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1. Introduction

This paper contributes to the problem of characterizing images of
certain kinds of topological spaces under open continuous mappings or
open continuous mappings which satisfy a completeness condition. The
spaces under consideration belong te one of the following classes of
M-spaces ia the sense of Morita [11]: (1) Regular T, M-spaces. (2) T,
paracorapact M-spaces. (3) Regular 7 complete M—spaces (cf. Defini-
tion 3.2). (4) Paracompact Cech complete spaces.' This article presents
conditicns characterizing those regualar Tj-spaces which are images of
spaces in the above classes under open mappings (in cases (3) and (4))
and open uniformly A-complete mappings (in cases (1) and (2)) although
only the proof that such mappings exist is given. The proof that the
conditior:s are invariant under the appropriate mappings will be sub-
mitted elsewhere.

The regular Tj-spaces satisfying the corditions mentioned have a
rumber of nice properties some of which follow directly from the main
theorems proved here. These include invariance under certain open map-
pings (Theorems 4.3 and 4.4), invariance under perfect mappings (The-
orem 4.7, and countable productivity. Characterizations of subspaces

* This work was supported by the United States Atcmic Energy Commission.
Such a space is an M-space since it is 2 paracompact p-space and any space of the latrer kind
is a paracompact M-space [12].
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satisfying the same conditions will appear in another article. The condi-
tions are hereditary with respect to closed subsets.

It may be instructive to compare the thecrems proved here with cer-
tain other mapping theorems stamming from a common technique (cf.
section 5) and with which they have strong analogies. In a first count-
able setting the following theorems have been proved previousiy:

Theorem 1.1 [7,14]. Every first countable T-space of infinite cardi-
nality is an open continuous image of a metrizable space of the same
weighi.

Theorem 1.2 [17]. Every T, -space having a base of countable order
is an open continuous uniformly monotonically complete image of a
metrizable space of the same weight.

Theorem i.3 [151. Every regular 7y-space having a :nonotcnically

complete base of countable order is 2. cpen continuous image of a com-
plete metric space of the same weight.

In a non-first-countable setting analogues of Thecrem 1.1 are:
Theorem 1.4 [16]. Every T,-space of point-countable type [1] is an
open continuoiis image of a T, paracompact p-space (= T, paracompact

M-space).

Theorem 1.5 [13]. Every regular Ty-space wkich is a g-space in the
sense of Michael [ 10] is an open continuous image of an M-space.?

An analogue of Theorem 1.3 is

Theorem 1.6 [19]. A regular Ty-space which satisfies 2, (cf. Defini-
tion 2.2) is an open continuous image of a paracompact Cech complete
space of the same weight.

Theorem 4.1, part 1, is another analcgue of 1.2 in which “comg lete

meiric space” is replaced by “compiete M-space” while Theorem 4.2
provides two analogues of Thecrem 1.2 in which “metric space” is re-

z 3 ; M 9
Theorem 5.1 shows that ihe M-spazs ray be taken to be of the same weight s ihe G 2200
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prlaced respectively by “regular Ty M-space” and “7, paracompact M-
space”’.

The main theorems of the paper are stated in section 4. Theorams
4.3, 4.4 and 4.7 state (proofs will appear elsewhere) some fundament:l
invariance properties of the basic conditions defined in section 2. Theo-
rems 4.5 and 4.6 follow from the Theorems 4.1, 4.3 and 4.2, 4.4 respec-
tively, and give characterizations of open continuous images or open
continuous uniformly A-complete images of spaces belonging to the ap-
propriate classes (i)—(4) above. The major techrical part of the paper
is devoted to the proofs of Theorems 4.1 and 4.2. These proofs are very
closelv related as may be seen from section 6. They are founded on the
rather simple Lemma 5.3 which concerns a basic construction allcwing
realization of the open mappings in question as projections. Lemma 5.3
provides a common basis for Theorems 1.1—1.6 as well as Theorems 4.1
and 4.2. Individual differences in proofs arisc in sh:owing that the hypo-
thesis of the lemma is satisfied and in demonstraiing completeness of
either spaces or mappings.

The completeness of spaces and mappings :nentioned in the title re-
fers to the completeness aspect of the definiiions of A, Ay, and uni-
formly A-complete mappings given below zrid to the involvement of
completeness in the statements and proofs of the main theorems.

The techniques and concepts involved here are founded on base of
countable order theory which Dr. J.M. Worre!l Jr. and the author have
elaborated in several publications [ 15, 17, 20. 22] and which they have
long regarded as being fundamental for a theory (appropriate to the pre-
sent stage of general topology) of non-first-countable structuse [18, 23].

