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Abstract

We study stability radii of linear Volterra–Stieltjes equations under multi-perturbations and affine per-
turbations. A lower and upper bound for the complex stability radius with respect to multi-perturbations
are given. Furthermore, in some special cases concerning the structure matrices, the complex stability ra-
dius can precisely be computed via the associated transfer functions. Then, the class of positive linear
Volterra–Stieltjes equations is studied in detail. It is shown that for this class, complex, real and positive
stability radius under multi-perturbations or multi-affine perturbations coincide and can be computed by
simple formulae expressed in terms of the system matrices. As direct consequences of the obtained results,
we get some results on robust stability of positive linear integro-differential equations and of positive linear
functional differential equations. To the best of our knowledge, most of the results of this paper are new.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Motivated by many applications in control engineering, problems of robust stability of dy-
namical systems have attracted a lot of attention from researchers during the last twenty years.
In the study of these problems, the notion of stability radius was proved to be a very effective
tool. By definition, the stability radius of a given asymptotically stable system ẋ(t) = Ax(t) is
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the maximal γ > 0 for which all the systems of the form

ẋ(t) = (A + DΔE)x(t), ‖Δ‖ < γ

are asymptotically stable. Here, Δ is unknown disturbance matrix, D and E are given matrices
defining the structure of the perturbations. Depending upon whether complex or real disturbances
Δ are considered this maximal γ is called complex or real stability radius, respectively. The basic
problem in the study of robustness of stability of the system is to characterize and compute these
radii in terms of given matrices A,D,E. It is important to note that these two stability radii are in
general distinct. The analysis and computation of the complex stability radius for systems under
structured perturbations has been done first in [6] in 1986 and extended later in many subsequent
papers (see [7] for a survey up till 1990) while the computation of the real stability radius, being
a much more difficult problem, was solved ten years later (with a very complicated solution) by
a group of international researchers, see [24].

The situation is much simpler for the class of positive systems. It has been shown in [25,26]
that if A is a Metzler matrix (that is, the system ẋ(t) = Ax(t), t � 0, is positive) and D, E are
nonnegative matrices, then the complex and real stability radii coincide and can be computed
directly by a simple formula. Then this result has been extended only in recent time to many var-
ious classes of positive systems such as positive continuous time-delay systems, see e.g. [27,28],
discrete time-delay systems, see e.g. [10,19] and positive linear functional differential equations,
see e.g. [22,29].

It is worth noticing that the notion of stability radius can be extended to various perturbation
types [7]. Among perturbation types, two of the following perturbation types

A → A +
N∑

i=1

DiΔiEi (multi-perturbation),

A → A +
N∑

i=1

δiAi (affine-perturbation)

are most well known in control theory and include perturbation types studied in the literature.
In this paper, we consider problems of computing stability radii of linear Volterra–Stieltjes

equations of the form

ẋ(t) = Ax(t) +
t∫

0

d
[
B(s)

]
x(t − s), t � 0, (1)

under multi-perturbations and affine perturbations of the matrix A and the matrix function B(·).
To the best of our knowledge, these problems have never been considered in the literature.
The present paper is based on our latest results on positive linear Volterra–Stieltjes equations
[15,17,18].

The organization of the paper is as follows. In the next section, we summarize some notations
and preliminary results which will be used in the sequel. In Section 3, after giving a brief back-
ground on linear Volterra–Stieltjes equations, we deal with the problem of computing stability
radii of linear Volterra–Stieltjes equations under multi-perturbations. A lower and upper bound
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for the complex stability radius with respect to multi-perturbations are given. Furthermore, in
some special cases concerning the structure matrices, the complex stability radius can precisely
be computed via the associated transfer functions. Then, for the class of positive linear Volterra–
Stieltjes equations, it will be shown that the complex, real and positive stability radius under
multi-perturbations coincide and a simple formula for their computation is established. Next, we
consider the problem of computing stability radii of positive linear Volterra–Stieltjes equations
under affine perturbations and an explicit formula for computing the stability radii is given. In
the last section, as particular cases of the obtained results, we present some results on robust sta-
bility of positive linear integro-differential equations and of positive linear functional differential
equations which are encountered frequently in applications. Finally, we give two examples to
illustrate the obtained ones.

2. Preliminaries

In this section we shall define some notations and recall some well-known results which will
be used in the subsequent sections. Let K = C or R where C and R denote the sets of all complex
and all real numbers, respectively. Let us denote

C
− := {z ∈ C: �z < 0}; C

+ := {z ∈ C: �z > 0}.
Then C = C

− ∪ C+. For integers l, q � 1, K
l denotes the l-dimensional vector space over K,

(Kl )∗ is its dual and Kl×q stands for the set of all l × q-matrices with entries in K. Inequalities
between real matrices or vectors will be understood componentwise, i.e. for two real matrices
A = (aij ) and B = (bij ) in R

l×q, we write A � B iff aij � bij for i = 1, . . . , l, j = 1, . . . , q .

We denote by R
l×q
+ the set of all nonnegative matrices A � 0. Similar notations are adopted for

vectors. For x ∈ K
n and P ∈ K

l×q we define |x| = (|xi |) and |P | = (|pij |). Then, it is easy to
see that |CD| � |C||D|. For any matrix A ∈ K

n×n the spectral radius and spectral abscissa of
A are denoted by ρ(A) = max{|λ|; λ ∈ σ(A)} and μ(A) = max{�λ;λ ∈ σ(A)}, where σ(A) :=
{s ∈ C; det(sIn − A) = 0} is the spectrum of A. A ∈ R

n×n is called a Metzler matrix if all off-
diagonal elements of A are nonnegative or, equivalently, tI + A � 0 for some t � 0. It is clear
that any A ∈ R

n×n+ is a Metzler matrix and, moreover, ρ(A) = μ(A).
A norm ‖ · ‖ on K

n is said to be monotonic if ‖x‖ � ‖y‖ whenever x, y ∈ K
n, |x| � |y|.

Every p-norm on K
n, 1 � p � ∞, is monotonic. Throughout the paper, if otherwise not stated,

the norm of a matrix P ∈ K
l×q is understood as its operator norm associated with a given pair

of monotonic vector norms on K
l and K

q , that is ‖P ‖ = max{‖Py‖; ‖y‖ = 1}. We note that
the operator norm is in general not monotonic norm on K

l×q even if K
l , K

q are provided with
monotonic norms. However, such monotonicity holds for nonnegative matrices. Moreover, we
have (see e.g. [26])

P ∈ K
l×q, Q ∈ R

l×q
+ , |P | � Q ⇒ ‖P ‖ �

∥∥|P |∥∥ � ‖Q‖. (2)

We now summarize in the following theorem some existing results on properties of Metzler
matrices which will be used in the sequel (see e.g. [1,26]).

