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INTRODUCTION 

I~ THIS paper we prove that the Godbillon-Vey invariant is the complete invariant for 
C~-foliated cobordism classes of those foliated S~-bundles over oriented surfaces whose 
structural group reduces to a certain discrete group G (for the definition of G, see §1). It 
should be noted that these cobordism classes contain Thurston's examples in [25] (see 1.3, 
4.5, 5.2) and the Godbillon-Vey invariant for these classes ranges through the whole real 
numbers (Thurston[25], Brooks [2, 3]). 

The Godbillon-Vey invariant is the only invariant known by now for o,~'f~,~, the group 
of foliated cobordism classes of oriented 3-manifolds with oriented codimension one 
foliations. There are several foliations whose Godbillon-Vey invariants are known to be 
zero (Wallet[28], Herman[9], Nishimori[18], Morita-Tsuboi[17], Mizutani-Morita- 
Tsuboi[14], Duminy-Sergiescu[30], Tsuchiya[31]). Some of them are known to be 
cobordant to zero (Mizutani [13], Sergeraert [24], Fukui [6], Oshikiri [19], 
Mizutani-Morita-Tsuboi [15], Tsuboi[26]). In the construction of their null cobordisms, 
the theory of the behavior of leaves of these foliations plays an essential role. 

In the case of our foliated S l-bundles, however, the behavior of leaves seems to be quite 
complicated (Sacksteder [21], Hector[8], Raymond [20]). In order to obtain our main result 
(Theorem 1.1), we use the homological properties of the discrete group G; in particular, 
the calculation of H2(SL(2, R); Z') = K2(2, R) by Sah-Wagoner[23], and the fact that the 
Godbillon-Vey class coincides with a non-zero multiple of the Euler class for flat 
SL(2, R)-bundles [2, 3]. 

In §1, we give the precise definition of G and state our result. In §2, we give several 
results obtained from those Of Sah-Wagoner [23]. We consider, in §3, the relative homology 
H2(G, R), where R is the subgroup consisting of rotations, and we will see that it is 
isomorphic to a countable direct sum of R's. In ~4 we construct a homomorphism from 
H:(G, R) to H3(BI~I~), and we complete the proof of our theorem in §5. 

§1. DEFINITION OF G AND THE STATEMENT OF THE RESULT 

First, we define the group G. 
Let G1 be the group PSL(2, •) = SL(2, •)/Z2. For a positive integer n, let p,: G.~G1 

be the n-fold cyclic covering; then G. has a topological group structure such that p, is a 
homomorphism. 

Consider the subgroup RI of G~ which consists of rotations. For neN,  we put 
Rn=p,-'(R~). Then as a topological group, R~ is isomorphic to R/Z; 

R 1 _~ R ,  "~ . . . .  R n "~ . . . .  ~/~_ 

We fix these isomorphisms. 
For n~N, let G ¢") be the free product of Gi (i = 1 . . . . .  n) with amalgamation 
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RI = Rz = " '" = R,; 
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G ~"~= Gt*G2* '"*G, /RI  = R 2  = " ' "  = R n .  

Then we have a direct system of groups; 

G o) % G (2) % . . .  ¢~ G (n) c, . . . .  

We define G to be the direct limit group; 

lim 
G = , G (~). 

We have the subgroup R of rotations of  G which corresponds to the subgroups of rotations 
R ~ = R 2 = " "  = R ,  c G  ~"). 

G1 acts on the Poincar6 half-plane by the linear fractional transformations, hence on 
the boundary of it, which is S t. This action is conjugate to that on S 1 considered as the 
set of  lines of  R 2 through the origin, induced by the linear action of SL (2, R) on R2. The 
group G, acts on S t, the n-fold cyclic covering of S 1 and the actions of R, and R, on S t 
are compatible with respect to the isomorphism R, ~ Rt. Therefore G ~") acts on S t and so 
does G. These actions are orientation preserving C~-actions (actually real analytic 
actions), so we have a homomorphism G~Dif f+~(St ) ,  where Diff+®(S ') denotes the 
group of orientation preserving smooth diffeomorphisms of S ~. (This homomorphism is 
probably injective, but the author has not been able to prove it.) 

