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Surface epithelial cells, such as the epidermal keratinocyte, undergo a process of terminal cell differentiation that

results in the construction of a multilayered epithelium. This epithelium functions to protect the organism from the

environment. Transglutaminases, enzymes that catalyze the formation of isopeptide protein-protein cross-links,

are key enzymes involved in the construction of this structure. This brief review will focus on the role of these

enzymes in constructing the epidermal surface.
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A major function of the epidermis is protection of the or-
ganism from the environment. Construction of the epider-
mal surface begins with regulated cell proliferation in the
innermost epidermal cell layer—the basal layer (Cotsarelis
et al, 1989; Fuchs and Byrne, 1994). The daughter cells are
then displaced outward towards the cell surface. As the
cells move outward, they lose the ability to proliferate and
initiate the differentiation program (Fuchs and Byrne, 1994;
Eckert et al, 1997) (Fig 1). The second epidermal layer, the
spinous layer, is characterized by cells containing a large
many of desmosomal connections. The desmosomes con-
tribute strength. Cells in the third layer, the granular layer,
contain granule-enclosed proteins and lipids (Matoltsy,
1966; Lavker and Matoltsy, 1971; Holbrook and Odland,
1975; Lavker, 1976; Ishida Yamamoto et al, 1993). Some of
these granules, for example, contain cornified envelope
precursors (Steven et al, 1990) that are ultimately deposited
onto the inner surface of the developing cornified envelope.
The transition zone is a region of extensive remodeling that
marks the transition between living and dead epidermis. In
this zone, the intracellular organelles are destroyed by pro-
teases and nucleases. Concomitant with this destruction is
assembly of the cornified envelope and the stabilization of
the keratin intermediate filament bundles. The result of this
process is the construction of the outermost epidermal lay-
er, which is comprised of terminally differentiated keratin-
ocytes—called corneocytes. Corneocytes consist of two
major structures—a network of disulfide bond-stabilized
keratin filament bundles surrounded by an envelope of
covalently cross-linked protein (Nemes and Steinert, 1999)
and associated lipid (Segre, 2003). Millions of corneocytes
are required to cover the body surface.

The Cornified Envelope

The cornified envelope is a covalently cross-linked structure
that forms beneath the plasma membrane in differentiating

keratinocytes (Matoltsy and Odland, 1955; Matoltsy, 1976;
Steven and Steinert, 1994; Nemes and Steinert, 1999). The
envelope includes two functional parts—an insoluble 15 nm
thick structure consisting of covalently cross-linked protein
(10 nm thick) that comprises the backbone of the envelope
and covalently linked lipids (5 nm thick) that coat the ex-
terior (Matoltsy and Matoltsy, 1966; Elias and Friend, 1975;
Grayson and Elias, 1982; Wertz et al, 1989b; Robinson et al,
1997; Nemes and Steinert, 1999; Nemes et al, 1999a;
Steinert and Marekov, 1999). Various proteins function as
substrates and are incorporated into this structure (Table I).
These include soluble (e.g., involucrin and small proline-rich
proteins (SPR)) and insoluble (e.g., loricrin, periplakin, and
envoplakin) proteins. Several soluble precursors are initially
deposited to form a scaffold (Eckert et al, 1993; Nemes and
Steinert, 1999; Kalinin et al, 2002). The insoluble precursors
are subsequently deposited on the inner surface of the
scaffolding. For example, loricrin is a major protein of
the envelope that is cross-linked to the inner surface of the
scaffolding (Mehrel et al, 1990; Hohl et al, 1991b; Nemes
and Steinert, 1999).

The interprotein cross-links that hold together this mul-
tiprotein assembly (Hennings et al, 1981; Yaffe et al, 1993;
Steven and Steinert, 1994; Steinert and Marekov, 1995;
Robinson et al, 1996; Robinson et al, 1997; Steinert and
Marekov, 1997; Steinert et al, 1998) are formed by
transglutaminases (TGase). These enzymes catalyze inter-
protein bond formation by forming a thiolester acyl-enzyme
intermediate and subsequently transferring the acyl residue
to a primary amine (Folk and Finlayson, 1977; Folk, 1980).
The amine acceptor is generally provided by the e-amino
group of a protein-bound lysine and the ultimate link is an
N6-(g-glutamyl)lysine isopeptide bond. Three TGase are
known to be active in surface epithelia and are thought to
participate to varying degrees in cross-link formation. These
include TGase 1, TGase 3, and TGase 5 (Buxman and
Wuepper, 1976; Goldsmith, 1983; Peterson and Wuepper,
1984; Rothnagel and Rogers, 1984; Thacher and Rice,
1985; Michel and Demarchez, 1988; Kim et al, 1991, 1993,
1995b; Polakowska et al, 1991; Hitomi et al, 1999, 2003). In

Abbreviations: SPR, small proline-rich proteins; TGase, transgluta-
minase
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this brief review, we will describe some of the structural
precursors involved in keratinocyte cornified envelope as-
sembly, and the role of the various TGase in assembling the
cornified structure.