Notation, terminology and preliminaries. The notation and terminol-
ogy used here conforms rather closeiy with that used by Kelley [9].
Certain conventions used below arc noted here. The letter N denctes the
set of pusitive integers and i, j, k and #n are always used to denote mem-
bers of V. The notation (U,), .y denotes a sequence; i.e., a function U
with domain N, and will be frequently abbreviated as (U,). Occasionaily -
a single letter such as a will also be used to denote a sequence. The term
decreasing sequence refers to a sequence ({/,) such *hat U, C U, for
all n € N. Quite often in the proofs if « is a sequence, N a,, is used to de-
note N {a,: n € N}. A quasi-peifect [12] (perfect) mapping is a closed
continuous mapping such tha: the inverse image of every point is count-
ably compact (compact). The fcllowing three “heorems are basic for the
classes of M-spaces considered.
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‘{heorem 1.7 [11]. A topological space is an M-space if and only if
there exists a quasi-perfect mapping of it onio a metrizable space.

Theorem 1.8 [2]. A T,-space is a paracompact p-space (= peracom-
pact M-space) if and cnly if there exists a perfect mapping of it onto a
metrizable space.

Theorem 1.9 [6]. A T,-space is a paracompact Cech complete space
if and only if there exists a perfect mapping of it onto a complete mstric
space.

Definition 1.1. Suppose X is a space and A C X. A collection Rt of
sutsets of X is said to be a network at A if and only if AC Uand U
open implies that A C M C U for some M € N. If each member of N is
open, N is called a base at A. The set A is said to have cointable charac-
ter [ 1] if and only if there is a countable base at A. The set A4 is said to
have strongly countable character if and only if there is a countable base
{D,:n€ N} at 4 such that D, C D, for each n. If a collection N isa

network at every { x} for all x € X then R will be calied a network for
X [3].

2. The conditions A, Ay, B;.0;

The conditions fundamental for the paper are aefined here. They all
involve a sequence condition and can be considered as variations cn a
common theme. They have similarities with sequence conditions previ-
ously used in both first-countable cases, e.g., Moore spaces, complete
Moore spaces; and in non-first-countable cuses, e.g., Frolik’s complete
coverings [5], but as is pointed out in Reniark 2.1 they can be consid-
ered as arising directly from certain kinds f bases of countable ord:r.

Definition 2.1 [19,20]. A sequence (€, ) of collections of sets is said
to be monotonically conrracting if and only if, for each n € N, if
x€A€ €, thereexists BE €, suchthatxE B C 4.

Definition 2.2. A topological space X is said to satisfy condition
Ac(Ay) if and only if there exists a mo.otonically contracting sequence
(@,) such that : (1) Each g, is a coliection of open subseis of X cover-
ing X, (2) If (G,,) is a decreasing sequence such that each G, € @, and
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is nonemply, then B=nN{ (-.5; :n € N} is nonempty and countably com-
pact (compact) and U open and B < U implies that some G, C U.

Definition 2.3. A topological space X is said to sacisfy condition
B.(8,) if and only if there exists a monotonically contracting sequence
(@,) such that: (1) Each ¢, is a collection of open subsets of X cover-
ing X. (2)_@: (G,,) is a decreasing sequence such that each G, € @, , then
if B=Nn{G,: n€ N } is nonempty, it is countably compact {compact)
and U opin and B C U implies that some G, C U.

The concepts of A-base and base closurewise of countable order were
introduced and studied in [17,20]. Using methods emploved in [15,17,
20], the following propositions may be proved.

Proposition 2.1. A T-space has a A-base if and only if there exists
a monotonically contracting sequence ( @,,) such that: (1) Each g, isa
collection of open subdsets of X covering X. (2) If (G,,) is a decreasing se-
quence such that each G,€ @, and is nonempty, thenB=N{G,: n€ N}
is nonempty and B ={x } for some x € X; and U open and x € U implies
that some G, C U.

Proposition 2.2. A T,-space X has a base closurewise oi conntable or-
der if and only if there exists a monotonically contracting sequence
(g,) such that: (1) Each g, is a collection of open subsets of X covei-
ing X. 2)If (G, isa deére_a_g;ing sequence such that each &, € @, and is
nonempty, then it 8 =N {G,: n € N} is nonempty, B ={x} for some
x € X and U open and x € U implies that some G, C U.

lemark 2.1. Thus it may be seen that conditions A, and A, are ob-
tained from the concition of Proposition 2.1 by replacing the point x
by a ccuntably compact (respectively, compact) subset of X. A similar
remark holds for co 1ditions 8, : nd B, and Proposition 2.2. The termi-
nology used has its source in thi:. The letter A is to suggest A-base, and
B is to suggest base closurewise + f countable order. The letter c is to sug-
gest countably compact and b is to suggest compact (= bicompact).

