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Abstract 

Access to the defining equations of blowup algebras is a natural pathway to the study of these 
algebras. In this paper, a generating set is found for the equations of Rees algebras for certain 
classes of codimension two ideals. From the equations, the Rees algebras are seen to be 
Cohen-Macaulay. For related classes of codimension three Gorenstein ideals, information is 
given regarding the degrees of the generators of the ideal of equations. The results depend on 
the parity of the dimension of the base ring. 

1991 Math. Subj. Class.: Primary 13A30; Secondary 13H10, 13C14 

1. Introduction 

In this paper, we are interested in exploring conditions on the syzygies of an ideal 

I which will enable us to determine the structure of the equations of the Rees algebra 

of I. The Rees algebra of I, denoted by W, is the graded algebra 

W=R@It@12t2@ ... . 

A powerful tool in studying 9 is the ideal J of equations of 92 defined by 

O+J+RITI,...,T,] -+.%f+O 

Ti ~ rxit 

where I = (cx~, . . . ,a,). The ideal J = J, + J, + ... is graded with J1 being the linear 

relations fj = CaijTi where Caijcxi = 0. This can be rewritten in the form J, = T. 4 
where T = (T,, . . . , 7’“) and 4 = [aij] is a presentation matrix of I 

R”‘t R”- I- 0. 
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The symmetric algebra S(I) is defined by fr and there is a canonical surjection 

o-----+d-s(z)---+%L--+ 0 

where ,mZ = J/(J,). (See [16] for further details.) 
The structure of J is not generally known. The generators of degree one are as 

above, but where the other generators lie varies. We will study classes of ideals for 
which the structure of J can be determined. In particular, we will be interested in cases 
where the generators of J appear in only two degrees. For certain ideals, we will be 
able to obtain these generators from the presentation matrix of the ideal. Having 
control over the equations will aid in determining properties of the Rees algebra such 
as Cohen-Macaulayness and normality. 

One class of ideals which is of interest is the class of codimension two ideals whose 
presentation matrices have content ideals, I, (4), generated by a regular sequence. For 
such ideals, we will focus on the following question: 

Questian 1.1. Let R be a regular local ring and let I be an ideal of R that is 
Cohen-Macaulay of codimension two. If the content ideal of the presentation matrix 
of 1 is generated by a regular sequence (x) of length s 2: 2 and I is of linear type in 
codimension s - 1, then are the equations of R [It] of the form J = (X . B(4), I@(&))) 

and is R[lt] Cohen-Macaulay? 

Here B(#) is the Jacobian dual of # which will be defined later but which is 
derived directly from #, A main concern is what additional restrictions are 
required on the regular sequence to make the question feasible. In some cases the 
question is expected to have an affirmative answer even without R being a regular 
local ring. 

Another class of ideals which shall be considered is that of grade three Gorenstein 
ideals. The structure here will vary depending on the parity of the dimension of the 
polynomial ring. 

Conjecture 1.2. Let R be a commutative Noetherian local ring and let I be a perfect 
ideal of R that is Gorenstein of codimension three and is of linear type on the 
punctured spectrum. If d is odd, then the equations of R[It] are of the form 
J = (x. B(#), ~~(~(~))) and R [It] is not Cohen-Macaulay. 

For an even-dimensional ring, the situation appears to be quite different. The Rees 
algebra is again not expected to be Cohen-Macaulay, unless n = d + 1, however the 
equations will in general have a different form with generators appearing in degree 
d - 1. In the case n = d + 1 they will be given by (x. B(&t), gcd(Z~(~(~)))). 

Let n = v(l). If d = n - 1, R is a polynomial ring, and d, has linear entries in the 
variables, Question 1.1 is settled in [15]. Our aim is to prove some special cases of the 
conjecture. The key result will be Proposition 3.1 which asserts: 
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Proposition 3.1. Let (R, m) be a Cohen-Macaulay local domain and let I be a codimen- 
sion two perfect ideal minimally generated by n elements, with presentation matrix 4. 

Assume I = I,_1(4) is of linear type on the punctured spectrum of R and ZI(4) is 

generated by a regular sequence (x) oflength d. If height(l,(B(4)) + m)/mR[T] 2 n - d 

and n 2 d + 2 then J = (x. B(4), I,(B($))). 

Thus in the case of linear entries, finding the equations amounts to finding the 
height of Zd(B(4)). In some circumstances (see Theorem 3.5) one can do this. The main 
application of Proposition 3.1 will be the following theorem. 