Structural Components of the
Cornified Envelope

Involucrin As mentioned above, the cornified envelope
consists of a host of proteins (Table I). Involucrin was the

first precursor discovered and cloned (Rice and Green,
1979; Eckert and Green, 1986). It is expressed throughout
the suprabasal layers (Rice and Green, 1979; Banks-Schle-
gel and Green, 1981; Crish et al, 1993, 1998) in stratified
epithelia, including the cervix, epidermis, esophagus, cor-
nea, trachea, and conjunctiva (Banks-Schlegel and Green,
1981; Walts et al, 1985; Crish et al, 1993; Crish et al, 2002).
Involucrin expression is controlled by AP1, Sp1, and C/EBP
regulatory factors (Welter et al, 1995; Banks et al, 1998;
Crish et al, 1998, 2002; Banks et al, 1999; Eckert et al,

Figure 1
Keratinocyte differentiation. Keratin-
ocytes begin in the basal layer as undif-
ferentiated cells that have proliferative
potential and express keratins 5 and 14.
As they exit the basal layer, the daughter
cells lose proliferative ability and give rise
to differentiated cells comprising the spin-
ous, granular, and cornified layers. Corni-
fied envelope assembly begins in the late
spinous layer and continues as the cells
progress into the granular layer. The ap-
proximate range of expression of each
protein is shown by the arrows. Trans-
glutaminase (TGase) 1, TGase 3, and
TGase 5 are expressed in the spinous
and granular layers along with the indi-
cated envelope precursors (e.g., in-
volucrin, cornifin), and keratins K1 and
K10. The cornified envelope precursors,
loricrin and filaggrin, are expressed later
in differentiation. The rate of incorporation
of envelope precursors and the deposi-
tion of covalent cross-links accelerates in
the transition zone as the available level of
free calcium increases and activates
TGase. Cross-linking in the transition
zone finishes production of the cornified
layer that comprises the dead protective
epidermal surface.

Table I. Cornified envelope precursors

Protein Size (kDa) Chromosome location Cornified envelope (%)b Other names

Involucrina 65 1q21 5

Loricrina 26 1q21 80

SPRa 5–26 1q21(Gibbs et al, 1993) 3–5 Cornifins, pancornulins

Cystatin A 12 3cen–q21 2–5 Keratolinin

Proelafin 10 20q12–q13 o1 Elastase-specific inhibitor, SKALP

Profilaggrina 4400 1q21 o1 Filaggrin

Type II keratins 56–60 12q13 o1

Desmoplakin 330/250 6p21–ter o1

Envoplakin 210 17q25 o1

Periplakin 195 16p13.3 o1

S100A10 and S100A11a 12 1q21 o1 Calpactin light chain and S100C/calgizzarin

Annexin I 36 9q12–q21.2 o1 Lipocortin I

Cornifelin 12.5 19q13

aLocalized in the epidermal differentiation complex (Zhao and Elder, 1997; South et al, 1999).
bNemes and Steinert (1999).
SPR, small proline-rich proteins.
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2004), and the function of these factors is controlled by an
nPKC, Ras, MEKK1, MEK3, p38 MAPK signaling cascade
(Efimova et al, 1998; Efimova et al, 2003; Eckert et al, 2004).
Involucrin contains thirty-seven 10 amino acid repeats, with
each repeat containing three glutamine and two glutamate
residues (Rice and Green, 1979; Simon and Green, 1985;
Etoh et al, 1986; Simon and Green, 1988; Lambert et al,
2000). The entire protein is 15% glutamine and 20% gluta-
mate (Eckert and Green, 1986). The predominant structure
is a-helical (Yaffe et al, 1992) but additional secondary
structural features have been proposed (Lazo and Downing,
1999; Kajava, 2000). Although multiple glutamines on in-
volucrin are TGase substrates (Etoh et al, 1986; LaCelle
et al, 1998), TGase preferentially labels a single residue,
glutamine496 (Simon and Green, 1988; Nemes et al,
1999b). Involucrin is one of the first precursors cross-linked
during envelope assembly and is thought to form a scaf-
fold for subsequent cross-linking of additional precursors
(Nemes and Steinert, 1999).

Loricrin Loricrin is the major component of the cornified
envelope in the epidermis (Steven and Steinert, 1994).
Loricrin expression is induced by a variety of differentiating
agents, including calcium (Hohl et al, 1991a; DiSepio et al,
1995), and is detected in granules in the granular layer
(Steven et al, 1990; Ishida Yamamoto et al, 1993, 1996). It is
likely that loricrin is sequestered in granules due to its low
solubility. During terminal differentiation, in transition zone
cells, loricrin is released from the granules and cross-linked
to the inner surface of the nascent cornified envelope (Is-
hida-Yamamoto et al, 1999). Loricrin is also important in
disease. Mutation of the glycine-rich domain of loricrin has
been reported to result in the formation of arginine-rich
nuclear localization sequences. The accumulation of mu-
tated involucrin in the nucleus is thought to be the under-
lying cause of loricrin keratoderma (Ishida-Yamamoto,
2003).

