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Abstract

We give closed formulas for all vectors of the canonical basis of a level 2 irreducible integ
representation ofUv(sl∞). These formulas coincide atv = 1 with Lusztig’s formulas for the
constructible characters of the Iwahori–Hecke algebras of typeB andD.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

In [17] we have obtained closed formulas for certain vectors of the canonical
of the level 1 Fock space representation ofUv(ŝln), inspired by similar formulas fo
decomposition numbers occurring in the modular representation theory of the grou
GLm(Fq). (See also [9] for closely related results obtained independently.)

In this paper we give closed formulas for all vectors of the canonical basis o
irreducible integrable representation of level 2 ofUv(sl∞). These formulas are als
inspired by some known results in the representation theory of finite Chevalley gr
namely by Lusztig’s theory of families andconstructible characters for Weyl groups
type B andD, and more generally for the corresponding Iwahori–Hecke algebras
unequal parameters [20,22].

Let Λ = Λk + Λk+r (k ∈ Z, r ∈ N) be a level 2 dominant integral weight
Uv(sl∞) (here theΛi are the fundamental weights). LetV (Λ) andF(Λ) be respectively
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the irreducible and the Fock space representation with highest weightΛ, and let
Φ :V (Λ) → F(Λ) be the natural embedding ofUv(sl∞)-modules (it is unique up to scala
multiplication). The Fock spaceF(Λ) is endowed by construction with a standard ba
S(Λ) = {s(λ,µ)} canonically labelled by all pairs(λ,µ) of partitions. LetB(Λ) denote the
Kashiwara–Lusztig canonical basis ofV (Λ) [15,21].

On the other hand, letHm = Hm(qr;q) be the Iwahori–Hecke algebra of typeBm over
C(q1/2) with parameterqr for the special generatorT0 andq for all other generatorsTi

(1 � i � m − 1). Let IrrHm = {χ(λ,µ) | |λ| + |µ| = m} be the set of irreducible characte
of Hm and ConHm the set of constructible characters [20,22]. Then our main result s
that the specialization atv = 1 of B(Λ) can be identified to

⋃
m ConHm, in the following

sense: if we write for a vectorb ∈ B(Λ) of principal degreem,

Φ(b) =
∑
(λ,µ)

αb
(λ,µ)(v) s(λ,µ), (1)

then
χb =

∑
(λ,µ)

αb
(λ,µ)(1) χ(λ,µ) (2)

belongs to ConHm, and all constructible characters areobtained in this way. In particula
two irreducible charactersχ(λ,µ) and χ(λ′,µ′) lie in the same family if and only if the
corresponding vectorss(λ,µ) ands(λ′,µ′) have the sameUv(sl∞)-weight.

Similar results connect the constructible characters of typeDm and the canonical bas
of the representationV (2Λk).

The paper is organized as follows. In Section 2 we calculate explicitly the canonic
basis ofV (Λ). In particular, we show that the number of nonzero coefficientsαb

(λ,µ)(v)

in the expansion ofb ∈ B(Λ) is always a power of 2, and that all these coefficie
are powers ofv. It is remarkable that the combinatorics involved in these formula
precisely the combinatorics of Lusztig’s symbols, which were introduced to param
the irreducible unipotent characters of the Chevalley groupsG(Fq) of classical type (se
[20]). In Section 3 we briefly review Lusztig’s work on constructible characters
families for Iwahori–Hecke algebras. InSection 4 we compare the canonical basis ofV (Λ)

and the constructible characters of Iwahori–Hecke algebras of typeBm andDm calculated
by Lusztig [19,20,22], and we obtain our main result. Section 5 explains the re
between this result and a theorem of Gyoja [11] comparing constructible characters a
decomposition matrices of Iwahori–Hecke algebras. Finally, Section 6 discusses a p
generalization of our results to Ariki–Koike algebras.

It is interesting to note that Brundan [8] has obtained similar formulas for the cano
basis of the level 0 module

∧m V∗ ⊗ ∧n V , whereV denotes the vector representat
of sl∞ andV∗ the dual representation. His calculations were motivated by compl
different problems in the representation theory of the Lie superalgebragl(m|n).