Theorem 2.1. Suppose that A ∈ R
n×n is a Metzler matrix. Then:

(i) (Perron–Frobenius) μ(A) is an eigenvalue of A and there exists a nonnegative eigenvector
x � 0, x 
= 0 such that Ax = μ(A)x.



104 P.H.A. Ngoc / J. Differential Equations 243 (2007) 101–122
(ii) Given α ∈ R, there exists a nonzero vector x � 0 such that Ax � αx if and only if μ(A) � α.
(iii) (tIn − A)−1 exists and is nonnegative if and only if t > μ(A).
(iv) Given B ∈ R

n×n+ , C ∈ Cn×n. Then

|C| � B ⇒ μ(A + C) � μ(A + B). (3)

Let K
m×n be endowed with the norm ‖ · ‖ and C([α,β],K

m×n) be the Banach space of
all continuous functions on [α,β] with values in K

m×n normed by the maximum norm ‖φ‖ =
maxθ∈[α,β] ‖φ(θ)‖. Let J be an interval of R. For a matrix function φ(·) :J → R

m×n, we say
that φ(·) is nonnegative and denote it by φ(·) � 0 if φ(θ) � 0 almost everywhere on J. A matrix
function η(·) :J → R

m×n is called increasing on J , if

η(θ2) � η(θ1) for θ1, θ2 ∈ J, θ1 < θ2.

To make the presentation self-contained we present here some basic facts on vector-valued func-
tions of bounded variation and relative knowledge.

A matrix function η(·) : [α,β] → K
m×n is said to be of bounded variation if

Var(η;α,β) := sup
P [α,β]

∑
k

∥∥η(θk) − η(θk−1)
∥∥ < +∞,

where the supremum is taken over the set of all finite partitions of the interval [α,β]. The set
BV([α,β],K

m×n) of all matrix functions η(·) of bounded variation on [α,β] satisfying η(α) = 0
is a Banach space endowed with the norm ‖η‖ = Var(η;α,β).

Given η(·) ∈ BV([α,β],K
m×n) then for any continuous functions γ ∈ C([α,β],K) and

φ ∈ C([α,β],K
n), the integrals

β∫
α

γ (θ) d
[
η(θ)

]
and

β∫
α

d
[
η(θ)

]
φ(θ)

exist and are defined respectively as the limits of S1(P ) := ∑p

k=1 γ (ζk)(η(θk) − η(θk−1)) and
S2(P ) := ∑p

k=1(η(θk) − η(θk−1))φ(ζk) as d(P ) := maxk |θk − θk−1| → 0, where P = {θ1 =
α � θ2 � · · · � θp = β} is any finite partition of the interval [α,β] and ζk ∈ [θk−1, θk]. It is
immediate from the definition that

∥∥∥∥∥
β∫

α

γ (θ) d
[
η(θ)

]∥∥∥∥∥ � max
θ∈[α,β]

∣∣γ (θ)
∣∣‖η‖,

∥∥∥∥∥
β∫
d
[
η(θ)

]
φ(θ)

∥∥∥∥∥ � max
θ∈[α,β]

∥∥φ(θ)
∥∥‖η‖. (4)
α
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Let L :C([α,β],K
n) → K

n be a linear bounded operator. Then, by the Riesz representation
theorem, there exists a unique matrix function η(·) ∈ BV([α,β],K

n×n) which is continuous from
the right (or briefly c.f.r.) on (α,β) such that

Lφ =
β∫

α

d
[
η(θ)

]
φ(θ), ∀φ ∈ C

([α,β],K
n
)
. (5)

Finally, the following spaces will be used frequently in the subsequent sections

NBV
([α,β],K

l×q
) := {

η ∈ BV
([α,β],K

l×q
); η(α) = 0, η is c.f.r. on [α,β]}. (6)

NBV
(
R+,K

l×q
) :=

{
δ(·): R+ → K

l×q/δ(·) is c.f.r. on R+, δ(0) = 0,

and ‖δ‖ :=
+∞∫
0

∣∣dδ(s)
∣∣ < +∞

}
. (7)

3. Robust stability of linear Volterra–Stieltjes equations

3.1. A brief background on linear Volterra–Stieltjes equations

Consider a linear Volterra–Stieltjes equation of the form (1), where A ∈ R
n×n is a given matrix

and B(·) : R+ → R
n×n is a given matrix function of locally bounded variation on R+. Further-

more, we always assume that B(·) is normalized to be right-continuous on R+ and vanishes at 0.
From theory of Volterra integro-differential equations (see e.g. [3]), it is well known that there
exists a unique locally absolutely continuous matrix function R(·) : R+ → R

n×n such that

Ṙ(t) = AR(t) +
t∫

0

d
[
B(s)

]
R(t − s), a.e. on R+, R(0) = In. (8)

Then R(·) is called the resolvent of Eq. (1). Moreover, for a given f ∈ L1
loc(R+,R

n), the follow-
ing nonhomogeneous equation

ẋ(t) = Ax(t) +
t∫

0

d
[
B(s)

]
x(t − s) + f (t), t ∈ R+, (9)

has a unique locally absolutely continuous solution x(·) satisfying the initial condition x(0) = x0
and it is given by the variation of constants formula

x(t) = R(t)x0 +
t∫

0

R(t − s)f (s) ds, t ∈ R+, (10)

see e.g. [3].
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Definition 3.1. Let σ ∈ R+ and φ ∈ C([0, σ ],R
n). A vector function x(·) : R+ → R

n is called a
solution of Eq. (1) through (σ,φ) if x(·) is absolutely continuous on any bounded subinterval of
[σ,+∞) and satisfies (1) almost everywhere on [σ,+∞), x(t) = φ(t),∀t ∈ [0, σ ]. We denote it
by x(·, σ,φ).

Remark 3.2. By the fact mentioned above on solution of the nonhomogeneous equation (9), it
is easy to check that for a fixed σ ∈ R+ and a given φ ∈ C([0, σ ],R

n), there exists a unique
solution of Eq. (1) through (σ,φ) and it is given by the formula

x(t + σ,σ,φ) = R(t)φ(σ ) +
t∫

0

R(t − u)

{ u+σ∫
u

d
[
B(s)

]
φ(u + σ − s)

}
du, t ∈ R+. (11)

Definition 3.3. The zero solution of Eq. (1) is said to be uniformly stable (US) if for each ε > 0,
there exists δ > 0 such that

φ ∈ C
([0, σ ],R

n
)
, ‖φ‖ < δ ⇒ ∥∥x(t, σ,φ)

∥∥ < ε, ∀t � σ.