SPR The SPR comprise a 14-member multigene family that
contains three distinct subgroups–SPR1 (two members),
SPR2 (11 members), and SPR3 (one member) (Tesfaigzi and
Carlson, 1999). Expression of these genes is induced by
calcium and other differentiating agents via activation of
AP1, Sp1, and ets transcription factors (Gibbs et al, 1990;
Fischer et al, 1996). The SPR structure includes eight or nine
amino acid proline-rich repeats flanked by glutamine-,
lysine-, and proline-rich ends (Gibbs et al, 1993). Glutamine
and lysine residues, located at the amino and carboxy ter-
minal ends of SPR proteins, participate in cross-link forma-
tion. These proteins have been proposed to function as
bridges that link together other precursors (Steinert et al,
1998).

Cystatin and elafin Cystatin A, a cysteine protease inhib-
itor, is a minor component of the cornified envelope (Taka-
hashi et al, 1994). Cystatin A expression is increased by
treatment of keratinocytes with differentiating agents via an
MAPK kinase cascade that includes Ras, MEKK1, MEK7,
and JNK (Takahashi et al, 2001). A mutation in another
cystatin family member, cystatin M/E, is thought to be an
underlying cause of the disturbed epidermal cornification

observed in harlequin ichthyosis (Zeeuwen et al, 2002,
2004). Elafin, a potent inhibitor of elastase and proteinase 3,
is translated as preproelafin, which is cleaved to release
proelafin by removal of the 25 amino acid signal peptide.
The proelafin protein is then cleaved to release elafin and
cementoin. Cementoin is encoded by the pro-domain of
elafin, and like elafin, can serve as a TGase substrate (Mo-
lhuizen et al, 1993; Nara et al, 1994; Steinert and Marekov,
1995). Members of the cystatin family and elafin may func-
tion to regulate protease activity that is required for enve-
lope maturation. For example, cystatin M/E deficiency is
associated with disturbed cornification, impaired barrier
function, and dehydration (Zeeuwen et al, 2004). The func-
tion of cystatin M/E is to inhibit legumain, an asparaginyl
endopeptidase. Thus, the increase in legumain activity re-
sulting from cystatin M/E deficiency may be an underlying
cause of harlequin ichthyosis (Zeeuwen et al, 2004).

Filaggrin Filaggrin is synthesized as profilaggrin, which
consists of numerous filaggrin units flanked by amino- and
carboxy-terminal domains (Presland et al, 1992, 1997;
Pearton et al, 2002). Like several other envelope precur-
sors (i.e., S100 proteins), profilaggrin contains two calcium-
binding EF hand motifs (Presland et al, 1992; Markova et al,
1993). Filaggrin is a product of proteolytic cleavage of
profilaggrin (Presland et al, 1997). In addition to its role in
the cornified envelope, filaggrin also functions to bundle
intermediate filaments (Dale et al, 1978; Mack et al, 1993).
Filaggrin may also play a role in facilitating apoptotic re-
sponses due to its ability to alter keratin filament distribution
(Presland et al, 2001).

Desmoplakin, envoplakin, periplakin, and type II kera-
tins As mentioned above, the corneocyte consists of ker-
atin intermediate filament bundles contained within an
envelope of covalently cross-linked protein. Keratins are
the most abundant proteins in the corneocyte and the as-
sembled keratin intermediate filament bundles connect to
the cell periphery at desmosomes (Green and Gaudry,
2000). Considering that cornified envelope assembly takes
place at the plasma membrane, it is perhaps not surprising
that both desmosomal components and keratin filaments
are incorporated into the cornified envelope. The connec-
tion of the keratin filaments to the desmosome occurs
through several proteins, including desmoplakin and
envoplakin (Virata et al, 1992; Green and Gaudry, 2000).
During terminal differentiation, the keratin filaments become
covalently linked to the envelope via a specific lysine res-
idue located at the amino terminus of type II keratins (Candi
et al, 1998). Several other desmosomal proteins, including
desmoplakin, desmoglein 3, desmocollins 3A/3B, plakoglo-
bin, and plakophilin, are also incorporated into the cornified
envelope (Robinson et al, 1997).

S100 proteins and annexin I S100 proteins are calcium-
regulated EF hand-containing proteins (Donato, 1999). The
genes encoding many S100 proteins are clustered in the
epidermal differentiation complex on chromosome 1q21
(Celis and Olsen, 1994). S100A10 and S100A11 are incor-
porated into the cornified envelope in normal human
keratinocytes (Robinson et al, 1997). In addition, the cross-
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linking sites have been identified on several S100 proteins
at the amino- and carboxy-termini (Robinson and Eckert,
1998; Ruse et al, 2001). In response to increased calcium,
S100A11 moves to the cell periphery via a tubulin filament-
dependent mechanism indicating that tubulin filaments are
required to position this envelope precursor in the vicinity of
the plasma membrane (Broome and Eckert, 2004).

S100A11 forms a complex with annexin I The S100A11/
annexin I complex is a heterotetramer consisting of two
S100A11 and two annexin I proteins. Rety et al (2000)
solved the structure of this complex, confirming a novel
mode of interaction of S100A11 with annexin I, and sug-
gesting a model whereby the calcium-regulated (annexin I/
S100A11)2 heterotetramer functions to organize membrane
fusion events. In addition, almost all annexins, including
annexin I and annexin II, display calcium channel activity in
in vitro systems (Chen et al, 1993; Cohen et al, 1995; Benz
et al, 1996; Burger et al, 1996; Gerke and Moss, 2002). This
activity has not been demonstrated in cells under normal
intracellular conditions, but such activity may be possible
under oxidizing and reduced pH conditions (Gerke and
Moss, 2002); thus, annexin-dependent channel activity may
be possible in keratinocytes in the oxidizing, acidic envi-
ronment observed during terminal keratinocyte differentia-
tion and may contribute to calcium influx.