2. Canonical bases

2.1. Fix n � 2 and letg = sln+1. We consider the quantum enveloping algebraUv(g)

over Q(v) with Chevalley generatorsej , fj , tj (1 � j � n) (see, for example, [12])
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The simple roots and the fundamental weights are denoted byαk andΛk (1 � k � n),
respectively, and the fundamental representations ofUv(g) by V (Λk). Let ui (1 � i �
n + 1) be the natural basis of the vector representationV (Λ1), that is,

ejui = δi,j+1ui−1, fjui = δij ui+1, tj ui = vδij −δi,j+1ui

(1� i � n + 1, 1� j � n).

The fundamental representationV (Λk) is obtained byv-deforming thekth exterior power
of V (Λ1). It has aC(v)-basis{uβ} labelled by all sequences

β = (β1, . . . , βk), 1 � β1 < · · · < βk � n + 1.

For convenience, we sometimes identify such sequences withk element subsets o
{1, . . . , n + 1}. Thus we may write non-ambiguouslyj ∈ β , β ∪ {j }, and so on. The
Chevalley generators act on{uβ} by

ejuβ =
{

0, if j + 1 /∈ β or j ∈ β,
uγ , otherwise, whereγ = (

β \ {j + 1}) ∪ {j }; (3)

fjuβ =
{

0, if j + 1 ∈ β or j /∈ β,
uγ , otherwise, whereγ = (

β \ {j }) ∪ {j + 1}; (4)

tj uβ =



vuβ, if j ∈ β,
v−1uβ, if j + 1 ∈ β,
uβ, otherwise.

(5)

As is well known, sinceV (Λk) is a minuscule representation{uβ} is nothing but
the canonical basisB(Λk) of V (Λk). The highest weight vector isuβk , whereβk :=
(1,2, . . . , k).

2.2. Let now Λ = Λk + Λk+r (1 � k � k + r � n) be a sum of two fundament
weights. LetV (Λ) be the irreducibleUv(g)-module with highest weightΛ and setF(Λ) =
V (Λk+r )⊗V (Λk). We have a canonical embedding ofUv(g)-modulesΦ : V (Λ) → F(Λ)

defined by mapping the highest weight vectoruΛ of V (Λ) to uβk+r ⊗ uβk .
The basisS(Λ) = {uβ ⊗ uγ | uβ ∈ B(Λk+r), uγ ∈ B(Λk)} of F(Λ) will be called the

standard basis. It is labelled by all symbols

S =
(

β

γ

)
=

(
β1, . . . , βk+r

γ1, . . . , γk

)
(6)

with 1 � β1 < · · · < βk+r � n + 1 and 1� γ1 < · · · < γk � n + 1. We shall write for shor
uS = uβ ⊗ uγ . The symbol attached to the highest weight vector is denoted by

S0 =
(

βk+r

βk

)
=

(
1, . . . , k + r

1, . . . , k

)
. (7)
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The action of the Chevalley generators on this basis is obtained via the comultiplica
Uv(g), namely,

fj (uβ ⊗ uγ ) = uβ ⊗ fjuγ + fjuβ ⊗ tj uγ , (8)

ej (uβ ⊗ uγ ) = ejuβ ⊗ uγ + t−1
j uβ ⊗ ejuγ , (9)

tj (uβ ⊗ uγ ) = tj uβ ⊗ tj uγ . (10)

2.3. Let A be the subring ofQ(v) consisting of all rational functions regular atv = 0.
Let L be theA-lattice ofF(Λ) spanned byS(Λ). Since crystal bases are compatible w
tensor products [14], it is clear that(S(Λ),L) is a crystal basis ofF(Λ). Moreover, it
is easy to see that the connected component ofuS0 in the crystal graph ofF(Λ) is the
subgraph with verticesuS whereS is as in (6) withβi � γi for 1 � i � k [16]. Such
symbols will be called standard. Clearly, this is the same as saying that the two rowS

form the two columns of a semistandard Young tableau.

2.4. Let U−
v (g) be the subalgebra ofUv(g) generated by thefi ’s. Let x �→ x denote the

ring automorphism ofU−
v (g) defined by

fi = fi, v = v−1.