Definition 3.4. The zero solution of Eq. (1) is said to be uniformly asymptotically stable (UAS)
if it is US and if there exists δ0 > 0 such that ∀ε > 0, ∃T (ε) > 0:

φ ∈ C
([0, σ ],R

n
)
, ‖φ‖ < δ0 ⇒ ∥∥x(t, σ,φ)

∥∥ < ε, ∀t � T (ε).

If the zero solution of Eq. (1) is US (UAS) then we say that Eq. (1) is US (UAS), respectively.
In the rest of this paper, we suppose

+∞∫
0

∣∣dB(t)
∣∣ < +∞, (12)

that is B(·) ∈ NBV(R+,R
n×n). Then, the Laplace–Stieltjes transform of B(·) is defined by

B̃(z) :=
+∞∫
0

e−zs dB(s), (13)

which is well defined for every z ∈ C, �z � 0. Let us define

H(z) := zIn − A − B̃(z), (14)

for appropriate z ∈ C. Then, H(·) is called the characteristic matrix of Eq. (1). Denote by
σ(A,B(·)) the set of all roots of the characteristic equation of Eq. (1). That is,

σ
(
A,B(·)) := {

z ∈ C: detH(z) = 0
}
. (15)
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Theorem 3.5. (See [3,15].) Suppose (12) holds true. Then the following statements are equiva-
lent:

(i) σ(A,B(·)) ⊂ C
−;

(ii) the resolvent R(·) of Eq. (1) belongs to L1([0,+∞),R
n×n);

(iii) Eq. (1) is UAS.

3.2. Stability radii of linear Volterra–Stieltjes equations under multi-perturbations

Assume that Eq. (1) is UAS and A, B(·) are subjected to multi-perturbations of the type

A → AΔ := A +
N∑

j=1

D0jΔjE0j ,

B(·) → Bδ(·) := B(·) +
N∑

j=1

D1j δj (·)E1j . (16)

In other words, we consider perturbed systems of the form

ẋ(t) =
(

A +
N∑

j=1

D0jΔjE0j

)
x(t) +

t∫
0

d

[
B(s) +

N∑
j=1

D1j δj (s)E1j

]
x(t − s), t � 0. (17)

Here Dij ∈ Cn×lij , Eij ∈ Cqij ×n, i ∈ I := {0,1}, j ∈ N := {1,2, . . . ,N} are given matrices de-
termining the structure of perturbations and Δj ∈ K

l0j ×q0j , δj (·) ∈ NBV(R+,K
l1j ×q1j ), j ∈ N,

are unknown disturbances.
Denote by

[
Δ,δ(·)] := (

(Δ1, . . . ,ΔN),
(
δ1(·), . . . , δN (·))),

where Δj ∈ K
l0j ×q0j , δj (·) ∈ NBV(R+,K

l1j ×q1j ), j ∈ N. We shall measure the size of each
perturbation [Δ,δ(·)] by the norm

∥∥[
Δ,δ(·)]∥∥ :=

N∑
j=1

(‖Δj‖ + ∥∥δj (·)
∥∥)

. (18)

Denote by σ(AΔ,Bδ(·)) the set of all roots of the characteristic equation of the perturbed equa-
tion (17). That is

σ
(
AΔ,Bδ(·)

) :=
{

z ∈ C: det

(
zIn − AΔ −

+∞∫
0

e−zs dBδ(s)

)
= 0

}
. (19)

Recall that, by Theorem 3.5, a perturbed equation (17) is UAS if and only if σ(AΔ,Bδ(·)) ⊂ C
−.

Let us define
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DC := {[
Δ,δ(·)]: Δj ∈ C

l0j ×q0j ; δj (·) ∈ NBV
(
R+,C

l1j ×q1j
)
, j ∈ N

}
,

DR := {[
Δ,δ(·)]: Δj ∈ R

l0j ×q0j ; δj (·) ∈ NBV
(
R+,R

l1j ×q1j
)
, j ∈ N

}
,

D+ := {[
Δ,δ(·)]: Δj ∈ R

l0j ×q0j

+ ; δj (·) ∈ NBV
(
R+,R

l1j ×q1j
)
,

δj (·) is increasing on R+, j ∈ N
}
.

Then DC, DR, D+ is called respectively the class of complex, real, nonnegative perturbations.
In the sequel, we always define inf∅ = +∞, 0−1 = +∞. To study robustness of stability of

the linear Volterra–Stieltjes equation (1), we introduce the following.

Definition 3.6. Let the linear Volterra–Stieltjes equation (1) be UAS. The complex, real and
positive stability radius of the equation with respect to multi-perturbations of the form (16),
measured by the norm (18), is defined respectively by

rC = inf
{∥∥[

Δ,δ(·)]∥∥:
[
Δ,δ(·)] ∈ DC, σ

(
AΔ,Bδ(·)

) 
⊂ C
−}

,

rR = inf
{∥∥[

Δ,δ(·)]∥∥:
[
Δ,δ(·)] ∈ DR, σ

(
AΔ,Bδ(·)

) 
⊂ C
−}

,

and

r+ = inf
{∥∥[

Δ,δ(·)]∥∥:
[
Δ,δ(·)] ∈ D+, σ

(
AΔ,Bδ(·)

) 
⊂ C
−}

.

From the definition, it is easy to see that

0 < rC � rR � r+ � +∞. (20)

We define the associated transfer functions G(i,j ;u,v) : C \ σ(A,B(·)) → C
qij ×luv of the per-

turbed system (17) by setting

G(i,j ;u,v)(z) = EijH(z)−1Duv, i, u ∈ I ; j, v ∈ N. (21)

Lemma 3.7. Suppose Eq. (1) is UAS. Let i0 ∈ I, j0 ∈ N be fixed. Then:

(i) For given matrices D ∈ C
n×l and E ∈ C

q×n, we get

max
z∈C,�z�0

∥∥∥∥∥E

(
zIn − A −

+∞∫
0

e−zs dB(s)

)−1

D

∥∥∥∥∥

= max
z∈C,�z=0

∥∥∥∥∥E

(
zIn − A −

+∞∫
0

e−zs dB(s)

)−1

D

∥∥∥∥∥. (22)

(ii) If G(i0,j0; i0,j0)(z0) 
= 0, for some z0 ∈ C, �z0 = 0, then there exists a complex perturbation
[Δ,δ(·)] ∈DC such that

∥∥[
Δ,δ(·)]∥∥ = 1

‖G (z )‖ (23)

(i0,j0; i0,j0) 0
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and

σ
(
AΔ,Bδ(·)

) 
⊂ C
−. (24)

Moreover, if G(i0,j0; i0,j0)(0) ∈ R
qi0j0×li0j0+ and G(i0,j0; i0,j0)(0) 
= 0, then there exists a nonnega-

tive perturbation [Δ,δ(·)] ∈ D+ satisfying (23)–(24) for z0 = 0.