Cornifelin Cornifelin is a recently described protein that is
encoded on chromosome 19q13 (Michibata et al, 2004).
Cornifelin is expressed in the epidermal suprabasal layers
(Michibata et al, 2004). Like several other cornified envelope
precursor genes, including involucrin (Eckert and Green,
1986), the first exon of the cornifelin gene is non-coding.
Robinson et al (1997) reported an amino acid sequence,
ARELKIRE, obtained by CNBr digestion of highly purified
cornified envelopes, that matches a segment of cornifelin
sequence (Michibata et al, 2004), suggesting that cornifelin
is a bona fide envelope precursor.

TGase in Keratinocytes

TGase comprise a family of calcium-dependent enzymes
that catalyze the formation of isopeptide bonds. Several
members of this family have been characterized (Phillips
et al, 1990; Kim et al, 1991; Aeschlimann et al, 1998;
Grenard et al, 2001) (Table II). These include Factor XIIIa,
which is involved in stabilization of fibrin clots and in wound
healing (Siefring Jr et al, 1978; Lorand and Graham, 2003),
TGase 4, which is involved in the cross-linking of seminal
fluid (Dubbink et al, 1998), Band 4.2, an inactive TGase,
which is a structural protein in erythroblasts and erythro-
cytes (Lorand et al, 1987), TGase 2, a ubiquitously expres-
sed TGase with multiple functions (Fesus and Piacentini,
2002; Griffin et al, 2002), and the epidermal-specific TGase,
TGase 1 (Phillips et al, 1990; Polakowska et al, 1991),
TGase 3 (Kim et al, 1994a), and TGase 5 (Candi et al, 2001,
2002, 2004; Grenard et al, 2001). Four TGase family mem-
bers are expressed in keratinocytes and/or in epidermal
tissues—TGase 1, TGase 2, TGase 3, and TGase 5 (Table
III). These enzymes are discussed below.

TGase type 1 The TGase 1 protein is encoded by the
TGM1 gene located on chromosome 14q11.2 (Yamanishi
et al, 1992). As measured by in situ hybridization, TGase 1
expression is differentiation-dependent and initiates in the
spinous layer (Michel et al, 1992). TGase 1 promoter activity
in cultured keratinocytes appears to require two Sp1 sites
and an AP1 site within the distal region of the gene (Floyd
and Jetten, 1989; Liew and Yamanishi, 1992; Yamada et al,
1994; Mariniello et al, 1995; Medvedev et al, 1999; Jessen
et al, 2000a, b, 2001; Phillips et al, 2004).

Most TGase 1 is anchored to the keratinocyte plasma
membrane via fatty acyl linkages (myristate, palmitate) that
are present at the TGase 1 amino terminus (Rice et al, 1990;
Phillips et al, 1993; Steinert et al, 1996b). Treatment with the
protein synthesis inhibitors suggests that the myristylation
occurs co-translationally and that palmitate labeling occurs

Table II. The transglutaminase (TGase) family

TGasea Synonyms
Chromosome

location Gene Function Size aa (kDa) Location

Factor XIII Fibrin stabilizing
factor

6p24–25 F13A1 Blood clotting and
wound healing

732 (83) Cytosol, extracellular

Band 4.2 Erythrocyte
membrane protein

15q15.2 EPB42 Structural protein in
erythrocytes—no activity

690 (72) Membrane

TGase 1 Keratinocyte TGase 14q11.2 TGM1 Cornified envelope assembly
in surface epithelia

814 (90) Cytosol, membrane

TGase 2 Tissue TGase 20q11–12 TGM2 Cell death/differentiation,
adhesion, matrix assembly

686 (80) Cytosol, nucleus, membrane,
cell surface, extracellular

TGase 3 Epidermal TGase 20q11–12 TGM3 Cornified envelope assembly
in surface epithelia

692 (77) Cytosol

TGase 4 Prostate TGase 3q21–22 TGM4 Semen coagulation in rodents 683 (77) Unknown

TGase 5 TGase X 15q15.2 TGM5 Epidermal differentiation 719 (81) Nuclear matrix, cytoskeleton

TGase 6 TGase Y 20q11 TGM6 Unknown Unknown Unknown

TGase 7 TGase Z 15q15.2 TGM7 Unknown 710 (80) Unknown

aTransglutaminase subtypes indicated in bold are expressed in epidermis.
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post-translationally (Steinert et al, 1996b). The target sites
for myristate and palmitate addition are a cluster of five
cysteine residues (Cys47, 48, 50, 51, and 53) within the se-
quence C47CGCCSC53 at the TGase 1 amino terminus
(Phillips et al, 1993). Deletion or mutation of the cysteines in
this cluster reduces TGase 1 association with the keratin-
ocytes plasma membrane. Although only a single cysteine
need be present in this cluster for palmitate addition, more
than one cysteine residue must be present to direct TG1 to
the membrane. Expression of TGase 1 in 3T3 fibroblasts
also results in a similar modification of TGase 1, indicating
that this processing is not specific for keratinocytes (Phillips
et al, 1993). Moreover, the membrane targeting domain can
function in other contexts—a fusion protein containing the
amino terminus of TGase 1 fused to involucrin protein di-
rects involucrin to the plasma membrane (Phillips et al,
1993). The half-lives of the myristoyl and the palmitoyl ad-
ducts are less than that of the TGase 1 protein, suggesting
that the rate of modification may influence TGase 1 mem-
brane association.

