approach is connected with the existence of alter
elements in subspaces ofC[0,1].

2. The lineability of Ĉ(R)

We will prove that the situation of a close interval of the previous section is ra
different from the situation of open or semi-open intervals.

Proposition 8. Ĉ([0,2π[) is 2-lineable.

Proof. Let us consider the trigonometric functions sine and cosine defined on the
open interval[0,2π[. We have:∀(α,β) ∈ R2 \ {(0,0)}, ∃θ ∈ [0,π]:α cos+β sin =√

α2 + β2 cos(· + θ). Since the function cosine admits one and only one maximum
[0,2π[, this proves that〈sin,cos〉 \ {0} ⊂ Ĉ([0,2π[) and concludes the proof.�

We can now easily prove the

Theorem 9. Ĉ(R) is 2-lineable.

Proof. The functionsx andy defined onR by

x(t) := µ(t)cos(4 arctan|t|) and y(t) := µ(t)sin(4 arctan|t|),
whereµ is the real-valued continuous function defined onR by

µ(t) :=
{

expt if t � 0,

1 if t � 0,

are two linearly independent functions ofC(R) such that for every(α,β) in R2 \ {(0,0)}:
Mαx+βy is a singleton. �
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Remarks.

(1) We do not know if the set̂C(R) is n-lineable forn > 3, lineable or even spaceable.
the next section, we give a negative answer for vanishing functions.

(2) The two-dimensional subspace constructed in this proof is isometric to�2(2). It is
impossible to find such a subspace isometric to�1(2). In order to prove that we nee
the notion ofε-Rademachersequence.
A finite sequencẽe = (e1, . . . , en) in C(R) is said to beε-Rademacher(ε � 0) if there
exist 2n distinct pointst1, . . . , t2n in R such that
(a) ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,2n}:

‖ei‖ = 1 and
∣∣ei(tj )

∣∣ ∈ [1− ε,1],
(b) ∀η = (η1, . . . , ηn) with ηi = ±1, ∃j ∈ {1, . . . ,2n} such that(

signe1(tj ), . . . ,signen(tj )
) = η.

If ẽ is ε-Rademacher for eachε � 0 thenẽ is said to bealmost-Rademacher. And, if ẽ

is 0-Rademacher theñe is simply saidRademacher.
It is easy to prove that a sequenceẽ = (e1, . . . , en) in C(R) is isometrically equivalen
to the unit basis of�1(n) if and only if ẽ is almost-Rademacher.
If we suppose that there exists a two-dimensional subspaceE of C(R) with an almost-
Rademacher basis̃e = (e1, e2) such thatE \ {0} ⊂ Ĉ(R), then there are two cases:
(a) ẽ is Rademacher and then one of the four functions−e1, e1, −e2 or e2 has at leas

two maxima, which is a contradiction.
(b) ẽ is almost-Rademacher but not Rademacher. There existt1 andt2 in R such that

ei(ti) = 1 = maxt∈R ei(t), i = 1,2. If t1 = t2 we definee := e1 − e2, if not e :=
e1 + e2. Since ẽ is almost-Rademacher, for eachε > 0 there existst ∈ R such
that e(t) ∈ [2 − ε,2[. But, sincee1 and e2 admit one and only one maximum
∀t ∈ R, e(t) < 2. That means that the functione has no maximum and gives
contradiction.

3. The 2-lineability of Ĉ0(R)

In this paragraph we will prove that there exists a two-dimensional vector subspacF of
C0(R) such thatF \{0} ⊂ Ĉ0(R) and that it is impossible to construct such an-dimensional
vector subspace forn > 2.

Let us recall the notion of inclination.