Remark 2.2. The conuitions A, and B, in which compaciness enters,
have, in the context of compiete regularity, extrinsic formulations in-
~olving Stone-Cech compactification. One of these extrinsic conditions
»1as been studied in [19]. Another such condition giving rise to the class
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of u-spaces has been reported on in [ 18]. For ¢ -mparison, a definition
is given here.

Definiticn 2.4. A T} topological space i called a u-space if and only
if there exists a monotonically cont acting sequence (@, ) of collections
of open subsets of wX(the Wallman compezctification of X [9]) cover-
ing X such that if (G,)) is a decreasing sequence such that, for each n,
G,€ @, thenn {G,: n € N} is a subset of X if it contains a point of X,

In the compleiely regular case, where £.X can be used, a space is a p-
space if and only if it satisfies condition 8, [21].

Remark 2.3. A, implies A and B, implies 3.

Examples 2.1. /any Cech complete space satisfies Ay

2.2. Any Hausdorff paracompact M-space satisfies 3, .

2.3. Any complete M-space (cf. Definition 3.2) satisfies A,..
2.4. Any M-space satisfies 3.

The following lemmas give equivalent forms of the conditions for the
case of regular 7y-spaces. These forms will be used in the proofs of the
main theorems. The lemmas have analogies with Theorem 1 of {15]
where it is shown that a regular space has a monotonically complete
base of countable order if and only if it satisfies a condition given by

Aronszajn [4] which is a first courtable analogue of the condition of
Lemma 2.1.

Lemma 2.1. Suppose X is a regular Ty-space. Then in X the condition
Ac(Ap) is equivalent to: There exists 2 sequence (g,,) of collections of
open sets covering X such that: (1) Foreachn € N, if x € G € g, there
exists '€ G, such that x € G’ and G’ = G. (2) If (G,)) is a sequence
such that @ # G, ,; C G,€ @, foralln € N, thenB =N {G,: n € N} is
nonempty and countably compact (compact) and {G,: n € N} is a base
at B.3

Procf. Suppose X satisfies A(Ap) and (g',,) satisfies the corresponding
concition of Definition 2.2. Then it may be seen (proof given in [20])

&

that there exists a sequence (%,,) of well-ordered collections covering /

3 The condition of Lemma 2.1 involving compactness is identical with Condition X of [19].
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X such that for each n € N: (H1) %,C @',. (H2) EachHe€ ¥, con-
tains a point not in any predecessor of H in %3?;‘,,. (H3)Iin k€N,
n< k, and x € X, then the first element of 3¢, that contains x is a'sub-
set of the first elzmexni of 9, doing so. Defme Gy as H;.0f @,..., @,
have been defined let @, 4 denot{e the collection of all sets of the form
Un G where G€ 9, ,,, Uis open, U contains a point of G not in any
predecessor of G in %, ,,, and for some G'€ §,, UC G'. Then (@,)is
a sequence of collections of open sets covering X satisfying (1) atove.
For g; covers X. suppose &, ..., § cover X and satisfy (1) for I < n <
k-1.lIfx€ G € @, iet H be the first element of thﬂ that contains x.
Since A is regular, there exists an open U containing x such that U C G.
Thereiore, UN HE @ ;. Suppose (G,) 1s a sequence such that
@+ G,,; C G, € g, foralln € N. Then for each # there exists a first
H, € &, that includes a term of (G,). For each n there exists j > n + 1
such that G; CH, N H,,,.Theset G;=UnN H where H € 9; and U con-
tains y € " rot in any predecessor of H By(H3),Hisa subset of the
first element H' € 9, that contains y. Therefore, H' dees not precede
H,.Since y € H,,H'= H,. Similarly H, ,, is the first element of %,
that contains y. Therefcre, for each n, H,,, C H,,. Since H, € @', it
follows that B’ =N {17,: : n € N} is nonempty countably compact {com-
pact) and any open U D B' includes some H,,. By Lemma 5.1,
B=n{G,: n€ N} is nonempty and countably compact (compact) and
{G,: n€ N} isabase at B.

Suppose on the other hand the condition of the lemma is satisfied by
a sequence (g',). It may be seen (proof given in {20]) that there exists
a sequence ( %,,) of well-crdered collections of open sets covering X such
that for each n € N conditions (Hi) and (H2) are satisfied as well as the
following modification of (H3): if n. k€ N, n < &, and x € X then the
closure of the first element of % that contains x is a subset of the first
element of ¥, doing so

Let o', denote %, and forn > 1if &, _ is defined let &', denote
the collection of all sets HN H' where He %, ,H'e ¥',_| and H'
contains a point of H not in any predecessor of H in ,,. For each  let

@, denote U{ K, : k> n}. Then (g,) may be seen io be ¢ monotoni-

cally contracting sequence of collections of open sets covering X. 1t (G,,)
1s a decreasing sequence such that each G, € @, then, for each n, there
exists k, = n such that G,, € &', . It follows that for each n there exists
a first H € A, that 1nclude< a texm of (G,), and also, by an argument
used in the flrst paragraph of this proof, that #,_ ., n+1 © i, . Taen
N {H,: n€ N} is nonempty, countably compact (compact) and
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{H,: n€ N}is abase at NH,. Since for each n, there exists j su.ch that
G;C H,, it follows from Lemma 5.1 that NG, is nonempty closed and
countabiy compact (compact) and every open U whxcb includes NG,
also includes some G,,.