A fraction of anchored TGase 1 undergoes proteolysis to
yield fragments of 10, 33, and 68 kilodaltons (Steinert et al,
1996a). The level of these cleavage products increases with
keratinocyte differentiation, suggesting that the process is
regulated (Kim et al, 1995a, b; Steinert et al, 1996a, b). The
10 kDa subunit of processed TGase 1 contains the amino
terminal region of TGase 1. In vitro studies suggest that this
cleavage increases TGase 1 activity (Kim et al, 1994b,
1995a).

In addition to lipid acylation and proteolytic cleavage,
TGase 1 is phosphorylated at amino-terminal serine
residues—predominantly at Ser82 (Chakravarty et al, 1990;
Rice et al, 1996). Baseline phosphorylation is present in
proliferating keratinocytes, and phorbol ester treatment
produces a significant protein kinase c-dependent increase
in TGase 1 phosphorylation at Ser82 (Chakravarty et al,
1990; Rice et al, 1996). These phosphorylated serine
residues reside in close proximity to the acylation/mem-
brane anchoring sites at the TGase 1 amino terminus, sug-
gesting that phosphorylation may influence membrane
anchorage.

TGase 1 in disease Lamellar ichthyosis is a disorder of
cornification that affects both the epidermis and hair. The
phenotype includes large plate-like scales with underlying
erythroderma, orthokeratotic hyperkeratosis, and mild-to-
moderate acanthosis (Traupe et al, 1984). Mutations of the
TGase 1 enzyme that reduces TGase 1 activity have been
reported in lamellar ichthyosis patients (Huber et al, 1995a;
Russell et al, 1995). These findings suggest that the TGase
1 mutation may be an underlying causative factor in the
pathogenesis of this disease. The finding that mice lacking
TGase 1 have an ichthyosis-like phenotype (Matsuki et al,
1998; Kuramoto et al, 2002) supports the idea that reduced
TGase 1 activity can cause the disease. However, additional
evidence suggests that a substantial percentage of
ichthyosis patients have normal TGase 1 activity, indicating
that the disease is genetically heterogeneous (Huber et al,
1995a, b).

Control of TGase 1-dependent cross-linking The activity
of TGase 1, which is known to require calcium as a cofactor,
increases when cells are treated with calcium (Ogawa and
Goldsmith, 1976; Hennings et al, 1981; Goldsmith, 1983).
The increase in extracellular calcium is associated with an
increase in intracellular calcium (Hennings et al, 1989). The
observation that TGase 1 activity is calcium-dependent is
physiologically important, as increased calcium levels have
been reported in the suprabasal epidermal layers (Menon
et al, 1985). Moreover, for cultured epidermal keratino-
cytes, a standard method of triggering increased TGase
activity is shifting the cells from a low-calcium medium (0.09
mM calcium) to a culture medium containing 40.3 mM
calcium (Green, 1980; Li et al, 1995a, b). This shift results
in an increase in cornified envelope precursor protein ex-
pression, increased TGase level and activity (Eckert et al,
1997), and increased cornified envelope formation (Green,
1980; Hennings et al, 1989). Thus, calcium treatment in-
creases TGase 1 protein level, TGase 1 activity, and the
level of TGase 1 substrates (Hennings et al, 1981). Other
agents, for example phorbol ester and retinoic acid, also
influence TGase 1 level (Saunders et al, 1993; Medvedev
et al, 1999).

Table III. Transglutaminases (TGase) in surface epithelia

TGase Epidermal expression Cleavage modification
Subcellular
distribution Activity regulators

TGase 1 Expressed in spinous
and granular layers

Phosphorylation, myristylation,
palmitylation, cleavage
to release 10, 33, and 68
kDa products

Plasma membrane Calcium

TGase 2 Absent or minimal levels,
expressed under
specialized conditions

Cytosol Calcium, GTP,
GTPase cycle

TGase 3 Expressed in spinous
and granular layers

Zymogen to active form transition
involves protease cleavage at a site
in the flexible loop surrounding Ser469

(Ahvazi et al, 2002)

Cytosol Calcium, GTP,
GTPase cycle

TGase 5 Expressed in spinous and
granular layers of epidermis,
low level in basal layer
(Candi et al, 2002)

Nuclear matrix and
cytoskeleton (Candi et al, 2001)