Definition 10. Let P andQ be two closed subspaces of a Banach space(X,‖.‖). The
inclinationof P onQ is defined by(

P̂ ,Q
) := inf

{
d(x,Q): x ∈ P, ‖x‖ = 1

}
,

whered(x,Q) := inf{‖x − q‖: q ∈ Q}.
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Remark 11. Clearly, ifP = 〈x〉 andQ = 〈y〉 wherex andy are linearly independent inX,
then(P̂ ,Q) and(Q̂,P ) are strictly positive. Moreover, if(P̂ ,Q) = δ > 0 andz = αx +βy

with x ∈ P , y ∈ Q and‖x‖ = ‖y‖ = 1 then|α| � ‖z‖/δ.

Definition 12. A real-valued functionx defined on a setK is said to bealternatingif there
exist t1 and t2 in K such thatf (t1) < 0 andf (t2) > 0. A set of functions is said to b
alternating if every non-zero function is alternating.

Proposition 13. It is impossible to find an alternating two-dimensional vector subspaA

of C0(R) such thatA \ {0} ⊂ Ĉ0(R).

Proof. Let us suppose that there existx andy two linearly independent functions suc
that〈x, y〉 \ {0} ⊂ Ĉ0(R) and〈x, y〉 \ {0} is alternating. Let us consider the setZ := {z =
αx + βy: ‖z‖ = 1}. By Remark 11, there existsδ > 0 such that ifz = αx + βy ∈ Z

then α and β belong to[−1/δ,1/δ]. Let us put, for everyz = αx + βy ∈ Z, mαβ :=
inf{(αx + βy)(t): t ∈ R} andMαβ := sup{(αx + βy)(t): t ∈ R}. We have sup{mαβ : z =
αx + βy ∈ Z} < 0. Indeed, if not:∃(αn)n�1, (βn)n�1 ⊂ [−1/δ,1/δ], ∀ε > 0, ∃n0 � 1,
∀n � n0: −ε � mαnβn � 0. Up to a subsequence, we can assume thatαn → α̃ andβn → β̃ .
Sincemαnβn → mα̃β̃ we havemα̃β̃ = 0. That means that̃z = α̃x + β̃y is positive which
contradicts the fact thatz̃ is alternating. In the same way, inf{Mαβ : z = αx + βy ∈ Z} > 0.
Thus, letN > 0 be such that:∀z ∈ Z, m(z) < −N < 0 < N < M(z). Sincex andy belong
to C0(R) and sincez = αx + βy ∈ Z impliesα,β ∈ [−1/δ,1/δ], there existsT > 0 such
that if |t| � T and z ∈ Z thenz(t) ∈ [−N,N]. This implies that everyt ∈ R such that
|t| � T is ignorable forz ∈ Z. So, the problem is reduced on[−T ,T ]: we have〈x, y〉 \
{0} ⊂ Ĉ([−T ,T ]), which contradicts Theorem 6.�
Proposition 14. Every n-dimensional(n > 2) vector space of functions contains an
(n − 1)-dimensional alternating subspace.

In order to prove this proposition we need the following algebraic lemma.

Lemma 15. Let V be ann-dimensional(n � 2) vector space of real-valued functions
a setK. There existn points(tj )

n
j=1 in K such that for every(yij ) ∈ Rn×n, there existn

functions(Yi)
n
i=1 of V such that∀i, j ∈ {1, . . . , n}: Yi(tj ) = yij .

Proof of Lemma 15. Clearly, if dimV = n thenK contains at leastn points.

(1) Let us begin by proving by induction that: if{Xi}ni=1 is a basis ofV then there existn
points{ti}ni=1 in K such that then vectors(X1(tj ))

n
j=1, . . . , (Xn(tj ))

n
j=1 are linearly

independent.
For n = 2. Let us suppose, by contradiction, that for everyt1, t2 in K the vectors
(X1(t1),X1(t2)) and (X2(t1),X2(t2)) are linearly dependent. We can suppose
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there existt0 in K andα in R such thatX2(t0) = αX1(t0) �= 0 (if not, the assertion
is trivial). Then, we have:

∀t ∈ K, ∃βt ∈ R,
(
βtX1(t0), βtX1(t)

) = (
X2(t0),X2(t)

)
.