Proof. (i) First, we note that F(z) := ‖E(zIn − A − ∫ +∞
0 e−zs dB(s))−1D‖ is well defined on

the domain C+ and is a subharmonic function on C
+ := {z ∈ C, �z > 0}, see e.g. [5, p. 100].

Moreover, it is easy to see that lim|z|→+∞,�z�0 F(z) = 0. Therefore, by the extended maximum
principal of subharmonic functions (see e.g. [11]), we get (i).

(ii) By the definition of operator norm, there exists a vector u0 ∈ C
li0j0 ,‖u0‖ = 1, such that

‖G(i0,j0; i0,j0)(z0)‖ = ‖G(i0,j0; i0,j0)(z0)u0‖. Then, by the Hahn–Banach theorem, there exists a
linear form y∗ ∈ (Cqij )∗ of dual norm ‖y∗‖ = 1 such that

y∗G(i0,j0; i0,j0)(z0)u0 = ∥∥G(i0,j0; i0,j0)(z0)u0
∥∥.

Define

Δ0 := ∥∥G(i0,j0; i0,j0)(z0)
∥∥−1

u0y
∗ ∈ C

li0j0×qi0j0 .

It is easy to see that ‖Δ0‖ = ‖G(i0,j0; i0,j0)(z0)‖−1. Set

x0 :=
(

z0In − A −
+∞∫
0

e−z0s dB(s)

)−1

Di0j0u0.

Then, we get Δ0Ei0j0x0 = u0, which implies that x0 
= 0. Thus, x0 = (z0In − A −∫ +∞
0 e−z0s dB(s))−1Di0j0Δ0Ei0j0x0. It follows that

(
z0In − (A + Di0j0Δ0Ei0j0) −

+∞∫
0

e−z0s dB(s)

)
x0

=
(

z0In − A −
+∞∫
0

e−z0s d
[
B(s) + Di0j0δ0(s)Ei0j0

])
x0 = 0,

where δ0(s) := (
∫ s

0 e(z0−1)τ dτ )Δ, s ∈ [0,+∞). We consider two separate cases as follows:

– If i0 = 0, then we set Δ := (Δ1, . . . ,ΔN) where Δj = Δ0, if j = j0 otherwise Δj = 0 and
δ(·) := (δ1(·), . . . , δN (·)) = (0, . . . ,0). Then it is easy to see that [Δ,δ(·)] ∈ DC satisfies
(23)–(24).

– If i0 = 1, then we set Δ := (Δ1, . . . ,ΔN) = (0, . . . ,0) and δ(·) = (δ1(·), . . . , δN (·)), where
δj (·) = δ0(·), if j = j0 otherwise δj (·) = 0. Then, [Δ,δ(·)] ∈DC satisfies (23)–(24).
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Moreover, if G(i0,j0; i0,j0)(z0) ∈ R+qi0j0×li0j0 for z0 = 0 then we have

∥∥G(i0,j0; i0,j0)(0)
∥∥ = max

u∈R
li0j0+ ,‖u‖=1

∥∥G(i0,j0; i0,j0)(0)u
∥∥,

see e.g. [12]. Thus we can choose u0 ∈ R
li0j0+ so that ‖u0‖ = 1, ‖G(i0,j0; i0,j0)(0)u0‖ =

‖G(i0,j0; i0,j0)(0)‖. Since G(i0,j0; i0,j0)(0)u0 � 0 there exists by a theorem of Krein and Rutman
[14] a positive linear form y∗ ∈ (Cqi0j0 )∗ of dual norm ‖y∗‖ = 1 such that y∗G(i0,j0; i0,j0)(0)u0 =
‖G(i0,j0; i0,j0)(0)u0‖. Hence the perturbation [Δ,δ(·)] constructed as above belongs to D+. This
completes our proof. �

Using the above lemma we obtain the following estimates for the complex stability radius.

Theorem 3.8. Let Eq. (1) be UAS. Assume that A,B(·) are subjected to multi-perturbations of
the form (16). Then

1

maxi,u∈I ; j,v∈N {maxz∈C,�z=0 ‖G(i,j ;u,v)(z)‖}

� rC � 1

maxi∈I ; j∈N {maxz∈C,�z=0 ‖G(i,j ; i,j)(z)‖} . (25)

In particular, if Dij = D for all i ∈ I , j ∈ N or Eij = E for all i ∈ I , j ∈ N , then

rC = 1

maxi∈I ; j∈N {maxz∈C,�z=0 ‖G(i,j ; i,j)(z)‖} . (26)

Proof. Obviously, (26) is immediate from (25), if Dij = D for all i ∈ I , j ∈ N or Eij = E for
all i ∈ I , j ∈ N . Let [Δ,δ(·)] ∈ DC be a destabilizing disturbance, that is σ(AΔ,Bδ(·)) 
⊂ C

−. It
follows that there exist a nonzero x0 ∈ C

n and z0 ∈ C,�z0 � 0 such that

(
z0In −

(
A +

N∑
j=1

D0jΔjE0j

)
−

+∞∫
0

e−z0s d

[
B(s) +

N∑
j=1

D1j δj (s)E1j

])
x0 = 0.