Theorem 3.6. Let R be a Cohen-Macaulay local domain and let I be a codimension two 

perfect ideal minimally generated by n > d + 1 elements. Assume I = I,_ 1(c$) is of 

linear type on the punctured spectrum of R and Ii (4) is g enerated by a regular sequence 

(x) of length d. Zf height( J(O),) = height J(0) and (x) annihilates &,,, then 

(x . B(4), Z,(B(4))) defines 9 and 9% is Cohen-Macaulay. 

We now present a basic outline of the paper. In Section 2, we will define the 
Jacobian dual, B(4), of a matrix 4 and examine its structure for certain classes of 
ideals. In Section 3, we work with ideals of codimension two. The main focus of the 
section will be a discussion of various techniques leading to the proof of Theorem 3.6. 
In Section 4, we study codimension three Gorenstein ideals. Their Rees algebras are 
not always Cohen-Macaulay, as is seen in the examples of this section, but using the 
complex 9 of [S], we are able to shed some light on the degrees of the generators of 
the defining ideal. 

2. Jacobian duals 

We first collect some notation which will be used throughout the paper. For 
a detailed discussion, see [ 171. If 4 1s a matrix, I,($) is the ideal generated by the n x n 

minors of 4. Let L(I) denote the analytic spread of an ideal I and let v(l) be the 
minimal number of generators of I. If M is a finitely generated R-module, the rth 
Fitting ideal of M, denoted Z,(M), is I,_,.($) where $ presents M and n = v(M). For 
general notation, see [lo]. 

The linear equations of the Rees algebra, which are the equations of the symmetric 
algebra S(Z), are given by T. 4 = ( fi, . . . , fm). These can be reformulated as x. B(4) 

for some (not necessarily unique) matrix B(4) where (x) = (xi, . . . ,x,) = Ii(4). This 
new matrix provides a source for the higher degree generators of J. Suppose m 2 s and 
s 5 d. Let Bi be any s x s minor of B(4). Then 

mx,, ..’ ,xJ = (fi,, ... A,)’ 



200 S. Morey J Journal of Pure and Applied Algebra 109 (I 996) 197-211 

where i 1, . . . , i, are the s columns of B which appear in Bi and t denotes transpose. By 

Cramer’s rule (Xj) det Bi = det(Bj) where B{ denotes replacing thejth column Of Bi by 

(& ... &‘. so 

(xj)det Bi c (fi,, . . . ,fi,) c J. 

When R is a domain J is prime, and Xj$Z, SO det Bi EJ and thus Z,(B(@)) c J. 

Throughout the course of this paper we will be working with ideals whose presenta- 

tion matrices satisfy certain conditions. At times we will require the presentation 

matrix to have linear entries in R = k [x1, . , xd]. In this case, B(c#J) will be unique and 

will have linear entries in the T variables. In such cases we call B(4) the Jacobian dual 

of 4. At other times, we will require Zi(4) = (x) to be a regular sequence. In this case, 

B(q5) may not be unique, but (Z,(B(4)) + (x))/(x)R[T] will be unique. 

When Z is of linear type in codimension s - 1 and Zi(4) is generated by a regular 

sequence of length s we call L = (x . B(4), Z,(B(d))) the expected form of the equations 

of 9 and we have L c J. We are interested in finding conditions where this inclusion is 

actually an equality. 

We now gather some information on the ideal of expected equations which will 

prove to be helpful later. When working over a polynomial ring, we shall normally 

assume that Z is a homogeneous ideal so by considering only homogeneous prime 

ideals, we may treat R as if it were local. 

Proposition 2.1. Let R be a d dimensional commutative Noetherian local ring and let 

I be an ideal of R with presentation matrix 4. Suppose I is of linear type on the punctured 

spectrum, v(Z) = n L d + 1, and II (4) = (x1, . . . , xd) = (x). Then dim S(Z) = n and 

height@. B(4)) = d. 

Proof. We know that 

by [S, Theorem 2.61 (see also [17]) and Z is of linear type on the punctured spectrum of 

R. If p = m where m is the maximal ideal of R, the sum is n. If p # m, then I, is of 

linear type. If I $ p, v(Z,) = 1 so the sum is Id + 1. If p # m and Z E p, localize at 

p and set k(p) = R,/pR,. Then 

v(Z,) = dim+) (Z,lpZ,) = dim S(Z,/nZ,) = dim(S(Z,) 0 k(p)) 

= dim@‘, 0 k(p)) = /(Z,) I dim(R,), 

so the sum is <d. Then dims(Z) = sup{n,d,d + l} = IZ since n >d + 1. Now 

dim(R[T]) = n + d and 

S(Z) = 
k Lx, Tl 

(x B(4)) ’ 
so height(x. B(#)) = d. q 
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Corollary 2.2. Assume in addition that R = k[x] is a polynomial ring, I is a homogene- 

ous ideal, and the presentation matrix of I has linear entries. Then Id(B($)) # 0. 