Lemma 2.2. Suppose X is a regular Tj-space. Then in A" the condition
B.(8,) is equivalent to: There exists a sequence ( g,) of collections of
open sets covering X such that: (1) Foreachn€ N, if x € G € §, there
exists G'€ g, such thatx € G and G'C G.(2)If (G,) is a sequence
such that G,,, C G, € @, foralln€ N, then B=n{G,: n€ N1}is
countably compact (compact) and if B is nonempty, {G,: n€ N}isa
base at 3.

Proof. The consiructions given in the proof of Lemma 2.1 will pro-
vide a proof for this lemma when obvious modifications are made con-
cerniny the nonemptiness of the sets B and N G,.

3. Uniformly A\-complete mappings and complete Af-spaces

The iollowing definition presents an analogue of the concept of uni-
formly monotonically complete mapping introduced in [17]. The uni-
form!ly A-complete mappings have properties in a non-first-countable
context analogous to those possessed by uniformly monotonically com-
plete mappings in a first countable one. An extrinsic formulation ap-
propriate to the case of u-spaces has also been given.

Definition 3.1. A mapping f of a space X into a space Y is said to be
uniformly A-compiete if and only if there exists a monotonically con-
tracting sequence ('@, ) in X of collections of open sets such that for
every y € Y if (G,,) and (W,) are decreasing se-juences of open sets such
that for each n, there exists j such that W, C ¢, € @, and
W, 0 f-1(p) # @, then N {W nEN}ﬂj]"—ITy)a-

Examples 3.1. Any continuous mapping f: X— Y such that f-1(y) is
countably compact is uniformly A-complete.

3.2. Uniformly monotonically complete mappings of essentially T -
spaces are uniformiy A-complete.

3.3. Any mapping on a T} -space satisfying A, is uniformly A-compiete.
(This motivates the A-terminology in Definition 3.1.)
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The following concept involves a simple modification of Morita’s
characterization of M-spaces (Theorem 1.7).

Definition 3.2. A space will be called a complete M-space if and only
if there exists a quasi-perfect mapping of it onto a complete metric
space.

Proposition 3.1. A space is a complete M-space if and only if there
exists a normal sequence (U ,) for the space such that if (K,)) is a de-
creasing sequence of nonempty closed sets for which there exists a ve-
quence (U,) such that foreachn € N, U, € U, and there exists j such
that KJC Un, then M {Kj: ie N} #* Q

4. The main theorems

Theorem 4.1. Suppose X is a regular T-space satisfying one of the
conditions A, or A,. Then X is an open continuous image of a space Y
having the same weight as X which is a subspace of a product space
I'X X where 1" 1s a zero-dimensional complete metric space (I' is a closed
subspace of a Baire space). If X satisfies A, then Y is a regular T) com-
plete M-space. If X satisfies Ay, then Y is a paracompact Cech complete

space.*

Theorem 4.2. Suppose X is a regular T-space satisfying one of the
conditions 8, cr B,. Then X is a uniformly A-complete open conti1uous
image of a space Y having the same weight as X which is a subspa.e of a
pioduct space I' X X where I is a zero-dimensional metric space (" is a
subspace of a Baire space). If X satisfies B, then Y is a regular T M-
space. If X satisfies B, then Y is a T\, paracompact M-space.

The following two theorems are siated but not proved here. The
proofs wil' be submitted elsewhere.

Theorem 4.3. Suppose X is a regular Ty-space satisfying either A, or
Ap. Then any regular Ty open continuous image of X satisfies the same
condition.

Theorem 4.4. Suppose X is a regular T-space satisfying either i, or

* The pari of Theorem 4.1 rclating to Ap has been proven in [19].
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B, . Then any regular T, uniformly A-complete open continuous image
of X satisfies the same condition.

Comibining Theorem 4.1 with 4.3 and Examples 2.1 and 2.3 and The-
orem 4.2 with 4.4 and Examples 2.2 and 2.4 the following characteriza-
tions are obtained.

Theorem 4.5. A regular T -space is an cpen continuous image of a
paracompact Cech complete space® (regular T, complete M-space) if and
oniy if it satisfies Ay (A,).