This implies

H(z0)x0 =
(

N∑
j=1

D0jΔjE0j +
+∞∫
0

e−z0s d

[
N∑

j=1

D1j δj (s)E1j

])
x0,

where H(·) is given by (14). Since Eq. (1) is UAS, it follows that

x0 = H(z0)
−1

(
N∑

j=1

D0jΔjE0j +
N∑

j=1

D1j

+∞∫
e−z0s d

[
δj (s)

]
E1j

)
x0. (27)
0
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Let i0 ∈ I , j0 ∈ N be indexes such that ‖Ei0j0x0‖ = max{‖Eijx0‖: i ∈ I, j ∈ N}. From (27),
it follows that Ei0j0x0 
= 0. Multiplying Eq. (27) with Ei0j0 from the left and taking norms, we
deduce that

N∑
j=1

(∥∥Ei0j0H(z0)
−1D0j

∥∥‖Δj‖ + ∥∥Ei0j0H(z0)
−1D1j

∥∥∥∥∥∥∥
+∞∫
0

e−z0s dδj (s)

∥∥∥∥∥
)

� 1. (28)

Since ‖ ∫ +∞
0 ez0θ d[δj (θ)]‖ � ‖δj (·)‖, j ∈ N , (28) yields

(
max

i,u∈I ; j,v∈N

∥∥G(i,j ;u,v)(z0)
∥∥) N∑

j=1

(‖Δj‖ + ∥∥δj (·)
∥∥)

� 1.

Thus, (
max

i,u∈I ; j,v∈N

{
max

z∈C,�z�0

∥∥G(i,j ;u,v)(z)
∥∥})∥∥[

Δ,δ(·)]∥∥ � 1,

or equivalently,

∥∥[
Δ,δ(·)]∥∥ � 1

maxi,u∈I ; j,v∈N {maxz∈C,�z=0 ‖G(i,j ;u,v)(z)‖} ,

by Lemma 3.7(i). By the definition of the complex radius rC, we get

rC � 1

maxi,u∈I ; j,v∈N {maxz∈C,�z=0 ‖G(i,j ;u,v)(z)‖} .

It remains to prove that

rC � 1

maxi∈I ; j∈N {maxz∈C,�z=0 ‖G(i,j ; i,j)(z)‖} .

However, this inequality directly follows from Lemma 3.7(ii) and the definition of rC. This com-
pletes our proof. �

As noted in the Introduction, the problem of computation of the real stability radius is much
more difficult. It has been solved firstly for ordinary linear differential systems of the form
ẋ(t) = Ax(t), t � 0, where the system matrix A is subjected to single perturbations and then
extended to linear time-invariant time-delay differential systems in only recent time, see [13,24].
However, the obtained formulae for the real stability radii in these papers are very complicated.
We note that, by definition, rC � rR, so rC can be accepted as the lower bound for rR. Unfortu-
nately, as shown in many previous papers (see e.g. [7]) these two stability radii can be arbitrarily
distinct. Therefore, it is an interesting problem to find classes of systems of practical interest
for which these two stability radii coincide. Motivated by the results of [8,9,19–22,27–29] and
basing on our new results on positive linear Volterra–Stieltjes equations [15], in the rest of this
subsection, we show that for the class of positive linear Volterra–Stieltjes equations, the positive,
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real and complex stability radius under multi-perturbations coincide and can be computed by a
simple formula.

Definition 3.9. Equation (1) is called positive, if for every σ � 0 and every φ ∈ C([0, σ ],R
n),

φ(·) � 0, the corresponding solution x(·, σ,φ) is also nonnegative, that is x(t, σ,φ) � 0, ∀t � σ.

Theorem 3.10. (See [15].) Equation (1) is positive if and only if A ∈ R
n×n is a Metzler matrix

and B(·) is an increasing matrix function on R+.

The following theorem offers an explicit criterion for uniformly asymptotic stability of posi-
tive linear Volterra–Stieltjes equations.

Theorem 3.11. (See [15].) Suppose that Eq. (1) is positive. Then, Eq. (1) is UAS if and only if
μ(A + ∫ +∞

0 dB(t)) < 0.

To prove the main results of this paper, we need the following technical lemma.

Lemma 3.12. Suppose Eq. (1) is UAS, positive and D ∈ R
n×l+ , E ∈ R

q×n
+ . Let H(·) be the char-

acteristic matrix of Eq. (1) defined by (14). Then:

(i)
∣∣H(z)−1x

∣∣ � H(0)−1|x|, ∀x ∈ C
n, (29)

for every z ∈ C, �z � 0. In particular, H(0)−1 is a nonnegative matrix.

(ii) max
z∈C,�z�0

∥∥∥∥∥E

(
zIn − A −

+∞∫
0

e−zs dB(s)

)−1

D

∥∥∥∥∥ =
∥∥∥∥∥E

(
−A −

+∞∫
0

dB(s)

)−1

D

∥∥∥∥∥. (30)

Proof. (i) Since Eq. (1) is positive, A is a Metzler matrix and B(·) is increasing on R+. For every
z ∈ C,�z � 0, by Theorem 2.1(iv), we get

μ

(
A +

+∞∫
0

e−zs dB(s)

)
� μ

(
A +

+∞∫
0

e−�zs dB(s)

)
� μ

(
A +

+∞∫
0

dB(s)

)
.

On the other hand, because Eq. (1) is UAS, we get μ(A + ∫ +∞
0 dB(s)) < 0, by Theorem 3.11.

Therefore, μ(A + ∫ +∞
0 e−zs dB(s)) < 0, for every z ∈ C, �z � 0. For a fixed z ∈ C, �z � 0, we

can represent the following

(
zIn −

(
A +

+∞∫
0

e−zs dB(s)

))−1

x =
+∞∫
0

e−zθ eθ(A+∫ +∞
0 e−zs dB(s))x dθ, x ∈ C

n, (31)

see e.g. [16]. As A is a Metzler matrix, there exists a real number α0 > 0 such that
(A + α0In) � 0. Since (A + α0In) � 0 and B(·) is increasing on R+, it follows that

eα0θ
∣∣eθ(A+∫ +∞

0 e−zs dB(s))
∣∣ = ∣∣eα0θIneθ(A+∫ +∞

0 e−zs dB(s))
∣∣ = ∣∣eθ((A+α0In)+∫ +∞

0 e−zs dB(s))
∣∣

� eθ((α0In+A)+∫ +∞
0 dB(s)) = eα0θ eθ(A+∫ +∞

0 dB(s)), θ � 0.
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This implies that

∣∣eθ(A+∫ +∞
0 e−zs dB(s))

∣∣ � eθ(A+∫ +∞
0 dB(s)), θ � 0, z ∈ C, �z � 0. (32)

Taking (31), (32) into account, we get

∣∣∣∣∣
(

zIn − A −
+∞∫
0

e−zs dB(s)

)−1

x

∣∣∣∣∣ �
+∞∫
0

eθ(A+∫ +∞
0 dB(s)) dθ |x|

=
(

−A −
+∞∫
0

dB(s)

)−1

|x|,

for every z ∈ C,�z � 0.