Proof. Let F = coker(B(4)). Then S,,,(I) r S,t,,(F). By computing the dimensions 
of each side, we see that 

n = dim S,,,,(F) 2 dim k[T] + v(Fo,) = n + v(Fo,). 

Then v(F,,,) = 0 and F is a torsion module. This is equivalent to Zd(B(4)) $ (0) by 
[2, Lemma 1.4.61, so I,(B(4)) # 0. 0 

We actually get more information than this. We can show that, under the above 
hypotheses, if there are no equations of the Rees algebra coming from degrees 
2 through d - 1, then height I,(B(4)) 2 2. We will need a result proved by Lipman in 
[9] which is stated here for ease of reference. 

Lemma 2.3. Let S be a local ring and let M be afinitely generated S-module with torsion 

submodule M’. Let r be a nonnegative integer. The following conditions are equivalent: 

(i) The smallest nonzero Fitting ideal of M is I,.(M), and I,(M) is generated by 

a single regular element of S. 

(ii) M is offinite presentation, proj dim(M) I 1, and MJM’ is free of rank r. 

Some notation is needed to denote reduction modulo the maximal ideal tn. Let 
J(0) = (J + m)/mR[T], let I,(B(O)) = (Z,(B($)) -t m)/mR[T], and let B(0) be the 
image of B(4) in k[T] where k = R/m. 

Proposition 2.4. Let I be an ideal of R = k[xI, . ,xd] with a minimal n x m linear 

presentation matrix C$ with m 2 n - 1 and I,(d) = (x1, . . . ,xJ. Suppose I is of linear 

type on the punctured spectrum and v(Z) = n 2 d + 2. Assume that the defining ideal of 

3 has no equations in degree Id - 1 that do not come from degree 1. Then 

height Z,(B($)) 2 2. 

Proof. We know heightl,(B(d)) # 0 by Corollary 2.2. We need to see that 
heightl,(B($)) # 1. First we show that the fiber ring F(Z) is a domain. Let 
I = (aI, . . . ,u,) and m = (x). Then &! = k[x] [aIt, . . . ,a,t] and F(I) = W/m9 so we 
have the sequence 

O-K-k[cc,t, . . . ,cc,t]-F(Z)-0 

with K G k[MI t, . . . , cc,t]nm.%!. Since 4 has homogeneous entries of the same degree, 
I is generated by homogeneous forms of the same degree and this intersection 
vanishes, so F(I) E k[aIt, . . . , cxnt] is a domain. 

The fiber ring F(I) = .%?‘/m&? can be written as k[Z’]/J(O), so J(0) is prime. 
Zd(B(+)) c k[Z’], and so I,(B($)) G J(0). J(0) has no equations in degree less than d, 

so any nonzero degree d element of Zd(B(c$)) is prime. 
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Assume height I,@($)) = 1. Then Z,@(4)) is contained in a height-one prime of 
k[T] which must be principal since k[T] is factorial. Say Z,(B(C$)) G (c) with 
deg(c) 2 1 since (c) # k[T]. Then c divides det Bi(4) which implies c = a. det Bi(#) 
where u is some unit and det Bi(4) is some d x d minor of B(4). This says that det Bi (4) 
divides det Bi(d) for each i so ~,(B(c#I)) ’ is p rincipal. Then the module F = cokerB(@) 
has projective dimension at most one by Lipman’s argument. 

The entries of B(4) are in (2’) so we now show that 

k[T]“?!?, k[T]d+F-O 

is part of a minimal resolution of P. Let B(4) = (ai 1 . . . Iv,) and suppose v1 = C y= z~itji 
for some ri E k[T]. Since B(4) has linear entries, the coefficients ri can be chosen from 
k. But then if T. $I = (fi, . . . ,fm) =x . B(4), fi = Cyzz rifi which contradicts the 
minimality of 4. 