Theorem 4.6. A regular Ty-space is an open continuous uniformly A-
complete image of a T, paracompact p-space (regular 7, M-spaze) if and
only if it satisfies 8 (B,;).

A proof of the following theorem is contained in a joint work of the
author and J.M. Worrell Jr. [21].

Theorem 4.7. If a regular Ty-space X satisfies one of the conditions
A, Ay, By, or B, then any perfect image of X satisfies the same condi-
tion,

5. The mapping lemma

Lemmas 5.1 and 5.2 are simple statements useful in the sequel. Lem-
ma 5.3 is the main lemma. Theorem 5.1 is given as an illustration of
the general apolication of 5.3.

Lemma 5.1. Suppose X is a T} -space and (B, is a decreasing sequence
of subsets of X such that B=n{ E; : n € N} is nonempty and counta-
bly compact and if U is open and U D B then some B;, C U.

Suppose (4, is a decreasing sequence of nonempty sets such that for
each n there exists j such thatA CB,.

ThenA=n{A,:n€N}isa nonempty, closed, and countably com-
pact subset of £ and if U is open and U D A then some A4, C U.

Proof. For any k, A, N B + Q. For if B C X \ 4, then for some n,

5 This part of the theorem was obtained in the completely regular case in [19].
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B, C X\ 4. There exIsts j > max (r, £) such that 4;C B, . Since

A C A, this involves a contradiction. Therefore (AL n B)ke Ny isa de~
c;eusmg sequence of nonempiy ¢ closed subscis of B so that

A=n Utlk NB: kei=n {Ak k € N} is nonempty, closed, and
countably compact. Suppose U is open and A C U. If no 4, cU there
exists 4 sequence (x,,) of distinct poirts of X such that for each n

Xp € (A,\U)N B,. For there exists j 2> 1 and . € X such that A}- C B,
and x; € A\ U. Suppose xy, ..., X, have been deiined. There exisis
j=n+tcuchthatA;C B, . IfA\UC {x,, ..., x, } then for all k > j,
A \NUC ixy, ..., X, }. Therefore some x; € A;, for ail k € N and thus
x; € A\ U which is impossible. Ther=fore there exists x, ., € (4,\ U\
{x, ..., ¥,}. The set C ={x;:i € N) ha a limit point i1 B. Ian Bis
infinite this is clear. Lat C; denote{x;:i> k}. Suppose there exists k
such that B C X\(}.. Any limit point of C is also a limit point of C,,
since X is T} . II" B contains no limit point of C then B T X\C}.. Hence
some B, C X\(; which involves 3 contradiction. But if x is a lirait
point of C, x € 4,\U for all n and tius x € A\U which is impossible.
Therefore some A, C U.

Remark §.1. Suppose X is T3, B is closed and countably compact,
and (B,) is a decreasing sequence such that U open and U D B implies
that some B, C U. If x, € 8, for all n, then if {x,: n € N} is infinite it
has a limit point in B.

Proof. This foliows directly irom the proof of Lemma 5.1.

Lemma 5.2. Suppose X is a r2gular Tj,-space covered by a family of
countably compact closed (compact) sets of strongly countable charac-
ter. If 9 is a base for X, then X" has a network N of countably compact
closed (compact) sets such that every /. € R has a base {D,: n€ N}
with D, ,; € D, and D,, € W for all n.

Proof. Suppcese U is open in X, x € U, and 9 is a base for X. There
exists a countably compact closed (compact) set B of strongly countable
character which contains x. Let { B,: n € N} denote a base at B such
that for each n, B,,,; C B,. By induction and the axiom of choice it may
be seen that there exists a sequence (4,) of members of W containing
x such that A,,,C B,,; N 4, N U for each n. Thus (4,)and (B,) satisly
the hypothesis of Lemma 5. 1 Therefore A =N A4, isa countab:y com-
pact closed (compact) set of strongly countably character containing x,
and {A,: n <€ N} is the desired base at 4, and A C U. Using these con-
siderations, the collection M may be defined in an obvious way.
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Lemma 5.3. Suppose X is a topological space and CW is a collection
of open subsets of X.

Suppose tlers exists a collection I' of sequences a: N - satisfying
(T'1) N {a,:nc N}isnonempty and has {«, : n € N}as a base.

I2) N={BcC X: Thereexistsa €'and B=nN {a,: n € N}}is a net-
work for X. (I'3) if B€ M and B € I'" and some g, O B then there =xists
a€lsuchthat B=n {a,:n€N}anda;=f;for1 <i<n.

Let I have the Baire space topology [8] and I' X X the product top-
ology.LetY = {(¢,x) €T X X: x€N {a,: n€ N}}. Let 7y and 7, de-
note the projection mappings of I' X X onto I' and X respectivzly. Then

(a) m,1Y is an open continuous mapping of Y onto X.