Now we consider foliated St-bundles whose structural group reduces to the discrete 
group G. For these foliated bundles, there exists a classifying space BG. Naturally, in the 
second cohomology group of  the group G, i.e., in that of the space BG, there are defined 
the Euler class e~H2(G,Z )  and the Godbillon-Vey class gv~H2(G, R) (see [2]). 
Brooks[2, 3] showed that gv: H2(G, Z)--*R is surjective. 

Our main result is the following theorem. 

THEOREM 1.1. Let ~ be a foliated St-bundle over a closed oriented surface Z. Suppose 

that the structural group of  ~ reduces to the discrete group G. Then the foliation of  ~ is 
C~°-foliated cobordant to zero i f  and only/fgv(~)[~] = 0, where gv(~) is the Godbillon-Vey 
class gv pulled back to He(Z, R) by the classifying map ~ . ~ B G .  

Since a foliated oriented Sl-bundle is a r ' rstructure on the total space of the bundle, 
we have the following homomorphisms: 

and 

s.: H2(G.; Z)--*H3(Brt~; 7/) 

s: H2(G; 2~)~H3(Br't~°; Z). 

Let GVdenote the Godbillon-Vey class in H3(BF't~; R). Of course gv = G V  o s. Since -~'~,t 
is isomorphic to H3(Br'~°~; Z) (see e.g. [26]), Theorem 1.1 is equivalent to the following 
theorem. 

THEOREM 1.2. The restriction o f  GV  to s(H2(G; Z)) is an isomorphism onto R; 

GV: s(H2(G: Z)) ~ R. 
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Remark 1.3. Thurston's examples given in [25] are contained in t~(H2(GI, R~; 7:)) (see 
4.5, 5.2) which coincides with s(H2(G; 7/)). 

§2. SECOND HOMOLOGY OF (7, 

In this section, we study the structure of  H2(G,; 7:). 
For a perfect group G, we have the universal central extension o: U-*G, and kerv is 

isomorphic to H~(G; Z) (see Milnor[12]). This isomorphism is given as follows: Any 
element x of  H2(G; Z) is represented by a homomorphism ~,: n~(~k, .)--+G, where ~E k is a 
closed oriented surface of genus k. Take generators ai (i = 1 . . . . .  2k) of  n~(Zk, *) so that 
nl(Zk, *)~,.~al . . . .  ,a~: [al, a2] . . .  [aa_l,  a~] = 1). For each i (i = 1 . . . . .  2k), choose an 
element ~J (a~) of  U such that o (~ (a~)) = ~, (a~). Then y = [~/(a~), ~, (a2~)] . . .  [ ~ ' - ~ - 0 ,  ~' (a'-~)] 
belongs to ker v. This y is independent of the choices of the homomorphism ~, the 
generators of  n~(Zk, *) and the lifts ~, (a~), and this is the element of  kerv which corresponds 
to x ~ H~(G, Z). 

In the case of the perfect group SL(2, R), we have the Steinberg group St(2, R) as the 
universal central extension of it. Moreover, in [23, (1.18)], Sah and Wagoner proved the 
following result. 

PROPOSITION 2.1 (Sah-Wagoner [23]). 1-12((72; 7:) ffi H2(SL(2; R); 7:) ( = K2(2, R) in the 
usual notation) is a direct sum of an infinite cyclic group X2 and a Q-vector space }'2. As 
subgroups of St (2, R), by using the Steinberg symbols, the generators of the subgroups X2, 
Y2 of H2(G~;Z) are described multiplicatively as follows: X2 is generated by 
c ( -  1, - 1) = hi2(-- 1) 2 = wl:(-- 1) 4. Y2 is generated by c(u, v) = h12(u)h12(v)h12(uv) -l where 
U, V > 0 .  

Using the following equality of  Moore ([16], I .emma 3.2; [23], (1.9)) 

c(t, s)c(s, t)-1 = c(t 2, s) = c(s 2, t )- i  = h12(t)h12(s)h12(t)-lh12(s)-l, 

and the fact that the homomorphism o: St(2, R)-*SL(2, R) maps ht2(u) to the element 

(0:1) 
we can see that c(u, v) (u, v > 0)~ Y2 c H2(G2; 7:) is represented by a 2-cycle 

v°)) -((0 
that is, it is represented by a homomorphism ~: n~(T 2, . ) ~  Z2--,G: such that 

and 

~k(1, 0)-- u_l/~ 

l,--(0 0) 
V-I " 

From Moore's equality, we can also see that c(u, v) is bimultiplicative if both u and v are 
positive. 