Since proj dim F I 1, B($) must be one to one. Then m I d. But m 2 n - 1 2 
d + 1, which is a contradiction so heightZ,(B(4)) 2 2. 0 

In order to use Proposition 2.4, we will need to show that there are no equations in 
degree <d - 1 that do not come from degree 1. In the codimension two case, we will 
achieve this by showing that the approximation complex resolving S,(Z) for t _< d - 1 

is not only acyclic, but also the modules have enough depth to force depth@,(Z)) 2 1. 
For codimension three, we verify that the complexes 9, of [S] resolve S,(Z), bounding 
the projective dimension. This will ensure depth S,(Z) 2 1 for t I d - 1 when d is odd 
and depth&(Z) 2 1 for t I d - 2 when d is even. 

3. Ideals of codimension two 

The focus of this section is Question 1.1. The key ingredient will be the following 
proposition. 

Proposition 3.1. Let R be a Cohen-Macaulay local domain of dimension d and let Z be 

a codimension two perfect ideal of R minimally generated by n elements, with presenta- 
tion matrix 4. Assume Z = I,_ 1 (4) is of linear type on the punctured spectrum of R and 

Z,(4) is generated by a regular sequence (x) of length d. Zf height(Zd(B($)) + 
m)/mR[T] 2 n - d and n 2 d + 2 then L = (x. B(d), z,(B($b))) dejnes 93. 

Proof. Let J be the defining ideal of W. We know L G J and J is prime of height n - 1, 
so we need to show that L has the same height and is prime. 

Let P be a prime minimal over L and p = PnR. Suppose M is not contained in p. 
I, is of linear type so the relations of &?+, are equal to the relations of S(Z), which are 
(x. B(4)),. So we have the sequence 

0-(x.B(4)),-R[T],-W,-0 
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and height(x. Ii($)), = height(p) + n - (height(p) + 1) = n - 1. Since (x. B(4)), c 

L, G I’,, heightP 2 n - 1. 
Now suppose m = p. We have 

Further height(Z,(B(4)), m) 2 height I,@(O)) + d since (x) is a regular sequence of 
length d and the radical of (x) is m. So height P 2 height I,(B(O)) + d. Thus 
height P 2 n by the hypothesis. 

We now have that if P is minimal over L the height of P is at least n - 1. Thus L has 
height n - 1. In addition, if L c P and m = PnR, then height L # height P. 

Claim: L is prime. 

We know that height L = n - 1. But this is the height for the generic case and the 
generic case is Cohen-Macaulay by [6, Example 3.43. So by a specialization argument 
L is Cohen-Macaulay. 

Since R[T]/L is Cohen-Macaulay, all associated primes of L must have height 
n - 1. In particular, m $ P for every associated prime P of R [T-J/L. Thus there is an 
element a of m not contained in any associated prime of R[T]/L. In other words, 
there is an element a in m which is regular on R[T]/L. 

To check primality of L, it suffices to check primality of(L),. If I, is of linear type, 
then as before (x . B(g5))a ’ p is rime, has the correct height, and is contained in (L),, so 
(L), is prime. So we must show that I, is of linear type. 

Consider the sequence 

Let p E Spec(R,). Then a is not contained in p so (G$), = zJ~. But p P m since a urn so 
J$ = 0, Supp(&J = 8 and &a = 0. This says that I, is of linear type. But then L is 
prime. Thus J = L. 0 

Corollary 3.2. Under the same conditions, &? is Cohen-Macaulay. 

Proof. We have shown in the proof of the theorem that L defines A? and is 
Cohen-Macaulay. This gives us that W r R[T]/L is Cohen-Macaulay. 0 

Remark 3.3. We would like to generalize the proposition to ideals whose present- 
ation matrices are generated by regular sequences of length s I d. To do this, an 
appropriate generalization of linear type on the punctured spectrum is needed. On 
examining the proof, one sees that the important feature is that Zp is of linear type for 
any P which does not contain I1 (4). Thus if we assume I is of linear type on the open 
set D(I,(4)) we can generalize Proposition 3.1, but the statement is not as straight- 
forward. 
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Using Proposition 3.1, we can prove special cases of Question 1.1. First we will need 
the following lemma. 

Lemma 3.4. Let R be a Cohen-Macaulay local domain and let I be an ideal of R. If I is 
strongly Cohen-Macaulay, of linear type in codimension s - 1, and has height 2, then the 
approximation complex Z, is acyclic and depth&(I) 2 1 for t I s - 1. 

Proof. Consider the approximation complex 

O-+Z,@B[-n]-+Z,_l@B[-n+l]+ ... -+Z,@B[-l]-+B-+S(I)+O. 