(b) The weight of Y < |W|-(weight of X )N,

(c)my 1Y maps Y cnto I" and foreacha € T, (7, 1Y) 1 (a) is homeo-
rnorphic to an elemeni of <N.

If, in addition, each element of N is countably compact, X is 7}, and
each element of ' is decreasing, “hen

(d) my 1Y is a closed continuous mapping of ¥ onto T'.

(e) Y is an M-space.

Proof. Ifa €T, let S(aln) = {¢'€T": a'j= a;,j=1,...,n}. Then
{S(xin) : n€ N and a € I' } is a base for the topology of I'. Let <V de-
nete 2 base for the topology of X of minimum cardinality. Fora € I"
and V'€ Y such that V C a, let D(aln; V) denote (S(aln) X V)N Y.
Then ‘¥ = {D(ain; V) :n€N,a €T, VeE Y,and V C a, } is a base for
Y. Clearly | B8] < |W|- (weight of X)- 8. Let  denote 7, |Y and ¢ de-
note n-|Y.

Suppose D(aln; V)€ B. If x € V there exists B € M such that
x B C V Ca,. By (I'3) there exists &' € T" such that B =N a;, and «;

=1, .., ", Thus (o', x) € D(aln; V). It follows that «p[D(aln Vi] =
and th'u tp is open and onto.

Since M a,, is nonempty for alla € T" and since 81 (a) = {a} X Na,,,
(c) follows. Under the additional assumptions of the lemma suppose
that « € I" and 0-1(a) C U is open. If D(a|n; a,) ¢ U for any n there ex-
ists a sequence ((a", x,)), e 5 such that, for each n, (a”, x,) € D(a|n; a N\NU
ar.d the values of (x,,) are distinct. This may be seen using incduction and
the fact that « is a decreasing sequence. Let E = {x,n€N}and B =
Na,. By Remark 5.1, B contains a limit point y of £. It may easily be
seen that (@, y) is a limit point of {(a”,x,): "€ N}, Thus(a, y)€

6-Y(a\U which involves a contradiction. Thus some D(ain;a, )C U.
Since D(x|n;a, ) includes every se* of the form §-1(a’) that it mtersects
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it follow s that 8@ is closed. By (c) and the countable compactness of the
elements of R, *1(a) is countably compact. Morita’s Theorem .7 im-
plies that Y is an M-space.

By appropriate choices of the collection I" the Theorems i.i—1.6 of
section I can be proveu using Lemma 5.3. The following theorem adds
two details to Theorem 1.5 of Nagata. E. Michael also observed (oral
communication) that the method of [16] can be used to obtain Theo-
rem 1.5 and pointed out that this gives regularity of the M-space.

Theorem 5.1. A regular T ¢-space is an open continuous image of a
regular T, M-space of the same weight.

Proof. As noted i [13], a regular Tj-space X is a g-space if and only
if each point has a sequence (U,) of npen neighborhoods such that, for
each n, U, ,, C U, and if x,, € U, for each n, then if {x,: n€ N}isin-
finite, it has a limit point. It is easy fo see that N {U,: » € N} is closed
and countably compact and has {U,: n € N}as a base. Suppose W is a
base for X of minimum cardinality and I is the collection of sequences
o: M- such that: (1) Foreach n, a,;; C a,. (2) N «,, is countably
compact, nonempty, and has { a,: n € N} as a base. Then, with the use
of Lemma 5.2, it foliows that I' satisfies (I"'1)—(I"3). Thus Lemma 5.3
implies that X is an open continuous image: of an M-space Y of ihe same
weight as X. Since Y is a subset of the regular T)-space I' X X the con-
clusion follows.

6. Proofs of Theoreins 4.1 and 4.2

The various cases treated v/ill be designated by the symbols A, A,
B., or By . Since X is assurned to be regular and Ty, the forms of the
basic conditions given in Lemmas 2.1 and 2.2 can and will be used. Lem-
.ua 5.3 will also be used and the first part of the proofs will be devoted
to definirg an appropriate collection I'. in each of the four cases there
exists a monotonically contracting sequence (@,.) having the appropriate
properties of the corresponding definition. It may be seen (proof given
in [20]) that there exists a sequence (9% ,) of well-ordered collections
covering X such that foreachn€ N: (P1) 9, C @,. I"’2)Eech He ¥,
cctains a point not in any predecessor of H it %,,. (P3) If n, kKEN, .