The equality of the first components implies that for everyt in K, βt = α and then we
have:∀t ∈ K, X2(t) = αX1(t) which contradicts the fact thatX1 andX2 are linearly
independent inV .
Let us suppose that the assertion is true forn = k � 2 and let us prove that it is longe
true forn = k + 1. Again, by contradiction, let us suppose that for every{tj }k+1

j=1 ⊂ K,

the vectors(X1(tj ))
k+1
j=1, . . . , (Xk+1(tj ))

k+1
j=1 are linearly dependent. Since the ass

tion is true forn = k, there exist{t1, . . . , tk} ⊂ K such that the span of thek vectors
(X1(tj ))

k
j=1, . . . , (Xk(tj ))

k
j=1 is equal toRk . Then, there exists an unique seque

{αi}ki=1 ⊂ R such that(
k∑

i=1

αiXi(tj )

)k

j=1

= (
Xk+1(tj )

)k
j=1.

Indeed, since the rank of(Xi(tj ))
k
i,j=1 is equal tok, (αi)

k
i=1 is the unique solution o

the system(
k∑

i=1

βiXi(tj )

)k

j=1

= (
Xk+1(tj )

)k

j=1.

For everyt in K thek + 1 vectors((
X1(tj )

)k

j=1,X1(t)
)
, . . . ,

((
Xk+1(tj )

)k
j=1,Xk+1(t)

)
are linearly dependent. Then, for everyt in K there exists(γi)

k
i=1 ⊂ R such that((

k∑
i=1

γiXi(tj )

)k

j=1

,

k∑
i=1

γiXi(t)

)
= ((

Xk+1(tj )
)k
j=1,Xk+1(t)

)
.

The equality of thek first components implies that{γi}ki=1 = {αi}ki=1 and then we have

∀t ∈ K, Xk+1(t) = ∑k
i=1 αiXi(t) which contradicts the fact that(Xi)

k+1
i=1 are linearly

independent inV .
(2) Let us suppose that dimV = n and let us denote by{Xi}ni=1 a basis ofV . By the previ-

ous step, there exists(tj )nj=1 ∈ K such that the vectors(X1(tj ))
n
j=1, . . . , (Xn(tj ))

n
j=1

are linearly independent. Let us consider the matrix(yij ) ∈ Rn×n. We have:

∀i ∈ {1, . . . , n}, ∃{αil}nl=1 ⊂ R :
n∑

l=1

αil

(
Xl(tj )

)n

j=1 = (yij )
n
j=1.

Then, the functions{Yi}ni=1 ⊂ V defined byYi = ∑n
l=1 αliXl are such thatYi(tj ) =

yij . �
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Proof of Proposition 14. Let V be ann-dimensional (n > 2) vector space of function
on K and let us consider the vector(1,1, . . . ,1) ∈ Rn. Clearly, the orthogonal comple
ment of this vector inRn is an alternating vector subspace ofRn of dimensionn − 1. Let
(y1j )

n
j=1, . . . , (y(n−1)j )

n
j=1 be a basis of this subspace ofRn. By Lemma 15, there existn

points{tj }nj=1 ⊂ K andn functions{Yi}ni=1 ⊂ V such thatYi(tj ) = yij . So,W = 〈Yi〉ni=1
is an alternating subspace ofV of dimensionn − 1. �

We can now easily prove the announced

Theorem 16. λ(Ĉ0(R)) = 2.

Proof. We have〈sin,1 − cos〉 \ {0} ⊂ Ĉ([0,2π[) and then, as in the proof of Theorem
we have that̂C0(R) is 2-lineable. The fact that̂C0(R) is not n-lineable forn > 2 is a
straightforward consequence of Propositions 13 and 14.�

If we denote byCL(R) the set of functions defined onR such that the limits
limt→−∞ f (t) and limt→+∞ f (t) exist, we have the following corollary of Theorem 16

Corollary 17. λ(ĈL(R)) = 2.