(I) 

Here B is a polynomial ring in n = v(I) variables and Zi is the ith Koszul cycles. See 
[17, pp. 49-531. In degree t, this becomes 

O-Z,r’-Z,_, @ B+ ... -Z1 0 B,_,-B,-S,(Z)---+O. (2) 

Since I is strongly Cohen-Macaulay, depth Zi 2 min (d, d - g + 2) where g = 2 is 
the height of the ideal (see [17, pp. 661). I, is of linear type for height p < s and is 
strongly Cohen-Macaulay, so by [3, Theorems 5.1 and 12.91 I, is generated by 
a d-sequence and the localized approximation complex is acyclic. Then for each i > 0 
for which Hi(Z,) # 0, the minimal elements of the support of Hi@,) (which are the 
minimal associated primes) have height at least s. Let p0 be a minimal element of the 
set of all primes which are minimal elements of the support of Hi(Z,) for some i > 0. 
Localize (2) at pO. AS depthH@,),0 = 0 and depthZi @ Bi_ 1 = height p0 2 s for all 
i > 0 so by the acyclicity lemma [11] (see also [17]) the localized complex is acyclic. 
But then Hi(Z,)pO = 0 for all i > 0 which can only occur if Hi(Z,) = 0 for all i > 0, so 
the sequence is acyclic. 

Let Ck = im $,_,, = ker $r_k _ 1. Then (2) is made up of a series of short exact 
sequences 

0-+Z,~ZZ,-,@B,%Z,_2@B .‘. - zo @ B,-S,(I)---+O. 

By chasing the depths through these short exact sequences, we get depth 
Ck 2 d - k 2 2 since k < d - 2. In particular, depth C,_ 1 2 d - t + 1 2 2, so depth 
S,(I)>lfort<s-1. 0 

Theorem 3.5. Let Z be a Cohen-Macaulay codimension two ideal of R = k[xl, . . . , xd], 

minimally generated by n elements, with presentation matrix 4. Assume 4: R”-’ + R” 
has linear entries with 11(4) = (x1, . . . , xd) = (x) and d = n - 2. Assume Z = I,_ 1 (4) is 
of linear type on the punctured spectrum. Then L = (x . B(4), Z,(B(q%))) dejnes g (and 
5% is Cohen-Macaulay). 
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Proof. When 4 has homogeneous entries of the same degree, both Z and J are 
homogeneous ideals, so we may treat R as if it were local. By Proposition 3.1 it suffices 
to show that 

height Z,(B(O)) 2 2 = y1 - d. 

Since (b has linear entries in (x), B(4) has linear entries in (T). Thus Z,(B(4)) remains 
unchanged under evaluation at (x). 

Notice that I is strongly Cohen-Macaulay (it is in the linkage class of a complete 
intersection, see [4, Example 2.1]), of linear type on the punctured spectrum, and has 
height 2. So by Lemma 3.4, we have depth&(Z) 2 1 for t < d - 1. Then the maximal 
ideal is not associated to S,(Z) so if we localize S,(Z) at any of its associated primes, 
S,(Z), = RPIZPtlf. Thus (&)p = 0 for all p mass and &t = 0. Since S(Z) has no 
torsion up to degree d - 1, there are no equations of the Rees algebra of degree rd - 1 
that do not come from degree one. Apply Proposition 2.4 to get heightZ,(B(@)) 2 2. 
Thus by Proposition 3.1 and its corollary we have the result. 0 

We would now like to apply Proposition 3.1 to a more general setting. When Z is of 
linear type on the punctured spectrum, we know that & is a module of finite length 
and so is annihilated by a power of m and thus by a power of Z,(4). If we assume that 
&d is annihilated by Ii($) and that height(J(0)d) = height J(0) then we are able to 
show height Z,(B(O)) = n - d and thus are able to find the equations of the Rees 
algebra. 

Theorem 3.6. Let R be a Cohen-Macaulay local domain and let Z be a codimension two 
perfect ideal of R minimally generated by n > d + 1 elements. Assume Z = I,_ 1(4) is of 

linear type on the punctured spectrum of R and II (4) . 1s a regular sequence (x) of length d. 
Zf height( J(O),) = height J(0) and (x) annihilates J&, then (x. B(4),Z,(B(c#r))) defines 

2 (and .% is Cohen-Macaulay). 