(ii) Since D,E are the nonnegative matrices, it follows from (i) that

∣∣∣∣∣E
(

zIn − A −
+∞∫
0

e−zs dB(s)

)−1

Dx

∣∣∣∣∣ � E

(
−A −

+∞∫
0

dB(s)

)−1

D|x|, x ∈ C
n,

for every z ∈ C, �z � 0. By monotonicity property of the vector norm and the definition of
operator norm, we get

∥∥∥∥∥E

(
zIn − A −

+∞∫
0

e−zs dB(s) dt

)−1

D

∥∥∥∥∥ �
∥∥∥∥∥E

(
−A −

+∞∫
0

dB(s)

)−1

D

∥∥∥∥∥,

for every z ∈ C,�z � 0. This completes our proof. �
We are now in the position to prove the main result of this paper.

Theorem 3.13. Let Eq. (1) be positive and UAS. Assume that A,B(·) are subjected to multi-

perturbations of the form (16) where Dij ∈ R
n×lij
+ , Eij ∈ R

qij ×n

+ , i ∈ I , j ∈ N . If Dij = D for all
i ∈ I , j ∈ N or Eij = E for all i ∈ I , j ∈ N then

rC = rR = r+ = 1

maxi∈I, j∈N ‖G(i,j ; i,j)(0)‖ .

Proof. By (26) and Lemma 3.12(ii), we get

rC = 1

max ‖G (0)‖ . (33)

i∈I, j∈N (i,j ; i,j)
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Since Eq. (1) is UAS, positive and Dij ∈ R
n×lij
+ , Eij ∈ R

qij ×n

+ , i ∈ I , j ∈ N , it follows from

Lemma 3.12(i) that G(i,j ; i,j)(0) ∈ R
qij ×lij
+ , for all i ∈ I , j ∈ N. By the definition of r+ and

Lemma 3.7(ii), we get

r+ � 1

maxi∈I, j∈N ‖G(i,j ; i,j)(0)‖ . (34)

Finally, it follows from (33), (34) and the inequalities rC � rR � r+ that

rC = rR = r+ = 1

maxi∈I, j∈N ‖G(i,j ; i,j)(0)‖ . �
3.3. Stability radii of positive linear Volterra–Stieltjes equations under affine perturbations

We now deal with the problem of computing stability radius of positive linear Volterra–
Stieltjes equations of the form (1) under affine perturbations. To do this, we assume that Eq. (1)
is UAS and A,B(·) are subjected to affine perturbations of the form

A � A +
N∑

i=1

αiAi, B(·) � B(·) +
N∑

i=1

βiBi(·), (35)

where Ai ∈ R
n×n,Bi(·) ∈ NBV(R+,R

n×n), i ∈ N are given and αi,βi ∈ K (K = R,C), i ∈ N,

are unknown scalars.
In other words, we consider perturbed equations of the form

ẋ(t) =
(

A +
N∑

i=1

αiAi

)
x(t) +

t∫
0

d

[
B(s) +

N∑
i=1

βiBi(s)

]
x(t − s), t � 0. (36)

Suppose that A is a Metzler matrix and B(·) is increasing on R+ under which the linear Volterra–
Stieltjes equation (1) is positive. Furthermore, we assume that Ai ∈ R

n×n+ and Bi(·) is increasing
on R+ for every i ∈ N . Then, we define the complex and the real stability radius of the linear
Volterra–Stieltjes equation (1) under affine parameter perturbations (35) by setting, for K = C

and, respectively, K = R,

ra
K

= inf

{
max

(
max
i∈N

|αi |;max
i∈N

|βi |
)

: αi,βi ∈ K,

(
A +

N∑
i=1

αiAi, B(·) +
N∑

i=1

βiBi(·)
)


⊂ C
−
}

. (37)

Similarly, the positive stability radius ra+ is obtained by restricting, in the above definition, the
disturbances (α,β) := ((αi)i∈N, (βj )j∈N) to be nonnegative.

It is clear that

0 < ra
C

� ra
R

� ra+. (38)
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The following theorem proves that the equalities in (38) hold true and gives an explicit formula
for stability radii ra

K
, ra+ (K = C,R).

Theorem 3.14. Suppose that the linear Volterra–Stieltjes equation (1) is UAS and A,B(·) are
subjected to affine perturbations of the form (35). If the stability radii of the equation are given
by (37) then

ra
C

= ra
R

= ra+ = 1

μ[(−A − ∫ +∞
0 dB(s))−1(

∑N
i=1 Ai + ∑N

i=1

∫ +∞
0 dBi(s))]

. (39)

Proof. We first prove that

ra+ = 1

μ[(−A − ∫ +∞
0 dB(s))−1(

∑N
i=1 Ai + ∑N

i=1

∫ +∞
0 dBi(s))]

.

Let (α,β) = ((αi)i∈N, (βi)i∈N) be an arbitrary nonnegative destabilizing perturbation, that is

σ

(
A +

N∑
i=1

αiAi,B(·) +
N∑

i=1

βiBi(·)
)


⊂ C
−.

Then, there exist a complex number z,�z � 0, and a nonzero vector x ∈ C
n such that

((
A +

N∑
i=1

αiAi

)
+

+∞∫
0

e−zs d

[
B(s) +

N∑
i=1

βiBi(s)

])
x = zx.

Because Eq. (1) is UAS, this implies that

(
zIn − A −

+∞∫
0

e−zs dB(s)

)−1( N∑
i=1

αiAi +
N∑

i=1

βi

+∞∫
0

e−zs dBi(s)

)
x = x.

Since Eq. (1) is positive, Ai ∈ R
n×n+ and Bi(·) is increasing on R+ for every i ∈ N . Using (29),

we obtain the following estimates

|x| =
∣∣∣∣∣
(

zIn − A −
+∞∫
0

e−zs dB(s)

)−1( N∑
i=1

αiAi +
N∑

i=1

βi

+∞∫
0

e−zs dBi(s)

)
x

∣∣∣∣∣
�

(
−A −

+∞∫
0

dB(s)

)−1∣∣∣∣∣
(

N∑
i=1

αiAi +
N∑

i=1

βi

+∞∫
0

e−zs dBi(s)

)
x

∣∣∣∣∣
�

(
−A −

+∞∫
dB(s)

)−1( N∑
i=1

αiAi +
N∑

i=1

βi

+∞∫
dBi(s)

)
|x|
0 0
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� γ

[(
−A −

+∞∫
0

dB(s)

)−1(
N∑

i=1

Ai +
N∑

i=1

+∞∫
0

dBi(s)

)]
|x|,

where γ := max{maxi∈N αi,maxi∈N βi}. Because

B :=
[(

−A −
+∞∫
0

dB(s)

)−1(
N∑

i=1

Ai +
N∑

i=1

+∞∫
0

dBi(s)

)]

is a nonnegative matrix, it follows from Theorem 2.1(ii) that

μ(B) � 1

γ
> 0.