This induces aC-linear mapu �→ u onV (Λ) given by

(xuS0) = xuS0

(
x ∈ U−

v (g)
)
.

By 2.3, the canonical basis (or lower global basis) ofV (Λ) is parametrized by the set o
standard symbols, and the elementbS attached to the symbolS is characterized by

bS = bS and Φ(bS) ≡ uS modvL. (11)

2.5. Let S = (
β
γ

)
be a standard symbol. We define an injectionψ : γ → β such that

ψ(j) � j for all j ∈ γ . To do so it is enough to describe the subsets

γ l = {
j ∈ γ

∣∣ ψ(j) = j − l
}

(0 � l � n).

We setγ 0 = γ ∩ β and forl � 1 we put

γ l = {
j ∈ γ − (

γ 0 ∪ · · · ∪ γ l−1) ∣∣ j − l ∈ β − ψ
(
γ 0 ∪ · · · ∪ γ l−1)}.

Observe that the standardness ofS implies thatψ is well-defined.

Example 1. Take

S =
(

1 3 5 8 9
3 6 7 10

)
.
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γ 0 = {3}, γ 1 = {6,10}, γ 2 = · · · = γ 5 = ∅, γ 6 = {7}.
Hence

ψ(3) = 3, ψ(6) = 5, ψ(7) = 1, ψ(10) = 9.

The pairs(j,ψ(j)) with ψ(j) �= j (that is,j /∈ β ∩ γ ) will be called the pairs ofS.
Given a standard symbolS with p pairs, we denote byC(S) the set of all symbols obtaine
from S by permuting some pairs inS and reordering the rows. We considerS itself as an
element ofC(S), henceC(S) has cardinality 2p. For Σ ∈ C(S) we denote byn(Σ) the
number of pairs permuted inS to obtainΣ .

Example 2. We continue Example 1. There are 3 pairs inS, namely(6,5), (7,1), (10,9).
TheΣ ∈ C(S) are given below, together with the correspondingn(Σ):

Σ n(Σ) Σ n(Σ)(
1 3 5 8 9
3 6 7 10

)
0

(
1 3 6 8 9
3 5 7 10

)
1

(
3 5 7 8 9
1 3 6 10

)
1

(
1 3 5 8 10
3 5 6 9

)
1

(
3 6 7 8 9
1 3 5 10

)
2

(
1 3 6 8 10
3 5 7 9

)
2

(
3 5 7 8 10
1 3 6 9

)
2

(
3 6 7 8 10
1 3 5 9

)
3

We can now state the main result of this section.

Theorem 3. Let S be a standard symbol and letbS be the element of the canonical ba
of V (Λ) such thatΦ(bS) ≡ uS modvL. We have

Φ(bS) =
∑

Σ∈C(S)

vn(Σ)uΣ.

Proof. SetS = (
β
γ

)
. To simplify notation, we writebS instead ofΦ(bS) throughout this

proof. We proceed by induction on the principal degree ofbS , that is, on

d =
∑

i

βi +
∑
j

γj −
(

k + 1

2

)
−

(
k + r + 1

2

)
.

Clearly,d = 0 if and only if

S = S0 =
(

βk+r

k

)

β



B. Leclerc, H. Miyachi / Journal of Algebra 277 (2004) 298–317 303

e

y
e

g
(12)

o

r
nd
is the symbol attached to the highest weight vector ofF(Λ). In this case we hav
C(S0) = {S0} andbS0 = uS0, so the statement is true.

Otherwise, we can findi � 2 in S such that{i, i − 1} ∩ β = {i} or {i, i − 1} ∩ γ = {i}.
Let j be the smallest of thesei ’s.