Calcium, GTP
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Recently, a protein has been described that triggers
TGase-associated cell death in the absence of increased
extracellular calcium (Sturniolo et al, 2003). TIG3 is a mem-
ber of a family of type II tumor suppressors (DiSepio et al,
1998; Deucher et al, 2000). TIG3 protein is expressed at
very low levels, undetectable via immunoblot in cultured
keratinocytes, but TIG3 mRNA is detected. TIG3 protein is
detected in the suprabasal epidermal layers, in human ep-
idermis (Duvic et al, 2000). Vector-mediated delivery of the
TIG3 protein to keratinocytes results in substantial growth
suppression and dramatic morphological changes to pro-
duce cells that resemble cornified envelopes (Sturniolo et al,
2003). TGase mRNA and protein levels are not changed by
TIG3 expression, but TGase activity is increased. Detailed
studies reveal that TIG3 co-localizes with TGase 1 and that
TGase 1 activity is specifically increased at locations of co-
localization (Sturniolo et al, 2003). Moreover, TIG3 activates
TGase 1 in the absence of a level of extracellular calcium
normally required to activate TGase 1. Recent studies in-
dicate that TIG3 and TGase 1 co-precipitate, suggesting
that these proteins interact as part of a complex (Sturniolo
and Eckert, unpublished).

Lipids and TGase 1 As noted above, TGase 1 is unique
among TGase in that it is anchored to the plasma mem-
brane via a specific linkage. This location suggests that
TGase 1 activity and specificity could be influenced by the
membrane environment. Simon and Green showed that in-
volucrin is a TGase substrate when incubated with keratin-
ocyte membranes, and that glutamine496 is the preferred
site of cross-link formation (Simon and Green, 1988). Par-
allel studies revealed that additional glutamine residues
function as TGase substrate sites when the involucrin
protein is fragmented. This finding suggests that the overall
structure of the involucrin protein has a role in defining
which glutamine residues are selected for cross-link forma-
tion (Simon and Green, 1988). Steinert and coworkers
combined recombinant TGase 1 and involucrin in a lipid
vesicle system (Nemes et al, 1999b). Under these condi-
tions, both involucrin and TGase 1 bind to the vesicles.
Vesicle association of TGase 1 sensitizes the enzyme to
calcium—enzyme activity is optimal at 10 mM calcium
instead of at the 100 mM calcium concentration that is
required in a lipid-free system. When incubated with TGase
1 in solution, involucrin is labeled at multiple glutamine
residues; however, in the presence of the vesicles, gluta-
mine496 of involucrin is the primary TGase-reactive residue
(Nemes et al, 1999b). Thus, both involucrin structure and
TGase 1/involucrin association with membranes may
influence which substrate residues are selected for cross-
linking.

A role for lipids as TGase 1 substrates has also been
identified. The cornified envelope is composed of a layer of
covalently cross-linked proteins and a layer of associated
lipids (Wertz et al, 1989b; Elias and Feingold, 2001). It had
been proposed that ceramide lipids may be covalently
linked to the protein scaffolding (Wertz et al, 1989a). Ulti-
mately, Steinert and coworkers demonstrated that TGase 1,
when reconstituted with involucrin and a o-hydroxycer-
amide analog on phosphatidylserine vesicles, promotes lip-
id ester formation at Gln107, 118, 122, 133, and 496 of involucrin

(Nemes et al, 1999a). Three of these residues are sites of
ceramide modification of involucrin in vivo (Marekov and
Steinert, 1998). Thus, TGase 1 can also function to cross-
link lipids to the envelope.

TGase type 2 The TGM2 gene, which encodes TGase 2,
is located on chromosome 20q11–12 (Wang et al, 1994).
TGase 2 is only expressed in keratinocytes and other
surface epithelial cells under specific conditions. Vitamin A
treatment of cultured keratinocytes increases TGase
activity (Yuspa et al, 1982). This is surprising since vitamin
A treatment suppresses cornified envelope formation. It
turns out, however, that the induced TGase activity in
these experiments is TGase 2 (Lichti et al, 1985). It is
not clear why TGase 2 is increased under these conditions,
as vitamin A treatment of cultured ectocervical epithelial
cells results in a suppression of TGase activity and a
reduction in TGase 2 mRNA and protein level (Sizemore
et al, 1993). TGase 2 can function as a calcium-activated
cross-linking protein or as a guanine nucleotide-dependent
signaling protein. Activation of the cross-linking function is
associated with a reduction in its signaling activity and vice
versa. Thus, TGase 2 has multiple roles (Nakaoka et al,
1994).

TGase 2 plays an important role in wound healing. In fact,
wound healing in surface epithelia requires the concerted
action of several TGase. For example, Factor XIIIa is in-
volved in control of blood loss (i.e., clotting) after traumatic
injury, TGase 1, TGase 3, and TGase 5 are involved in
stabilization of resident keratinocytes, and TGase 2 is in-
volved in matrix repair and remodeling (Haroon et al, 1999;
Griffin et al, 2002; Zhang et al, 2004). For example, in rat
corneal epithelial wounds, TGase 2 mRNA and protein are
detected in migrating epithelial cells and the activity co-
localizes with high levels of extracellular matrix proteins,
suggesting a role in the maintenance of corneal integrity
and cell migration (Zhang et al, 2004). In addition, TGase 2
profoundly influences fibroblast function—both by regulat-
ing intracellular signaling pathways (Stephens et al, 2004)
and by regulating extracellular matrix remodeling (Griffin
et al, 2002). TGase 2 is released into and interacts with the
matrix in specific ways (Gaudry et al, 1999; Griffin et al,
2002). Thus, TGase 2 appears to have intracellular functions
in surface epithelial cells and in the underlying fibroblasts,
and to also have a role in stabilizing the extracellular matrix
(Griffin et al, 2002).