Since G~ is the quotient group of G2 by the center ( -Z2 ) ,  the composition 
St(2, R)-*Gz-*G 1 is the universal central extension of G~. Moreover, since G, is a central 
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extension of G,, we have a homomorphism St(2, ~)--*G. which is the universal central 
extension of G.. These facts imply the following proposition. 

PROPOSITION 2.2. For any positive integer n, H2(G,; Z) is a direct sum of  an infinite cyclic 
group X. and a Q-vector space Y,. As a subgroup of  St(2, •), X, is generated by 
hi : ( -  1)" = wl2 ( -  1) 2" and Y, = Y2. 

It follows from this proposition that the projection H2(G.; Z)~X~  coincides with the 
Euler class (up to sign according to conventions). For the Euler class factors through this 
projection and, by Milnor[11] and Wood[29], there exists a fiat G.-bundle with the Euler 
class "one". 

Remark. Sah-Wagoner[23] proved that Y2 is a Q-vector space of dimension equal to 
the continuum. This implies that there are many non-zero elements of H2(G2; 7/) which are 
represented by (f, g)-(g,f) 's  with f,  g belonging to a one parameter subgroup of G2. In [26], 
however, the author proved that it is not the case for H2(DiffK~(R); 7/). Precisely, i f f  and 
g belong to a one parameter subgroup of Diffr~(R) generated by a smooth vectorfield on 
R, then (f, g ) - ( g , f )  is homologous to zero. 

Now we prove the following lemma. 

LEMMA 2.3. Let i.; R.-*G. be the inclusion for  n ~ N .  Then i..(Hz(R.; Z)) = II.. 

Proof  o f  Lemma 2.3 for  n = 2. (In this case, this lemma may be implicitely proved in 
[23].) First, since R2 is the subgroup consisting of all rotations, H:(R2; 7/) is divisible. 
Therefore, 6.(H2(R2; Z ) ) c  Y2. 

We prove that any 2-cycle 

x y y 0 X x _ ~ )  ) ( x , y > 0 )  ((0 0)(o 0)) 0 
is homologous to a union of 2-cycles of the-form (rl, r2)-(r2, r0 (rl, r2~R2). By the 
bimultiplicativity, it suffices to prove it when 1 < y < x < x/~. 

Let V be the complement of an open tubular neighborhood of the link of Fig. 1 in S 3. 
Let a, b, c be the element of n,(V, .) corresponding to the meridians and let A, B, C be 
those corresponding to the longitudes. Then we have 

n~(V, , )  = (a, b, c, A, B, C: aA = Aa, bB = Bb, cC = Cc, 

ba - 1ca = A, cb - ~ab = B, ac -tbc = C) .  

b 

Fig. 1. 
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We shall define a homomorph ism ~b: n,(V, , ) + S L ( 2 ,  R) such that 

and 

Put 

~b(a)= ( 0  x0-,), ~ ( A a - ' ) = ( O  y0_l), 

[trace ~(b) I < 2, [trace ~(c) I < 2. 

A calculation shows that a homomorph ism ~,: n~(V,,)--,SL(2, R) with given ~,(a), 
~,(Aa-~), ~(b) exists if x, y, s, t, u, v satisfy the following equation 

v2x2y2 + sv(x 2 + y2) + s = __ (y= _ x4)/(1 _ x2). 

Then, we have 

vxy - t y / x~  
~(c)= - u x / y  s/(xy) ]" 

Since we assumed that 1 < y < x < x/~, we can choose s, t, u, v so that 

and 
Itrace #(b)  I = Is + v I < 2 

[trace ~(c) I = Ivxy + s/(xy) I < 2. 