Remark 18. Using the very non-linearity of‖Ĉ[0,1]‖ (see Remark 7) instead of Theore
6 in the proof of Proposition 13, we can prove that: it is impossible to find an alte
ing two-dimensional vector subspaceA of C0(R) such thatA \ {0} ⊂ ‖Ĉ0(R)‖ (where
‖Ĉ0(R)‖ is the subset ofC0(R) which attains their supremum norm at a unique point).
Proposition 14 implies:λ(‖Ĉ0(R)‖) � 2. We do not know if this set is 2-lineable or ve
non-linear.

Surprisingly, the corresponding result for the space of convergent sequences is di
the setĉ0 of vanishing real sequences with an unique maximum is very non-linear.

Proposition 19. λ(ĉ0) = 1.

Proof. Let us suppose, by contradiction, that there exist two linearly independen
mentsx = (xn)n�1 and y = (yn)n�1 of c0 such that for every(α,β) in R2 \ {(0,0)},
αx+βy admits one and only one maximum. Without loss of generality we can suppose t
maxi�1 xi = xi0 = 1, yi0 = 0 and that there existsj0 �= i0 such thatyj0 > 0. Letλj0 ∈ R+

0
be such thatxj0 + λj0yj0 = 1 and let us considerε ∈ R such that 0< ε < 1/(1 + λj0).
Since the sequencesx andy converge to 0:∃N > j0, ∀i � N , max{|xi|, |yi|} < ε. Let us
consider{yik }mk=1 ⊂ {yi}N−1

i=1 such that∀k ∈ {1, . . . ,m}, yik > 0 and{λk}mk=1 ⊂ R+
0 such

thatxik + λkyik = 1. So,λ0 := min{λk}mk=1 > 0. Let us define the sequencez := x + λ0y.
It is such that maxi�1 zi = 1, zi0 = xi0 = 1 and∀k ∈ {1, . . . ,m} such thatλk = λ0: zik = 1.
Thenz has at least two maxima, which is a contradiction.�

The following proposition is proved in [16]. We give here a proof of the same re
based on the proofof Proposition 19.
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Proposition 20. Let L ⊂ c0 be a subspace withdimL = n ∈ N \ {0}. Then there exist
x ∈ L such that‖x‖∞ = 1 and

∣∣{i: |xi | = 1}∣∣ � n.

In particular, this proposition implies that the subset‖ĉ0‖ of c0 of sequences whic
attain their norm at a unique point is very non-linear:

Corollary 21. λ(‖ĉ0‖) = 1.

Since the sup-norm ofc0 is Gâteaux-differentiable atx if and only if t → |x(t)| attains
its supremum overN at a single pointt0 and|x(t0)| > sup{|x(t)|: t ∈ N \ {t0}} (cf. [6]), we
have

Corollary 22. The set of points of Frechet-differentiability of the supremum norm ofc0 is
very non-linear.

Proof of Proposition 20. Let {x1, . . . , xn} be a basis ofL. Let us proceed by induction o
the dimensionn of L. The casen = 1 is trivial.

The casen = 2. Let us suppose, by contradiction, that for every(α,β) ∈ R2 \ {(0,0)},
αx1 + βx2 attains its norm at a unique point. Without loss of generality we can suppo
that‖x1‖∞ = x1

i0
= 1, x2

i0
= 0 and that there existsj0 �= i0 such thatx2

j0
�= 0. Let us define

the positive real numberλj0 such thatx1
j0

+ λj0x
2
j0

= signx2
j0

and considerε ∈ R such

that 0< ε < 1/(1+ λj0). Since the sequencesx1 andx2 converge to 0:∃N > j0, ∀i � N :
max{|x1

i |, |x2
i |} < ε. Fori ∈ {1, . . . ,N −1} and such thatx2

i �= 0, let us defineλi ∈ R+
0 such

thatx1
i + λix

2
i = signx2

i . Let us considerΛ0 = min{λi} > 0 and the sequencew0 = x1 +
Λ0x

2. We have‖w0‖∞ = 1,w0
i0

= x1
i0

= 1 and for alli ∈ {1, . . . ,N −1} such thatλi = Λ0:

w0
i = signx2

i . Thenw0 attains its norm at at least two distinct points, a contradiction.
The casen = 3. Let us suppose, by contradiction, that the proposition is false forn = 3.