TGase type 3 The TGM3 gene, encoding TGase 3, is
located on chromosome 20q11–12 (Wang et al, 1994).
TGase 3 expression is increased in calcium-treated
keratinocytes by a mechanism that may involve interaction
of ets and Sp1 transcription factors with binding sites
in the TGM3 gene promoter (Lee et al, 1996; Kim
et al, 2004). TGase 3 is expressed in the upper epi-
dermal layers and is localized in the cytoplasm (Hitomi et al,
2003).

The TGase 3 zymogen consists of four folded domains
that share a common structure with other TGase. An N-
terminal b-sandwich domain, encompassing amino acids 1-
134, contains nine b-sheets intermingled with three a-hel-
ices. The catalytic core encompasses amino acids from

486 ECKERT ET AL THE JOURNAL OF INVESTIGATIVE DERMATOLOGY



Asn135 to Gly472 and includes 15 b-sheets interspersed with
15 a-helices. The longest of these helices encodes the
active site Cys272 residue (Ahvazi et al, 2002, 2004). Adja-
cent b-sheets encode the remaining two residues, His330

and Asp353, which comprise the active site triad. The barrel
1 and 2 domains span amino acids 473–592 and 593–692,
respectively. The active site is buried in a narrow cleft
formed by two b-sheets of the catalytic core and the barrel
1 c-terminus (Ahvazi et al, 2002). Residues 462–471 com-
prise a flexible loop that joins the last a-helix of the catalytic
domain to the first b-strand of barrel 1. Cleavage at Ser469,
within this loop, converts the zymogen form to a form that
can be activated by calcium. The zymogen form of TGase 3
contains one calcium ion per protein monomer. This calcium
ion is retained in the inactive and activated form and is
thought to be required for stability. For activation, however,
binding of two additional calcium ions is required. Binding of
the second calcium ion produces a minimal change in pro-
tein-active site conformation. Binding of the third calcium
ion, in contrast, produces a dramatic change in structure
that results in the opening of a channel. (Ahvazi et al, 2003).
The active channel forms a cone that extends inward to-
ward the catalytic triad (Ahvazi et al, 2002, 2003). Once the
zymogen is proteolytically cleaved in the 462–471 loop,
magnesium (intracellular concentration¼ 2 mM) fills the
third calcium binding site and the enzyme remains inactive.
Only when intracellular calcium levels rise does calcium
displace Mg2þ at site three and activate the enzyme. Thus,
TGase 3 activity requires the proteolytic cleavage of the
zymogen and the binding of calcium at three locations.
Once these requirements are met, cross-linking ensues
(Ahvazi et al, 2003; Ahvazi and Steinert, 2003). In addition,
TGase 3 activity is regulated by guanine nucleotides (Ahvazi
et al, 2004). Binding of GTP is associated with substitution
of Ca2þ with Mg2þ at the binding site three. This results in a
conformation change that closes the active site channel.
The channel remains closed as long as GTP is present;
however, when this GTP is hydrolyzed to GDP the enzyme
reverts to the active channel state. Both GTP and GDP bind
to a pocket formed between the core domain and the b-
barrel 1 domain (Ahvazi et al, 2004). The importance of the
GTP-associated regulation is not well understood, although
it may function in a manner similar to the GTPase function of
TGase 2 (Iismaa et al, 1997, 2000).

TGase 3 is also an auto-antigen in skin disease. Gluten
sensitivity typically presents as celiac disease, a common
chronic small intestinal disorder (Reif and Lerner, 2004).
In certain individuals, however, celiac disease is associated
with dermatitis herpetiformis, a blistering skin disease
characterized by granular IgA deposits in the papillary de-
rmis. Antibodies produced by dermatitis herpetiformis
patients show a high avidity for TGase 3 (Sardy et al,
2002). Moreover, the IgA precipitates that appear in the
papillary dermis of patients with dermatitis herpetiformis
contain TGase 3. These findings suggest that TGase 3 may
serve as the auto-antigen involved in producing the skin
phenotype.

TGase type 5 The gene encoding TGase 5 is localized on
chromosome 15q15.2 (Grenard et al, 2001). TGase 5 is ex-
pressed in the spinous and granular layers of human ep-

idermis (Candi et al, 2002), and TGase 5 expression in
cultured keratinocytes is increased by treatment with the
keratinocyte differentiating agent, calcium. Treatment of
keratinocytes with elevated calcium resulted in a transient
increase in TGase 5 mRNA, after 24 h of treatment, followed
by a return to the level observed in untreated cells by 72 h.
In contrast, the level of TGase 1 mRNA increases after 24 h
and remains elevated. Thus, the kinetics of accumulation of
the two TGase mRNA differs. RNA isolated from human
keratinocytes reveals the presence of full-length TGase 5
mRNA and three alternate splice products—delta 3, delta
11, and delta 3/11—in which exons 3, 11, or 3 and 11 are
absent (Candi et al, 2001). The spice products that lack
exon 11 have a shift in frame that results in the translation of
25 new amino acids followed by a premature stop codon.
Cell-free studies reveal that recombinant full-length and
delta 11 spiced forms of TGase 5 are active, while spiced
forms lacking the third exon (delta 3 and delta 3/11) are not
active (Candi et al, 2001). The N-terminus of TGase 5 is also
acetylated (Rufini et al, 2004).