(In fact, we can put  s = v = (x4-y2)l/:((x 4 -  1)(y:+ 1)) -I/: and t = 1.) Thus our cycle 
Z(x, y) is homologous to 

- ( ( e l ( b ) ,  e l ( a ) )  - ( ¢ , ( S ) ,  ¢ , ( b ) ) )  - ( (~ , ( c ) ,  ¢ ( C ) )  - ( ¢ ( C ) ,  $ ( c ) ) ) .  

Since ~k(b)~k(B) = ~k(B)~k(b), ~k(c)~k(C) = d/(C)d/(c) and [trace ¢,(b) I < 2, 
Itrace~,(c)l < 2, ~(b), ~,(B) and ~,(c), ~,(C) are simultaneously conjugate to pairs of  
elements of  R2, respectively. Since inner automorphisms act trivially on the homology of 
a group, (~,(b), ~ , (B ) ) -  (~(B), ~(b)) and (~,(c), ~ ( C ) ) -  (~,(C), ~,(c)) are homologous  
to 2-cycles of  the form (r~, r2) - (r~, rl) (rl, r2ER2). 

Proof of Lemma 2.3 for general n. First we note that, for n ~N, the homomorph i sm 
(P, lRn),: H2(R.; Z)--,H:(R~; Z) is induced by the chain map  which maps a base (f ,g)  
(f, g6R.) of C2(R.) to (p.(f), p.(g)). Since, under the isomorphism R~ ~ R~ ~ R/Z, (pnlR.): 
R/Z--, R/Z is the multiplication by n, the homomorph ism ~p.lR.),: H2(R.; Z)--,H2(R~; Z) is 
surjective. 

Now the commutat ive diagram 

i n 

Rn , Gn 

1 lp° 
R1 ~ G1 

i l  
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gives the following commutative diagram: 

in ,  
H2(R.; Z) , H2(G.; 7/) 

l,°. 
n~(n,;  7/) , n~(G,; 7/). 

i l ,  

We also note that p . . :  H:(G.; Z)~H2(G~; 7/) coincides with the inclusion X. ~ Y.--*X~ ~ YI 

of subgroups of  St(2, R). 
If  n = 2, the above diagram implies that i1.(H2(R~: 7/))= I"1, because we know that 

i2.(Hz(R2;7/))= Y2. Then, if n > 3, the above diagram again implies that 
i.,(Hz(R.; 7/)) = Y.. 

§3. SECOND HOMOLOGY OF (G, R) 

In this section we show that the second homology H2(G, R; 7/) of the pair (G, R) is a 
countable direct sum of  R's. 

Let H be a subgroup of  a group G, and consider the classifying spaces B H  and BG. 
We may assume that these are obtained as realizations of semi-simplicial complexes 
associated to these groups, and that B H  is a subcomplex of BG. Let H~(G, H; Z) denote 
the relative homology group H,(BG, BH; 7/) (i >__ 0). 

Considering BR, as a subcomplex of BG~, we can construct the classifying space BG ~) 
as the space obtained from the disjoint union of BG~ (i = 1 . . . . .  n) by identifying the 
subcomplexes BR~ (i = 1 . . . . .  n); 

BG t")= BG1U . . .  UBG./BR1 = "'" = BR.. 

Then the classifying space BG is obtained as the direct limit 
The homology exact sequence for (BG., BR.) is as follows: 

l ira I* BG~"). 

• k n ,  
Hz(R.; Z)~-~ H2(G.; 7/) ---. H2(G., R.; 7/) ~ HI(R.; 7/)---* HL(G.; 7/), 

Here, H2(G.; Z) = X . ( ~  Y., X. _-_ 7/by Proposition 2.2, i..(H2(R.; 7/)) = y. by Lemma 2.3, 
R. is commutative and G. is perfect, i.e. HI(G.; 7/) = 0. Hence we have an exact sequence 

0 ---. X. ---. Hz(G., R.; 7/) ---. g .  ---* O. 

Now we prove the following lemma. 

LEMMA 3.1. There exists an isomorphism q.: H2(G,,. R,,; ~) ---* • such that the .folhm'ing 
diagram commutes. 

0-- ,  X.----, H2(G ., R.; ~_)---* R.---*O 

O--,Z , ~ , ~/7/---~ 0, 

where the first row is the above exact sequem'e and R,, ~ ~/Z  is the f ixed isomorphbm. 