Proof. We know (x) annihilates dd = JQ/JIBI_ 1 where Bd_ 1 is the degree d - 1 
component of the polynomial ring R[T,, . . , T,] and Z,(B(O)) q.Zd/JIBd_ 1. Let 
hEJd.ThenxjhEJ1Bd_1soXjh=CgijfiwhereJ, =(fi,...,fn)andgij~Bd_l.Com- 
bine these equations to get 

x . h = x. B(4). G 

where G = [ gij] and (fi, . . . , fn) = x * B(4). Rewrite this as 

x(hE, - B(4). G) = 0 

where Ed is the d x d identity matrix. Each row is a syzygy of the regular sequence 
(xi, . . . , xd) so the entries of (hEd - B(4). G) must all be in (x)R[Z’]. Let “(0)” denote 
reduction modulo m. Then h(0) E J(O), and h(O)E, = B(0) . G(0). Let P be any prime in 

k[T] containing Z,(B(O)). Let -denote reduction modulo P. RankB(0) < d - 1 and 
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det(B(0) . G(0)) = h(0)d so h(0) E P. Thus I@(O)) and (J(O),) have the same radical and 
in particular the same height. From the sequence 

O-J(O)- k[T]---+ F(I)- 0 

we see that height J(0) = n - e. Since I is of linear type on the punctured spectrum, 
satisfies sliding depth, and v(l) 2 d + 1, we have e(1) = d by [17, Corollary 5.3.161. 
Thus height I,,(B(O)) = n - d and the result follows from Proposition 3.1 and its 

corollary. [7 

Using the previous theorem, Bernd Ulrich is able to generalize Theorem 3.5 to hold 
for all n 2 d + 2 [14]. By working through the reduction number, he is able to show 
that conditions on the height of ( J(0)d) an d on the annihilator of &?& are satisfied under 
the hypotheses of Theorem 3.5. 

One way to achieve the condition on the height of J(0) is through the reduction 
number. We know that when there are no new equations in degrees 2 through d - 1, 
the reduction number is at least d - 1. If we assume that the reduction number is 
equal to d - 1 then we have height(J(O)d) = height J(0). Combining the following 
with Proposition 3.6 will give us a result similar to [13, Theorem 5.51. 

Proposition 3.7. Let R be a Cohen-Macaulay local ring and let I be an ideal of R 
which is of linear type on the punctured spectrum, has sliding depth, and for which 
v(Z) > d. Suppose that there are no equations of 92 of degree less than d which do not 

come from degree one. Then zf the reduction number of I is d - 1, 
height( J(O),) = height( J(0)). 

Proof. Since I is of linear type on the punctured spectrum, satisfies sliding depth, and 
v(l) 2 d + 1, we have e(1) = d by [17, Corollary, 5.3.161. Consider the fiber ring 
F(I) = k[T]/J(O). Let k[zi, . . . , zd] -f’(I) be a Noether normalization. Use 
a change of variables of the T’s to choose a set of generators aI, . . . , avo, for k [T] with 
ai = Zi for 1 _< i I d. We know that the generators of F(Z) over k[zI, . . . ,zd] have 
degree at most the reduction number of I which is d - 1, so by choosing the monomial 
order al < a2 < ... < a,(t), we have a:,,, . . . ,at,t, in the initial ideal of J(0). In 
particular these elements are in the initial ideal of J(O), since there are no equations of 
9? of degree less than d which do not come from degree one. So 
height(J(O),) 2 v(l) - d. But we know 

height( J(0)) = v(Z) - dim F(Z) = v(Z) - e(Z) = v(Z) - d 

so height( J(O),) = height( J(0)). 0 

Corollary 3.8. Let R be a Cohen-Macaulay local ring and let I be a codimension 
two ideal of R which is of linear type on the punctured spectrum, is strongly 
Cohen-Macaulay, and is minimally generated by v(Z) > d elements. Then if W is 
Cohen-Macaulay, height( J(O),) = height J(0). 
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Proof. We may assume that the residue field is infinite. By [7, Theorem 2.31 we have 
the reduction number of I less than or equal to d - 1. But since the reduction number 
is not zero and by Lemma 3.4 there are no new equations in degree less than d, we 

have rd(Z) 2 d - 1. So rd(Z) = d - 1 and the result follows from the proposition. I-J 

If the hypothesis in Theorem 3.5 requiring the presentation matrix to have linear 
entries is removed, the theorem may fail. We will give an example of a codimension 
two ideal which is of linear type on the punctured spectrum (and d = n - 2) whose 
Rees algebra is not Cohen-Macaulay. First we need a method of verifying linear type 
on the punctured spectrum. 