Thus, forw0 defined in the previous step, there exists only onei1 ∈ N such thatλi1 = Λ0.
Without loss of generality we can suppose thatx3

i0
= x3

i1
= 0 and that there existsj1 /∈

{i0, i1} such thatx3
j1

�= 0. Let us define the positive real numberλj1 such thatw0
j1

+λj1x
3
j1

=
signx3

j1
and considerε ∈ R such that 0< ε < 1/(1+ λj1). Since the sequencesw0 andx3

converge to 0:∃N > j1, ∀i � N : max{|w0
i |, |x3

i |} < ε. For i ∈ {1, . . . ,N − 1} and such
that x3

i �= 0, let us defineλi ∈ R+
0 such thatw0

i + λix
3
i = signx3

i . Let us considerΛ1 =
min{λi} > 0 and the sequencew1 = w0 + Λ1x

3. We have‖w1‖∞ = 1, w1
i0

= w0
i0

= 1,

w1
i1

= w0
i1

= signx2
i1

and for alli ∈ {1, . . . ,N − 1} such thatλi = Λ1: w1
i = signx3

i . Then

w1 attains its norm at at least three distinct points, a contradiction.
We can now use the same idea to perform the stepn = 4 and so on. �
Let us remark that a statement similar to Proposition 20 which would say that

L is an n-dimensional subspace ofc0 then there existsx ∈ L such that‖x‖∞ = 1
and |{i: xi = 1}| � n, is false. Indeed, in [16] the author give the following examp
L = 〈(1,1,−2), (1,−2,1)〉 ⊂ R3 is such that it is impossible to findx ∈ L, ‖x‖∞ = 1
which has the value 1 in two coordinates.
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4. The spaceability of C̃B(R)

Let us consider the set̃CB(R) (respectively‖C̃B(R)‖) of continuous and bounded rea
valued functions defined onR which do not attain their supremum (respectively th
supremum norm).

Theorem 23. C̃B(R) and‖C̃B(R)‖ are spaceable.

By linear interpolations and symmetrisation, this theorem is a straightforward cor
of the corresponding following result concerning sequences:

Proposition 24. �̃∞ and‖�̃∞‖ are spaceable.

Proof. Let us consider the set of sequences{en}n�1 ⊂ �∞, defined by

en :=
+∞∑
i=1

(−1)i
(
1− 1/2i

)
b(pn)i

,

where{bn}n�1 denotes the canonical basis of�1 andpn thenth prime number. For ever
N � 1, we have:∥∥∥∥∥

N∑
n�1

αnen

∥∥∥∥∥∞
= max

1�n�N
|αn|,

which implies that{en}n�1 is a (monotone) basic sequence. Obviously, we have:

∀i � 1,

∣∣∣∣∣
( +∞∑

n=1

αnen

)
i

∣∣∣∣∣ <

∥∥∥∥∥
+∞∑
n=1

αnen

∥∥∥∥∥∞
= sup

n�1
|αn| = sup

i�1

( +∞∑
n=1

αnen

)
i

.

This proves thatE = 〈en〉n�1 is an infinite dimensional closed vector subspace of�∞ such

thatE \ {0} ⊂ �̃∞ ∩ ‖�̃∞‖. �
The idea to use sequencesen with pairwise disjoint support was suggested by the refe

of the paper. The idea to use a basic sequence such that the (easily described) clos
span generated by it satisfies a given property already appears in [4,13].
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