Proof. Let eS.: (~.~G. be the topological univcrsal covering, and put R,, = {5,, ~(R,,). 
Note that t~.---* G. is a central extension. 
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First we define a homomorphism r.: H2(G., R.; 7/)---~ R. as follows. Since BR.  is 
connected, any element x of  H2(G., R.;7/) is represented by a homomorphism q,: 
rq(Zk - /~z ,  .)  ~ G. such that ~b (3(Y:k - / 9 2 ) ) e R .  where Y~k - / ~ 2  is a closed oriented surface 
of  genus k taken off a small disk in it, and *e0(~k- /~2) .  Choose generators a~ 
(i = 1 . . . . .  2k) of  ~ r ~ ( Y ~ k  - -  132, *) so that [a(Ek --/32)] = [a~, az] • • • [a~_ ~, azd. 
For each i. choose an element ~-'~) of  G. such that os.(qJ(a~'-"))= ~,(a~); then 
y = [~k(al), ~b(a2)]... [~,(a~_~), ~k(a~)] is an element of  -g.. This y is independent of  the 
choices of  the homomorphism ~O, generators of  n~(Ek--/~ 2, . )  and lifts ~,(a~). We put 
r.(x) = y. It is easy to see that r. is a well-defined homomorphism. 

If x comes from H2(G.; Z), i.e. xek.,(H2(G.; Z)), then r . (x)eker  o5. and r.(x) is given 
by Milnor's algorithm for computing the Euler class (Milnor[l 1], Wood[29]). Thus we 
have the following commutative diagram: 

o--,x.--, H~(G.. R.; 7/)--* R.--, 0 

04--*7/ ' R .  ' R.---~ 0, 

where r~, is an isomorphism ([11, 29]). Consequently, r. is an isomorphism. 
Identifying the second row with 0--* Z--* R-~ R/7/--.0, we obtain the desired isomorphism 

qn. 

The homomorphism p.: G.~G~ induces a homomorphism 
H2(G., R.; 7/)--*H2(G~, Rt; 7/). Since, in the commutative diagram 

Pn* : 

0 ~ x . - - . / 4 2 ( a . ,  R.; 7/) -- .  R. ---, 0 
+p., +p., +p. 

0 ---, X1 ~ H2(GI, R1; 7/)---' R1 ---' O, 

p..: X . ~ X I  is the multiplication by n under the identifications X. ~ 7, X~ - 7/ and p.: 
R....*RI is also the multiplication by n under the identifications R. ~- R/7/, R1 - R/7/, we 
have the following formula. 

LEMMA 3.2. q. = (1/n)q~.. .  

Now we consider the exact sequence of  the pair (BG, BR): 

k 
H2(R; 7/) ~ H2(G; Z) ---. H2(G, R; 7). 

By excision, we have 

H2(G. R; Z) ~ . ~  H2(G., R.; Z). 

We write by L the projection H2(G, R; Z)~H2(G.,  R.; Z). 
We remark here that we can write down the Euler class and the Godbil lon-Vey class 

by q. and j'. by using Milnor's algorithm ([11, 29]) and a result of  Brooks ([2, 3]). 

and 
e = Z q.Lk 

gv = C Y. n 2qj,  k, 

where C is a non-zero constant. We will explain the latter later. 
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§4. HOMOMORPHISM H2(G, R; Z)--.Ha(BF~; Z) 
In this section, we study the image of s.: H2(G.; Z)~H3(Br'~; Z), and we will define 

a homomorphism t.: H2(G., R.; Z)~H3(Br~,~; Z) such that tfl¢~ = s.. To compare t. and 
4P.. we use the following lemma. 

LEMMA 4.1. Let (M, .~)  be a t't~-structure on a closed oriented 3-manifold. Let p: 
Mt")--*M be an n-foM branched covering whose branching locus is a compact codimension 
2 submanifoM of M. Let (M ~), ,,ugh.)) be the induced r~t°°-structure. Then, (M ~"), ~"))  is 
r~l~-Cobordant to a disjoint union of n copies of (M, ~ ) .  