(a) Suppose thatj ∈ β ∩ γ and j − 1 /∈ S. We denote byS′ the symbol obtained b
changing inS the two occurrences ofj into j − 1. ClearlyS′ is again standard, and th
pairs ofS′ are the same as those ofS. By induction we may assume that

bS ′ =
∑

Σ ′∈C(S ′)
vn(Σ ′)uΣ ′ . (12)

The elementj − 1 occurs in both rows of eachΣ ′ ∈ C(S′). By (8), it follows that

f
(2)
j−1uΣ ′ = uΣ,

whereΣ is obtained fromΣ ′ by changing the two occurrences ofj − 1 into j . Therefore,

f
(2)
j−1bS ′ =

∑
Σ ′∈C(S ′)

vn(Σ ′)uΣ =
∑

Σ∈C(S)

vn(Σ)uΣ.

In particular, f
(2)
j−1bS ′ ≡ uS modvL. Since f

(2)
j−1 = f

(2)
j−1, it follows from (11) that

f
(2)
j−1bS ′ = bS , and the result is proved in this case.

(b) Suppose thatj ∈ β ∩ γ and thatj − 1 occurs in one of the two rows ofS (it cannot
occur in both rows by definition ofj ). We denote byS′ the symbol obtained by changin
j into j − 1 in the other row.S′ is again standard. By induction we may assume that
holds. ForΣ ′ ∈ C(S′) we havefj−1uΣ ′ = uΣ whereΣ is obtained by changingj − 1 into
j in the row ofΣ ′ that does not containj . Indeed, if this row is the bottom row by (8) n
power ofv occurs infj−1uΣ , and if this is the top row then the bottom row has bothj and
j − 1, so the contribution oftj−1 applied to this row isv1−1 = 1. As in (a), it follows that
fj−1bS ′ = bS . On the other hand, we also have

fj−1bS ′ =
∑

Σ ′∈C(S ′)
vn(Σ ′)uΣ.

Let us now compare the pairs ofS′ andS. In S′ we have 1, . . . , j − 1 in both rows, andj
must be in the top row. Then, eitherj does not belong to a pair ofS′ or it belongs to a pai
(j + k, j). The pairs ofS are the same as those ofS′ in the first case, and in the seco
case they are the same except(j + k, j) which becomes(j + k, j − 1). Therefore, in the
first case we obviously have∑

′ ′
vn(Σ ′)uΣ =

∑
vn(Σ)uΣ.
Σ ∈C(S ) Σ∈C(S)
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This also holds in the second case sincej − 1 is changed intoj in Σ ′ in the row which
does not containj , that is, in the row containingj + k. Hence we always havej − 1 and
j + k lying in different rows inΣ .

(c) Suppose that there is a single occurrence ofj in S, and letS′ be the symbol obtaine
by changing thisj into j − 1. Again,S′ is standard, and by induction we may assume
(12) holds.

(c1) If j − 1 occurs on both rows ofS′, then it also occurs in both rows of allΣ ′ ∈ C(S′),
and noj occurs in anyΣ ′. Hence by (8),

fj−1uΣ ′ = uΣ1 + v uΣ2,

whereΣ1 (respectivelyΣ2) is obtained fromΣ ′ by changingj − 1 into j in the bottom
(respectively top) row. In particular, whenΣ ′ = S′, Σ1 = S becauseΣ2 is not standard
Hence we have againfj−1bS ′ ≡ uS modvL and thereforefj−1bS ′ = bS . On the other
hand, the pairs ofS are all the pairs ofS′ plus the new pair(j, j − 1), thus we also have

bS =
∑

Σ∈C(S)

vn(Σ)uΣ.

(c2) If j − 1 occurs in only one row ofS′, then allΣ ′ ∈ C(S′) contain also onej − 1 and
no j . It follows thatfj−1uΣ ′ = uΣ ′ whereΣ ′ is obtained by changing thisj − 1 into j .
Hence,fj−1bS ′ = bS . Finally,j −1 belongs necessarily to the top row ofS′ (otherwise, by
the definition ofj and the standardness ofS′ we should have 1,2, . . . , j − 1 in both rows
of S′ and we would be in case (c1)). Ifj − 1 does not belong to a pair ofS′, then the pairs
of S are exactly the same as those ofS′ and∑

Σ ′∈C(S ′)
vn(Σ ′)uΣ =

∑
Σ∈C(S)

vn(Σ)uΣ.