Lemma 3.9. Let R be a ring and I an ideal minimally generated by v(I) elements with 

presentation matrix 4. Suppose R has dimension d, I has height g, and k = v(Z) - g. If 

Ik(~) has height at least d, then I is a complete intersection on the punctured spectrum. 

Proof. Let P be a prime of height d - 1 which contains I. If I, is of linear type for all 
such P, then I is of linear type on the punctured spectrum. Suppose one k x k minor of 
$P is invertible. Then 4P can be transformed (using elementary operations) into 

Ik 0 

( ) 0 4; . 

Since $P presents IP, IP has at most g generators (consider the sequence 

Rm-k&RRg 
-zp-0 

where 4 is a v(l) x m matrix). But IP has at least g generators. So v(lP) = g and I,, is 
a complete intersection and thus of linear type by [3, Corollary 3.71. To insure that for 
any P of height d - 1 at least one k x k minor of 4P is invertible, it suffices to have 

height(l,($)) 2 d. 0 

Example 3.10. This example shows that in the setting of Theorem 3.5 if the entries of 
4 are not homogeneous of the same degree then the Rees algebra may not be 
Cohen-Macaulay. 

Let R = k [x, y, z] be a polynomial ring. Consider the matrix 4 defining the ideal I 

Using Macaulay [l] one finds the equations of the Rees algebra &? of this ideal. 
The ideal of 3 x 3 minors has codimension 3 = d, so by Lemma 3.9 I is of linear type 
on the punctured spectrum. However, in degree three, (J(O),) is generated by 
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-T :, TIT :, - T2T: - T4T: and so has height 1. In this example, d = 3, so by 
Corollary 3.8 since height( J(O),) # 2, 9 is not Cohen-Macaulay. 0 

4. Pfaffians 

The next case where some structure is known is that of codimension three Goren- 
stein ideals. We will examine the equations of the Rees algebras of these ideals. As the 
examples at the end of this section show, the Rees algebras will not always be 
Cohen-Macaulay, however we are still able to discover the degrees of the generators 
of the equations. 

For codimension three Gorenstein ideals we must consider the cases where d is even 
and where d is odd separately. The reason for these two cases arises from the lengths of 
the complexes 9’(Z) of [8] which will resolve S,(Z) for appropriate t. 

Remark 4.1. Let R be a Cohen-Macaulay ring and let Z be a perfect grade three 
Gorenstein ideal of R which is of linear type on the punctured spectrum. Then g’(4) is 
a resolution of S,(Z) for t I d - 1 when d is odd and for t I d - 2 when d is even. Thus 
depth&(Z) 2 1 for t in the above range. 

Proof. By [8, Proposition 4.131 H,(9) = S,(Z) and by [S, Observation 4.3(g)] the 
length of 9(d) is at most d - 1. Thus it suffices to check exactness on the punctured 
spectrum. For Q E V(Z), Q not maximal, form the complex 9’(4J over the ring R,. 

Since Z is of linear type on the punctured spectrum, we have v(Z,) I depth RP for every 
P E Spec(RJ, I, s P. Combining [8, Observations 6.23 and 6.17(c)(i)] (which can be 
done by the definitions of SPC, and WPC, given on p. 52 of [S]) we have that 9(&) is 
acyclic (although not necessarily minimal) for t in the given range. By observing that 
(a’($))o = a’(&) we have the first part of the Remark. 

Since the modules of gr(4) are free, we have a bound on the projective dimension of 
S,(Z) given by the length of g’(4). Combine this with the Auslander-Buchsbaum 
formula applied to S,(Z) to see that depth&(Z) 2 lfor t I d - 1, d odd, or t I d - 2, 
d even. 0 

Thus for d odd there are no new equations between degree one and degree d - 1 
and L = (x . B(4), Z,(B(q5))) is a candidate for the equations of &! when I,($) is 
generated by a regular sequence of length d. If n = d + 2 and 4 has linear entries in 
a polynomial ring, then by Proposition 2.4 height Z,(B($)) 2 2 and arguing as in the 
proof of Proposition 3.1 we see that the height of L is n - 1. Thus if L is prime, we 
have all the generators for the equations. We are no longer able to use the specializa- 
tion argument to see that L is prime, however. 

Ford even the equations have a different form. By Remark 4.1 we see that there are 
no generators of the equations in degrees 2 through d - 2. There may be, however, 
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generators in degree d - 1. When n = d + 1 and R is a polynomial ring, this is always 
the case for an ideal with a linear presentation matrix. 