Proof Let z: n(M, ,ge)~(M, X') be the trivial n-fold covering. Let X be the space 
obtained from the mapping cylinders of  p and z by identifying the images of p and z, X 
has the induced r't~-structure £r. Consider the classifying map B£r: X - - . B I ~ ;  then we 
have 

OBY" = B.,~(")U ( -  nB,~), 

where B,,Ug ~") and B,,~g ' are the classifying maps for (M ~"), ,,ug,~,)) and (M, #g), respectively. 
Since f23(Bl~l ~) = H3(Br'i~; Z)[4], we have proved Lemma 4.1. 

As a colollary to this lemma, we have 

Corollary 4.2. s, = nstP,.. 

For, if an element x of H2(G~; Z) corresponds to a homomorphism ~O: nt(E, , ) ~ G ,  with 
E being a closed oriented surface, p~.(x) corresponds to p.oqJ : n~('r,, *)--*Gt. It is easy to 
see that there is an n-fold covering map between the corresponding foliated St-bundles 
which respects the l"t°%structures. 

For the homomorphism s., we have the following lemma. This is a special case of our 
theorem for foliated St-bundles whose structural groups reduce to G.. Note that in this 
case the Godbillon-Vey class is proportional to the Euler class[2, 3]. 

LEMMA 4.3. ker s~ = Y~. 

Proof Every generator of  Y. is represented by a foliated S t-bundle over a torus whose 
structural group reduces to R. (Lemma 2.3) and this foliation can be defined by a 
non-vanishing closed 1-form. Hence this foliation is C~-foliated cobordant to zero, that 
is, Y. c ker s.. On the other hand, since for these bundles, the GodbiUon-Vey class is a 
non-zero multiple of the Euler class and the Euler class is nothing but the projection 
H2(G,; Z)--*X,, we have Y, D kers~. 

The above lemma implies that there exists a well defined homomorphism g,: 
Im k,--,H3(BI~°°; Z) such that ~.k~ = s~. By Corollary 4.2, we also have g. = ngtp~.. We shall 
define a homomorphism t,: H2(G,,R,;Z)--.H3(BI't~;Z) so that t,k.=s~, t,=nttp,.,  
s = Z t,j.k and GVt~ = Cn2q~j.k with C being a non-zero constant. 

n 

In order to define t~, we need a l~,~-structure ~ ( ' )  on D 2, the 2-disk. 
Let q: [0, 1/2]---,R be a C~%function such that tl(x)=O, xe[O, 1/3] and r / (x )>0 ,  

x~(1/3, 1/2]. Let f :  (1/3, 1]-*R be a C~-function such that f ( x ) = 0 ,  x~[2/3, 1] and 
(f'(x)) -l = r/(x), x~(1/3, 1/2]. 

First we define a C~-foliation a~ of [0, 1] x R, invariant under translations in the 
direction of R. For 0 ~ R, put 

Lo= {(x,y)~[0, 1] x R; y = f ( x )+O,  x~(1/3, 1]}, 
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and for re[0, 1/3], put 

L ; =  {(x,y)e[0,  1] × ~; x = r ,  y e ~ } .  

Then the foliation ~ is defined by 

= {Lo; 0 e R} O {L;; r e [0, 1/31}. 

Consider the map p' :  [0, 1] x R---,D2= {(x,y)eR2; x 2 + y 2 <  1} defined by 
p',(r,O) = ( r  cos (2rtO /n ), r sin (2nO /n )). Since ~ is invariant under translations, we 
have a l~ - s t ruc tu re  ~t") on D 2 satisfying p~*~f't") = ~ .  Note that ~f'(") is invariant under 
rotations. 

For a rotation ~, let a ~ ( ~  ~")) denote the "suspended r'~-structure"; more precisely, 
a~(~f ~(")) is the l~ - s t ruc tu re  of  D 2 x S ~ = D 2 x [0, 1]/(z, 0) ,-- (~(z), 1) which is induced 
from the product 1~ ~-structure (D 2 x [0, 1], ~f't") x [0, 1]). tr~(~f 't")) is well defined since at 
preserves ~f'("). This l~l=-structure is not defined as foliation along {0} x S 1. If  one prefers 
to remain always in the category of  foliations, one can put a Reeb component along 
{0} x S ~ without changing the following argument. 