Hence,

γ � 1

μ(B)
.

Since this holds for arbitrary destabilizing nonnegative perturbation (α,β), we conclude that

ra+ � 1

μ(B)
.

We shall prove that the converse inequality holds true. In fact, by Theorem 2.1(i) (Perron–
Frobenius), there exists a nonzero vector y ∈ R

n+ such that By = μ(B)y. This implies that

((
A0 +

N∑
i=1

1

μ(B)
Ai

)
+

+∞∫
0

d

[
B(s) +

N∑
i=1

1

μ(B)
Bi(s)

])
y = 0.

It means that the nonnegative perturbation (α∗, β∗) defined by α∗
i = 1/μ(B), β∗

i = 1/μ(B),
i ∈ N, is destabilizing. By the definition of ra+, we have

ra+ � 1

μ(B)
.

Thus, we obtain

ra+ = 1

μ(B)
= 1

μ[(−A − ∫ +∞
0 dB(s))

−1
(
∑N

i=1 Ai + ∑N
i=1

∫ +∞
0 dBi(s))]

.

We are now ready to show that ra
C

= ra
R

= ra+. Let (α,β) = ((αi)i∈N, (βj )j∈N) be an arbitrary
complex destabilizing perturbation. By a similar argument as the above, we get

[(
−A −

+∞∫
dB(s)

)−1( N∑
i=1

|αi |Ai +
N∑

i=1

|βi |
+∞∫

dBi(s)

)]
|x0| � |x0|, (40)
0 0
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for some x0 ∈ C
n, x0 
= 0. By Theorem 2.1(ii),

μ

[(
−A −

+∞∫
0

dB(s)

)−1( N∑
i=1

|αi |Ai +
N∑

i=1

|βi |
+∞∫
0

dBi(s)

)]
� 1.

Since C := (−A − ∫ +∞
0 dB(s))−1(

∑N
i=1 |αi |Ai + ∑N

i=1 |βi |
∫ +∞

0 dBi(s)) is a nonnegative ma-
trix, using Theorem 2.1(i) again, we have Cx1 = μ(C)x1, for some nonzero vector x1 ∈ R

n+.
This gives

((
A0 +

N∑
i=1

|αi |
μ(C)

Ai

)
+

+∞∫
0

d

[
B(s) +

N∑
i=1

|βi |
μ(C)

Bi(s)

])
x1 = 0,

which means that

(|α|, |β|) :=
(( |αi |

μ(C)

)
i∈N

,

( |βi |
μ(C)

)
i∈N

)

is a nonnegative destabilizing perturbation. Hence, it follows from the definition of ra+ that

max

(
max
i∈N

( |αi |
μ(C)

)
,max

i∈N

( |βi |
μ(C)

))
� ra+,

or

max
(

max
i∈N

|αi |,max
i∈N

|βi |
)

� μ(C)ra+ � ra+,

which implies that ra
C

� ra+. In combining with the inequalities ra
C

� ra
R

� ra+, it implies that
ra
C

= ra
R

= ra+. In addition, from the above arguments, we observe that ra
C

= ra
R

= ra+ = +∞ if
and only if μ(B) = 0. This completes our proof. �
4. Particular cases and examples

In this section, we consider particular cases of Theorems 3.13 and 3.14 which are most fre-
quent in applications. Then, we illustrate the obtained results by two simple examples.

4.1. Robust stability of positive linear integro-differential equations

We now consider a linear Volterra integro-differential equation of convolution type

ẋ(t) = Ax(t) +
t∫

0

C(s)x(t − s) ds, t ∈ R+, (41)

where A ∈ R
n×n and C(·) ∈ L1(R+,R

n×n) are given.
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Note that Eq. (41) can be rewritten in the form (1) with B(t) = ∫ t

0 C(s) ds, t ∈ R+. By
C(·) ∈ L1(R+,R

n×n), (12) holds true. Then, it follows from Theorem 3.10 that Eq. (41) is posi-
tive if and only if A ∈ R

n×n is a Metzler matrix and C(·) � 0.

The following theorems are straightforward from Theorems 3.13 and 3.14, respectively.

Theorem 4.1. Suppose Eq. (41) is positive, UAS and E ∈ R
q×n
+ , Dij ∈ R

n×lij
+ (i ∈ I , j ∈ N) are

given. Then a perturbed equation of the form

ẋ(t) =
(

A +
N∑

j=1

D0jΔjE

)
x(t) +

t∫
0

(
C(s) +

N∑
j=1

D1j δj (s)E

)
x(t − s) ds, t � 0,

where Δj ∈ R
l0j ×q , δj (·) ∈ L1(R+, R

l1j ×q), j ∈ N , is still UAS if

N∑
j=1

(
‖Δj‖ +

+∞∫
0

∥∥δj (s)
∥∥ds

)
<

1

maxi∈I, j∈N {‖E(−A − ∫ +∞
0 C(s) ds)−1Dij‖}

.

Theorem 4.2. Suppose Eq. (41) is positive, UAS. Let Ai ∈ R
n×n+ , Ci(·) ∈ L1(R+,R

n×n),
Ci(·) � 0, i ∈ N , be given. Then a perturbed equation of the form

ẋ(t) =
(

A +
N∑

i=1

αiAi

)
x(t) +

t∫
0

(
C(s) +

N∑
i=1

βiCi(s)

)
x(t − s) ds, t � 0,

where αi,βi ∈ R (i ∈ N) is still UAS if

max
(

max
i∈N

|αi |,max
i∈N

|βi |
)

<
1

μ[(−A − ∫ +∞
0 C(s) ds)−1(

∑N
i=1 Ai + ∑N

i=1

∫ +∞
0 Ci(s) ds)] .