Recombinant TGase 5 can utilize classical keratinocyte
TGase substrates, including involucrin, loricrin, SPR1, and
SPR2 (Candi et al, 1995). Moreover, the various TGase 5
forms have the expected reactivity - full-length and the
delta 11 splice variant are fully active for all substrates,
whereas the delta 3 and delta 3/11 splice variants are
not active. TGase 5-dependent cross-linking of loricrin re-
sults in the formation of loricrin multimers, indicating that
TGase 5 can utilize both glutamine and lysine residues from
loricrin—both inter- and intra-protein cross-links are
formed.

TGase 5 is half-maximally activated at 45 mM calcium
(Candi et al, 2004). Like TGase 2 (Nakaoka et al, 1994;
Iismaa et al, 2000), TGase 5 is regulated by nucleotides
(Candi et al, 2004). GTP and ATP inhibit the calcium-de-
pendent cross-linking activity of recombinant TGase 5. In
the presence of high calcium more GTP or ATP is required
to inhibit calcium-dependent cross-linking. This response
reflects the inverse relationship between TGase cross-link-
ing activity and the nucleotide-dependent signaling activity,
as previously reported for TGase 2 and TGase 3 (Iismaa
et al, 2000; Ahvazi et al, 2004). TGase 5 is a relatively un-
characterized enzyme; thus, it is not known how its GTPase
activity is involved in regulating cell function.

TGase 5 also displays an interesting in situ resistance to
extraction with detergent, salt and reducing agent. Due to
the low level of expression, TGase 5 has been studied in
keratinocytes by overexpressing the protein. Expressed
TGase 5 is not extracted from keratinocytes by non-ionic
detergents, reducing agent, varied ionic strength, or pH. It is
only extracted by treatment with SDS or urea—conditions
required to extract insoluble proteins. Cell fractionation
studies reveal that TGase 5 is associated with nuclear ma-
trix and the cytoskeleton. Confocal analysis indicates that
transfected TGase 5 is co-localized in a perinuclear location
with vimentin, but not with keratin intermediate filaments
(Candi et al, 2001). Thus, TGase 5 associates with insoluble
filamentous structures. TGase 5 level is also increased in
several epidermal diseases—it may contribute to the
hyperkeratotic phenotype observed in ichthyosis (Candi
et al, 2002).
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TGase—Progressive and Selective Roles in
Cornified Envelope Assembly

The experiments summarized in this review support several
conclusions. First, the conservation of protein cross-linking
sites, the morphological conservation of epidermal struc-
ture, and the ordered deposition of envelope precursors
suggest that assembly of the envelope is a directed process
(Eckert et al, 1993; Steinert, 1995). For example, mem-
brane-associated proteins, including desmoplakin, envopl-
akin, and periplakin, are always present at the plasma
membrane. Thus, it is not surprising that these proteins are
envelope components. An involucrin-enriched scaffolding is
constructed against this background of membrane-associ-
ated proteins (Eckert et al, 1993; Murthy et al, 1993; Steinert
and Marekov, 1997; Jarnik et al, 1998). The involucrin scaf-
folding then provides deposition sites for the cross-linking
of other envelope proteins, including cystatin A, proelafin,
SPR, and loricrin (Nemes and Steinert, 1999). Second, in
spite of the fact that the assembly is ordered, the system is
also resilient, since altering the expression of specific pre-
cursors does not produce a visible phenotype (Yoneda and
Steinert, 1993; Djian et al, 2000). This is in part due to the
fact that when one precursor is eliminated, for example by
gene ablation, the level of others is increased. Third, dis-
covery of three major TGase types in the epidermis, each
with a different localization, suggests different roles in as-
sembly. Several studies suggest that TGase may differen-
tially participate to produce the cornified envelope (Candi
et al, 1995, 1999; Tarcsa et al, 1997, 1998). For example,
TGase 3 utilizes SPR1 head domain A sequences as cross-
linking substrates, whereas TGase 1 utilizes SPR1 head
domain B sequences (Candi et al, 1999). Experiments with
SPR1 in the presence of both TGase 1 and TGase 3 indicate
that SPR1 will not polymerize in the absence of TGase 1.
This information suggests that each TGase has a specific
role in cross-link formation in vivo. TGase type-specific
patterns of cross-link formation are also observed for cross-
linking of loricrin (Candi et al, 1995). TGase 3 promotes the
formation of intrachain cross-links at favored lysine and
glutamine residues in loricrin, whereas TGase 1 catalyzes
the formation of loricrin multimers using many glutamine
and lysine residues. The loricrin residues selected for in vitro
cross-link formation by the combined action of TGase 1
and TGase 3 mirror the residues utilized for cross-link for-
mation in vivo (Candi et al, 1995). These findings, and the
observation that TGase 1, TGase 3, and TGase 5 are dif-
ferentially distributed at the subcellular level, suggest that
each TGase has distinct and complementary roles in enve-
lope assembly.
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