Let p": D2---,D 2 be the n-fold branched covering map defined by p" (r cos0,  
r sin 0 ) =  (r cos nO, r sin nO). Then we have p"*,,W ~) = ~(") and p" induces an n-fold 
branched covering map p.: D ~ x S~--,D ~ x S ~ such that a ~ ( ~  (")) = p*(tr.(.,'f'(~))). 

Now we define the hohaomorphism t,: H2(G., R.;7_)--,H3(Br~; Z). Any element 
xeH:(G,,  R.; 7/) is represented by a continuous map b: (N, aN)--,(BG., BR~), where N is 
a compact oriented 2-manifold with ON consisting of  m circles (m can be zero). Then the 
boundary of  the foliated S~-bundle ~ associated to b consists of  foliated S~-bundles over 
m (oriented) circles with the holonomies being rotations ~q . . . . .  ~tm. We attach (D ~ x S ~, 
a~,(~("))) (i = 1 . . . .  ,m)  to the boundary of  ~'~; then tr~,(~t"))'s and ,a~- define a 
l"l~-structure ~'~ on the resulted closed oriented 3-manifold. 

By the following lemma, we define t.(x) to be the class of  ~-~ in H~(BI'~=; Z) 

LEMMA 4.4. The class of  ~qT; b in H3(BI"1=; 7/) is independent of  the choice orb. 

Proof. Let b': (N', aN')--,(BG., BR~) represent also x; then there exist a compact 
oriented 3-manifold W and a continuous map fl: W--,BG. such that 
a W = N t 3 M U ( - N ' ) ,  M being a 2-manifold, N f q M = 0 N ,  N ' I 3 M = a N '  and 
fl(M) c BR~[4]. Since the r~ - s t ruc tu re  of  the foliated S~-bundle corresponding to fl laW 
is homologous to zero, the difference between ~'b and ~'b, is homologous to ~'pIM. 

On the other hand, since fl(M) c BR,, defines a "foliated disk bundle" over M. 
More precisely, since ~f'(") is invariant under R., there exists a r~ ~-structure ~ on the 2-disk 
bundle over M associated to fl I M, which is transverse to the fibers with the restriction to 
a fiber isomorphic to ~f~t") and with the holonomy given by fl IM. It is easy to see that the 
boundary of  ~ is precisely ~-alM. Thus we have proved Lemma 4.4. 

Remark 4.5. The above construction of  ~-b is a generalization of  Thurston's examples 
given in [25] where he used a continuous map b from a 2-disk with small open disks deleted 
to (BGI, BR~) to represent a class of  H2(G~, R~) and constructed ~'b. Thus his examples are 
in the image of  ft. 

Remark 4.5'. To obtain ~'b, it is not necessary to use the same ~'(") for every boundary 
component. In fact we can use any r l  e-structure on the 2-disk with a non-foliation point 
at the center which is invariant under rotations and transverse to the boundary circle. Then 
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we modify the proof of Lemma (4.4) as follows: the difference between ~b  and ~b' is 
homologous to ~ 1 ~  as before. The l"t~-structure ~alu is a foliation almost without 
holonomy off the non-foliation points and trivial in a neighborhood of the non-foliation 
points. (The non-foliation points correspond to the center of the 2-disk.) We can see that 
the holonomy of any compact leaf is contained in a one parameter group of germs of 
diffeomorphisms generated by a germ of a C~-vectorfield. Moreover, since B(M) c BR,, 
the Novikov transformations of components bounded by compact leaves are contained in 
the group of translations of ~. Thus, by a result of Mizutani-Morita-Tsuboi [15], ~'~lu is 
l~t~-cobordant to zero. (However, for simplicity, we use the fixed ~'(~) in the rest of this 
paper.) 

By Lemma 4.4, tn is well defined. It is easy to see that t~ is a homomorphism and 
t~k~ = s~. Note that we can always represent an element x ~H:(G~, R,) by a map b: (Y.~ - /~2,  
d(~.~-I~2))--*(BG,,BR.), that is, a homomorphism ~: n~(~.k-D2,.)--.G~ with 
o~ = I~(d(Z k - - ~ 2 ) ) =  dx~R,.  Then we write ~'~ as ~'~,O aox(,~e(")). 