4.2. Robust stability of positive linear functional differential equations

Let h be a given positive number and let us consider a linear functional differential equation
of the form

ẋ(t) = Ax(t) +
h∫

0

d
[
η(s)

]
x(t − s), t � h, (42)

where A ∈ R
n×n and η(·) ∈ NBV([0, h],R

n×n) are given.
It is well known that for an initial function φ ∈ C([0, h],R

n), Eq. (42) has a unique solution
x(·, φ) satisfying the initial condition

x(t) = φ(t), t ∈ [0, h], (43)

see e.g. [2,4].
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Definition 4.3. Equation (42) is called positive if for every initial function φ ∈ C([0, h],R
n)

being nonnegative, the corresponding solution x(·, φ) is also nonnegative.

It is important to note that if the matrix function B(·) in Eq. (1) is defined by

B(s) :=
{

η(s) if s ∈ [0, h),

η(h) if s ∈ [h,+∞),
(44)

then Eq. (1) coincides with Eq. (42) on the interval [h,+∞). Therefore, we get the following.

Theorem 4.4. (See [15].) Equation (42) is positive if and only if A ∈ R
n×n is a Metzler matrix

and η(·) is an increasing matrix function on [0, h].

Before stating the next results, we recall the notion of exponential stability of the linear func-
tional differential equations of the form (42).

Definition 4.5. Equation (42) is said to be exponentially stable if there exist M � 1 and α > 0
such that for every initial function φ ∈ C([0, h],R

n) the corresponding solution x(·, φ) satisfies∥∥x(t, φ)
∥∥ � Me−αt‖φ‖, ∀t � 0.

Furthermore, it is well known that Eq. (42) is exponentially stable if and only if its characteris-
tic equation has no zeros in the closed right half plane. That is det(zIn − A − ∫ h

0 e−zt dη(t)) 
= 0,
∀z ∈ C, �z � 0, see e.g. [2,4,23].

As in the above subsection, the following theorems directly follow from Theorems 3.13 and
3.14, respectively.

Theorem 4.6. Suppose Eq. (42) is exponentially stable, positive and E ∈ R
q×n
+ , Dij ∈ R

n×lij
+

(i ∈ I , j ∈ N) are given. Then a perturbed equation of the form

ẋ(t) =
(

A +
N∑

j=1

D0jΔjE

)
x(t) +

h∫
0

d

[
η(s) +

N∑
j=1

D1j δj (s)E)

]
x(t − s), t � h,

where Δj ∈ R
l0j ×q , δj (·) ∈ NBV([0, h],R

l1j ×q), j ∈ N , is still exponentially stable if

N∑
j=1

(‖Δj‖ + ‖δj‖
)
<

1

maxi∈I, j∈N {‖E(−A − η(h))−1Dij‖} .

Theorem 4.7. Suppose Eq. (42) is exponentially stable, positive. Let Ai ∈ R
n×n+ , i ∈ N , be given

matrices and let ηi(·) ∈ NBV([0, h],R
n×n) be a given increasing matrix function for every i ∈ N .

Then a perturbed equation of the form

ẋ(t) =
(

A +
N∑

i=1

αiAi

)
x(t) +

h∫
d

[
η(s) +

N∑
i=1

βiηi(s)

]
x(t − s), t � 0,
0
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where αi,βi ∈ R (i ∈ N) is still exponentially stable if

max
(

max
i∈N

|αi |,max
i∈N

|βi |
)

<
1

μ[(−A − η(h))−1(
∑N

i=1 Ai + ∑N
i=1 ηi(h))] .

Remark 4.8. Theorems 4.6, 4.7 which are the main results of [22], have just been found by
ourselves in only recent time.

4.3. Examples

Example 4.9. Consider a linear positive Volterra differential equation in R2 given by

ẋ(t) = Ax(t) +
t∫

0

B(t − τ)x(τ ) dτ, x(t) ∈ R
2, t � 0, (45)

where

A =
( −3 1

0 −3

)
, B(t) =

(
e−t 0

1
(t+1)2 e−t

)
, t � 0.

By Theorem 3.11, it is easy to see that Eq. (45) is UAS. We now consider a perturbed equation
of the form

ẋ(t) = AΔx(t) +
t∫

0

Bδ(τ)x(t − τ) dτ, x(t) ∈ R
2, t � 0, (46)

where

AΔ =
( −3 + 2a1 1 + 2a2

0 −3

)
, Bδ(t) =

(
e−t 0

1
(t+1)2 + δ1(t) e−t + δ2(t)

)
, t � 0,

where a1, a2 ∈ R and δ1(·), δ2(·) ∈ L1([0,+∞),R) ∩ C([0,+∞),R) are unknown.
It is important to note that we can rewrite AΔ and Bδ(·) in the following form

AΔ = A + D1ΔE, Bδ(·) = B(·) + D2δ(·)E,

where

D1 =
(

2
0

)
, D2 =

(
0
1

)
and E = I2,

and

Δ = (a1, a2), δ(·) = (
δ1(·), δ2(·)

)
.
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Assume that R
2 is endowed with 2-norm, by Theorem 4.2, the system (46) is still UAS if

√
a2

1 + a2
2 +

+∞∫
0

√
δ2

1(t) + δ2
2(t) dt <

3
√

5

10
.

Example 4.10. Consider a positive linear functional differential equation

ẋ(t) = −x(t) +
1∫

0

e−sx(t − s) ds, t � 0, x(t) ∈ R. (47)

Equation (47) can be represented of the form (42), with η(s) = 1 − e−s , s ∈ [0,1]. By The-
orem 3.11, it is easy to see that (47) is exponentially stable. Assume that the system (47) is
perturbed as follows

ẋ(t) = (−1 + δ0)x(t) +
1∫

0

(
e−s + 2006Δ1(s) + 2007Δ2(s)

)
x(t − s) ds, (48)

where δ0 ∈ R is an unknown parameter scalar and Δ1(θ),Δ2(θ) are unknown integrable func-
tions on [0,1]. This perturbed system can be rewritten in the form

ẋ(t) = (−1 + δ0)x(t) +
1∫

0

d
[
η(θ) + 2006δ1(s) + 2007δ2(s)

]
x(t − s), (49)

where

δ1(s) =
s∫

0

Δ1(τ ) dτ, δ2(s) =
s∫

0

Δ2(τ ) dτ, s ∈ [0,1].

By Theorem 4.7, we conclude that the perturbed system (48) is exponentially stable for all δ0 ∈ R,
Δ1(·),Δ2(·) ∈ L1([0,1],R) satisfying

|δ0| +
1∫

0

∣∣Δ1(θ)
∣∣dθ +

1∫
0

∣∣Δ2(θ)
∣∣dθ <

1

2007e
.
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