n <. k,and x € X, the closure of the first element of 9¢; that contains
x 's a subset of the first element of %, that contains x. Let W denote
a base for X of minimum cardinality.
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‘Let T, denote the coilection of ail sequences « : N>W such that for
each n: (Al)a,; Ca,. (A2) a, contains a point y such that the first
element of %, that contains y includes «,. (A3) N a, is nonempty and
{a,:n € N}isabase at N a,. (A4) N a, is countably compact. Let I',
denote the collection of all sequences o : N-W satisfying (A1)—(A4)
and additionally: (A5) N e, is compact. In the cases A, B, the set RN =
{B: Forsomea €I, B=Na,}is a network for X. For, by Lemma
5.2. .Y has a network of countably compact closed sets of strongly count-
ably character. If x € U where U is open let C be a member of such a
neiwork which contains x such that C C U. Let (D,l)_ii_gnote a decreasing
sequence such that {D,: n € N} is a base at C and D, C D, for ali n.

By induction a secuence a: N=>9% may be defined such that for each #n:
(A1) and (A2) are satisfied and a,, C D,. By Lemma 5.1, N a,, is count-
ably compact and has {a" : 1 € N} as a base. Thus I, satisfies (1) and
(I"2). Suppose that R € % and € I, and some §, D B. Suppose B =
na,, fora' € I',. Then for somel>n a; C §,. Define a.: N>W by

=B for 1 <i<r2ad ey, =0y for i € N. Then (A1) is satisfied
by a and Nay =N ay; =B so (A3) and (A4) are satisfied. If 1 <j<n,
a; satisfies (A2). Ifj = n + i then o = J'-+,-_ 1 and there exists y € a; such
that the first element H of 9;,; ; containing y includes o;. But the
first element of Qlj that contains y includes H so that (A2) is satisfied
for all n. Therefore ¢ € I'; so that (I'3) is satisfied. In cases A, and f,
the above argument applies directly and in addition one has that all the
sets N a,,, where a € Iy, are compact. Thus the set Ry, = {3: For some
a € I,,B =Na,}isanetwork and T}, satisfies (I'1)—(I'3). Therefore
conclusions (a)--(e) of Lemma 5.3 hold in all cases. Let 8 = ;| Y and
@g=m,0Y.

Cases \ and \y,. Here it must be shown that the spaces I, and T, are
complete with respect to some metric. Let p denote the Baire metric
[8j in I';. It may be shown as in [15] that if (¢”) is a Cauchy sequence
in I', with respect to p there exists a: N>% and 2n increasing sequence
(n-),e n of positive integers such that, for all k € N, the first k values of

are ay, ..., a. Since each a” € I'; it follows that a satisfies (A1) and
(Alﬁ) By (A2) each 9, contains a first #, that includes a term of a.
For each n there ex1sta j>n+1such that o; CH, N H,,, . There ex-
istsy € @ such that the first element H' of 9( that contains y includes
a,. If H is the first element of %, containing v then HD H' > a;. Thus
H does not precede H,, . Since H, contams y it follows that H = H,. Sim-
ilarly, H, ,, is the first element of X, .+ that contains y. Thus for each
n, H, ., C H, by (P3). Since each H, € g, and A, is satisfied it follows
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that N H, is nonempty, closed, countably compact, and {H,: n€ N}

is a base at N H,,. Since for each n there exists j such that ¢; C £, Lem-
ma 5.1 implies that N a,, is nonempty, closed, countably compact, and
has {a,: # € N} as a base. Thus (A3) and (A4) are satisfied so that

a € T,. Clearly a = lim,,, . a,, 50 that I'; is complete. Replacing *“A.”,
“T'.”, and “countably compact™ in the above proof by “A,”. “T},”,

and “‘compact”, respectively, shows that I'y is complete. Thus in case
A, Y is a quasi-perfect preimage of a complete metric space and in

case Ay, Y is a perfect preimage of a complete metric space. In the latter
case, Frolik’s Theorem 1.9 shows that Y is paracompact and Cech com-
plete.