LEMMA 4.6. t. = nttp... 

Proof. Let x~H2(G.,R~;7/) be represented by ~: nt(Y,k-/~2,*)--*Gn such that 
~t = ~k(a(Y-.k- D2))~R.. Then t~(x) is given by ~',Ua~(.,~ a(~)) by definition. On the other 
hand, p~.(x) is represented by p. o ~. Since p, o ~ ((3(Y~ k -/~2)) = n~ERt, tlp..(x) is repre- 
sented by 5Jp, o~Utr~(,,~tl)). Now we have an n-fold branched covering map 
ffn:D2x St---~D2x S t such that tr~(~F(~))=/~*(o~(~,~(~))). Moreover /~ is compatible 
with the n-fold covering map ~'~--.~'p.o ~ induced by pn along the boundary. Thus we have 
an induced branched covering map from ~'~ U a~(~rt '(~)) to ~' , .o,  U tr~(.,~(~)). By Lemma 
4.1, we have t, = nttp~.. 

LEMMA 4.7. s = ~. t.j,k. 
n 

Proof. For x ~H2(G; 7/), put A = {n; jnk(x) ~ 0}. Let M'  be the two-sphere S 2 with 
# A small open disks deleted. We define a foliated S l-bundle ( over M'  such that the total 
holonomies along the boundaries are a(j.k(x))eRn ~- R/7/, n cA. Consider a r~-structure 

.re' on S 1 x M" U ( # A) D 2 X S 1 given as ~-¢ U U (O0U.k(x))(.,~("))). We can see that the 
n~A 

difference between s(x) and F.tj ,  k(x)  is represented by ~Tt". Since ~" belongs to the 
special type of l~t®-structures that we described in remark 4.5', we see that ~Tt*' is 
l~°-cobordant to zero. This proves Lemma 4.7. 

§5. COMPLETION OF THE PROOF OF THE MAIN THEOREM 

First we prove the following lemma which explains how the Godbillon-Vey invariant 
varies continuously. 

LEMMA 5.1. G I : t  I = C q l  , where C is a non-zero constant. 

Proof. Let x~H2(Gt, Rt; 7/) be represented by $. We consider Godbillon-Vey forms 
associated to the rt~-structure ~ ' ,  O o'0~(oale(t)). By a result of Mizutani-Morita-Tsuboi [14], 
since the holonomy of the compact leaf with nontrivial holonomy in a0x(M '°)) is contained 
in a one parameter group generated by a C~-vectorfield, we can take a Godbillon-Vey 
form for ~ ,  O oax(~,~g '<t)) which vanishes on t%(,,~e(t)). Then, by a result of Brooks[2, 3], 
recalling that qt is computed by Milnor's algorithm (Lemma 3.1), we have GVtl = Cql. 

The following lemma is an immediate consequence of Lemmas 3.1 and 5.1. 
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LEMMA 5.2. Let x be an element of H2(G~, R~; Z). I f  GVfi(x)= O, then fi(x)= O. 

By Remark 4.5 and Lemma 5.2, Thurston's examples in [25] are C~-foliated cobordant 
to zero if their Godbillon-Vey invariants are zero. 

Now we are ready to prove Theorem 1.2, our main theorem. 

Proof of Theorem 1.2. Let x be an element of H2(G; Z). By Lemma 4.7, we have 

s ( x )  = t . j . k ( x ) .  n 
Then by Lemmas 4.6 and 4.4, we have 

s(x )= ~ nttp.,j.k(x )= f i (~  np.,j.k(x 

Now Lemma 5.2 implies that s(x)--0 provided that GVos(x)=O. Since GV o s is 
surjective onto R (Brooks [2, 3]), we have proved Theorem 1.2. 

Finally, we give the formula for gv: H2(G; Z)--.R which we gave at the end of  §3. 

PROVOSmON 5.3. gv = c ~ n2q,j,k 

Proof By the above formula and Lemmas 5.1 and 3.2, we have 

g v ( x )  = G V  o s ( x )  

= G V t ~ ( ~  n p . , j . k ( x ) )  

Cql(E npn,jnk(x)) 
= C ~ n2q.j.k(x). 
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