Remark 4.2. Let I be a strongly Cohen-Macaulay grade g ideal of R = k [x,, . . . , xd] 

which is of linear type on the punctured spectrum and whose presentation matrix has 
linear entries with I I (4) = (x). If n = d + 1 then J = (x B(4), f) where f is of degree 
n - g + 1 and satisfies f’ = gcd(Z,(B(4))) f or some r. Thus f can be found from the 
matrix B(4). 

Proof. By [12, Theorem 4.10(d)] we have .Z = (x . B(4),_/-) where S is of degree 
n - g + 1. It remains to find f from B(4). We know that I,@($)) # 0 by Corollary 
2.2. Since n - d = 1 and Zd(B(d)) E J(0) which has height n - d, we have height 
Z,@(4)) = 1. Suppose Z,@(4)) is principal. Then by Lemma 2.3 the module 
F = coker B(4) has projective dimension at most one. But then n I d which is 
a contradiction. Thus there is a gcd, denoted by h, of Z&I(&)) of degree less than d. 

Using the isomorphism S,tX1(Z) g S,,,,(F) and the primary decomposition 

0 = dnmS(Z) 

we see that d = (f) = Ann(F). Since Id@(d)) = Z,,(F), we have f” E Zd(B(f$)). So 
f” = hu for some polynomial o and, since (f) = d is prime, by unique factorization 
S’ = h for some r. 0 

Corollary 4.3. Let Z be a grade three ideal of Pfafians of R = k [x1, . . . , xd] which is of 

linear type on the punctured spectrum and whose presentation matrix has linear entries 

with II(~) = (x). Zf n = d + 1 then (x . B(4), gcd Zd(B(4))) = J and in particular there is 

a generator of degree d - 1. 

Proof. Since the degree of f is d - 1 we must have t = 1 above. 0 

We need another computational test to determine if the Rees algebra of a given 
ideal is Cohen-Macaulay. The following test can be used to show that the Rees 
algebra is not Cohen-Macaulay. 

Remark 4.4 (Bruns and Herzog [2, Corollary 4.1.101). If the Rees algebra of an ideal 
Z is Cohen-Macaulay, then all the coefficients hi of the Hilbert-Poincare function 

ho f h,t + ... + h,t’ 

(1 - ty+t’ 

are positive. 

Example 4.5. The second set of counterexamples shows that for a grade three ideal of 
Pfaffians which is of linear type on the punctured spectrum and has a linear presentation 
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matrix the Rees algebra need not be Cohen-Macaulay either in the case n = d + 2 or 
the case n = d + 3. 

Let R = k[xl, . . . ,x4] and let 4 be the matrix 

: 

0 -x1 -x3 x2 -x1 x4 -x3 

Xl 0 -x3 x2 Xl -x4 -x1 

x3 x3 0 0 -x3 Xl -x4 

-x2 -x2 0 0 -x4 x2 0 

Xl -x1 x3 x4 0 --x3 Xl 

--x4 x4 -x1 -x2 x3 0 -x2 

x3 Xl x4 0 --Xl X2 0 

or let R = k[xl, . . . ,.x5] and let 4 be 

I 

0 -x1 -x3 x2 -x5 x4 -x3 

Xl 0 -x3 x2 x5 --Xl 

x3 x3 0 0 -c: Xl -x4 

-x2 -x2 0 0 -x4 x2 0 

x5 --Xl x3 x4 0 -x3 Xl 

-x4 -x5 -x1 -x2 x3 0 -x2 

x3 Xl x4 0 --Xl x2 0 

Let I be the ideal of Pfaffians of 4. To see that the ideal is of linear type on the 
punctured spectrum, compute the ideal of 4 x 4 minors of 4. The codimension of this 
ideal is d in each case, so the ideal of Pfaffians is of linear type on the punctured 
spectrum. (See Lemma 3.9 for details.) 

Now compute the Hilbert function of the ideal of equations of $8 (this was done 
using Macaulay Cl]). For the first matrix, the Hilbert function is 

1 + 6t + 14t2 + llt3 - 19t4 + 5t5 - t6 

(1 - t)S 
3 

and for the second matrix it is 

1 + 6t + 14t2 + 15t3 + 6t4 - 15t5 + 20t6 - 15t’ -I- 6t8 - t9 

(1 - t)6 

So by Remark 4.4, B! cannot be Cohen-Macaulay. For the second matrix, the 
equations of 9 are of the expected form. This can be seen by computing both L and 
J and showing that L:J = (1). However, for the first matrix there are generators of 
Jindegreed-1. 
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