Cases [, and By, In these cases it must be shown that the mapping ¢
is uniformly A-complete. To this end let ¢, denocte {D(ain;a,): c €'}
where I" denotes either I'; or I, depending on the case. Clearly each @,
covers Y. Suppose (8, x) € D{a|n; a,). Then (B, x) € DBIn+';6,,;) C
D(aln; «,). Thus (g,) is 2 monotonically contrzcting sequens e of col-
iections of open sets covering Y. Suppose x € X and (W,) and (G,) are
such that for each n: (1) W, is open. (2) W,y C W, . (3) There existsj
such that W;C G,. () W, N g1 (x) #0.(5) G,4; € G, € G,. Each G, =
D(a"in; ag) for some o”. Let a, denote az. For each n, the first n terms
cf a” are aq, ...,a,.Forn=1, Cir% =a, . Assume the statement for #.
Since G,,; C G, it fol'ows thata?*! =al =a; for 1 < i< n. Since
a I{ = a,,; the conclusion follows. Also (4) implies that G, N ol(x)#
¢ so that x €N a,,. By (A2) each %,, contains a first H, that includes
a term of a. Clearly x € n H, . With the use of condition f; or §;, and an
argument used in the third paragrapb of this proof it follows that N i1,
is closed and countably compact (or compact, depending on case {5, or
B,) and has [H,: n € N} as a base. Lemma 5.1 implies that N a,, is non-
empt; , closed, countably compact (respectively, compact), ar.d has
{a,: n=N}asabase. Thusa €' and (a, x) € ¢ 1(x). For each j there
exists §/ € T such that (8/,x)€ W; N ¢ 1 (x). Suppose (a, x) € MNain; V)
v here V C a,,. There exists j > n such that W, C G, for all k > j. Hence
ﬂ;‘ =q; for 1 <i<n. Thus (B, x) € D(aln; V) for all k = j. It ‘ollows
that (e, x) €N W, N ¢ 1(x), so thai y is uniformly A-complete.

Ackno wvledgement

I wish to thank J.M. Worrell Jr., for his valuable contributions to this
article.



100 Howard H. Wicke, Images of certain kinds of M-spaces
References

{1] Arhangel’skii, A.V., Bicompact sets and the topology of spaces, Tr. iosk. M«ut. Ob¥¢. 13
(1965) 3-55; Transl. Moscow Math. Soc. 13 (1965) 1-62.
{2] Arhange!’skil, A.V., On a class of spaces containing all metric and all Jocal’y bicompact
spaces, Mat, Sb. 67 (109) (1965) 55-88. ,
{31 Arhangel'skil, A.V., Mappings and spaces, Usp. Mat. Nauk 21 (1966) 133-184; Transl.
Russ, Math, Surv. 21 (1966) 115-162.
[4] Aronszajn, N., Uber die Bogenverkniipfung in topologischen Raumen, Fund. Math. 15
(1930} 228-241.
[5} Frolik, Z., Generalizations of the G property of complete metric spaces, Czech. Mat, J.
10 (85) (1960) 359-378.
{6] Frolik, Z., On the topological product of paracompact spaces, Bull. Acad. Polon. Sci.,
Sér. Sci. Math. Astronom. Phys. 8 (1960) 747-750.
[7] Hanai, S., Cn cpen mappings II, Proc. . ipan Acad. 37 (1961) 233-238.
[8] Hausdorff, F., Mengenlehre (3rd. ed., G:uyter, Berlin-Leipzig, 1933).
[9] Kelley, J.L., General topology (Van Nos'rand, Princeton, N.J., 1955).
[10] Michael, E., A note on closed maps and compact sets, Israel J. Mati, 2 (1964) 1 3-176.
{11] Morita, K., Products of normal spaces with metric spaces, Math. Ann. 154 (1964) 365-
282.
{12] Morita, K., Some properties of M-spaces, Proc. Japan Acad. 43 (1967) 869-872.
{13] Nagata, J., Mappings and M-spaces, Proc. Japan Acad. 45 (1969) 140-144.
{14] Ponomarev, V.., Axioms of countability and continuous mappings, Bull. Polon. Acad.
Sci., Sér. Sci. Math. Astronom. Phys. 8 (1960) 127-133 (Russian).
[15] Wicke, H.H., The regular open continuous images of complete metric spaces, Pac. J. Math.
23 (1967) 621-625.
[16] Wicke, H.H., On the Hausdorff open conti .uous images of Hausdorfi patacompact p-
spaces, Proc. Amer. Math. Soc. 22 (1969) 136-140.
[17] Wicke, H.H. and J.M. Wor:ell Jr., Open continuous mappings of spaces having bases of
countable order, Duke Math. J. 34 (1967) 255-272.
[18] Wicke, H.H, and }.M. Worrell Jr., On a clas of spaces con aining Arhangel’skii’s p-
spaces, Notices Amer. Math. Soc. 14 (1967) 687.
[19] Wicke, H.H. and J.M. Worrell Jr., On the open continuous images of paracompact Cech
complete spaces, Pac. J. Math., to appear.
[20] Wicke, H.H. and J.M. Worrell Jr., On topological completeness of first-countable Haus-
dorff spaces, submitted for publication.
[21] Wicke, H.H. and J.M. Worrell Jr., Perfect mappings and certain interior images of M-
spaces, to be submitted.
{22] Worrell Jr., J.M. and H.H. Wicke, Characterizations of developable topological spaces,
<an. J. Math. 17 (1965) 820-830,

{23] Worrell Jr., J.M. and H.H. Wicke, Non-first-countable topological siructure, Notices Amer.
Math. Soc. 14 (1967) 935.