If S′ has a pair(j + k, j − 1), this pair becomes(j + k, j) in S and all other pairs ar
preserved, so the same formula still holds.�

The proof of Theorem 3 also shows the following:

Proposition 4. Let Λ be a sum of two fundamental weights. Then each elementb of the
canonical basisB(Λ) is of the form

b = f
(r1)
i1

· · ·f (rs)
is

uΛ

for someij ∈ {1, . . . , n} andrj ∈ {1,2}.

Note that this proposition can easily be proved directly by using the fact that alli-strings
of the crystal graph ofV (Λ) have length� 2 (see, for example, [8, 3.19]).
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2.6. There is an alternative way to index the standard basisS(Λ), namely by pairs o
Young diagrams (or partitions) with shifted content. Let Sy(n, k, r) denote the set of a
symbolsS as in Eq. (6). ToS ∈ Sy(n, k, r) we attach the pair of partitions(λ,µ) (written
in weakly increasing order) defined by

λi = βi − i, µj = γj − j (1� i � k + r, 1 � j � k). (13)

This establishes a one-to-one correspondence between Sy(n, k, r) and the set Pa(n, k, r)

of pairs(λ,µ) = ((λ1, . . . , λk+r ), (µ1, . . . ,µk)) such that

0 � λ1 � · · · � λk+r � n + 1− k − r, 0 � µ1 � · · · � µk � n + 1− k. (14)

An element of Pa(n, k, r) is conveniently represented by the pair of Young diagra
corresponding toλ and µ in which the cell ofλ with coordinates(i, j) is filled with
i − j + k + r and the cell ofµ with coordinates(i, j) is filled with i − j + k. Thus
the symbol

S =
(

1 2 3 6 8
2 3 5

)
∈ Sy(7,3,2)

corresponds to

(λ,µ) =

 4 5

5 6 7 ,

1
2
3 4


 ∈ Pa(7,3,2).

Condition (14) is equivalent to the fact that all cells ofλ andµ contain integers between
andn.

Example 5. Taken = 2, k = r = 1. The correspondence is given in the table below, wh
we have denoted by∅i the empty partition regarded as the highest weight vector inV (Λi):

S (λ,µ) S (λ,µ) S (λ,µ)

(
1 2
1

)
(∅2,∅1)

(
1 3
1

) (
2 , ∅1

) (
1 2
2

) (
∅2, 1

)
(

2 3
1

) (
1
2

,∅1

) (
1 3
2

) (
2 , 1

) (
1 2
3

) (
∅2, 1 2

)
(

2 3
2

) (
1
2

, 1

) (
1 3
3

) (
2 , 1 2

) (
2 3
3

) (
1
2

, 1 2

)

2.7. Theorem 3, which is valid for any rankn, extends readily to the quantum algeb
Uv(sl∞) associated to the doubly infinite Dynkin diagram of typeA∞, as we shall now
explain.
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In this case the simple rootsαi and the fundamental weightsΛi are indexed by
i ∈ Z. Let Λ = Λk+r + Λk where k ∈ Z and r ∈ N. The standard basis ofF(Λ) =
V (Λk+r ) ⊗ V (Λk) is labelled by the set Sy(k, r) of all symbolsS = (

β
γ

)
, where

β = (βi; i ∈ Z, i � k + r), γ = (γi; i ∈ Z, i � k)

are now semi-infinite increasing sequences satisfyingβi = γi = i for i  0. Such
sequences can be regarded as the semi-infinite wedges arising in the classical cons
of the fundamental representations ofsl∞ by Kac and Peterson (see [13, §14.9]).

We have a trivial bijectionT : Sy(k, r) → Sy(k + 1, r) given by

T (β)i = βi−1 + 1, T (γ )j = γj−1 + 1 (i � k + 1+ r, j � k + 1).

This comes from the diagram automorphismk → k + 1 of A∞, which implies that the
representationsF(Λk+r + Λk) and F(Λk+r+1 + Λk+1) of Uv(sl∞) are essentially the
same.

We also have a notion of standard symbolS ∈ Sy(k, r), namely whenβi � γi (i � k).
As in the finite rank case, standard symbols label the crystal basis of the irreducible m
L(Λ). Like in 2.5, we can define the pairs of a standard symbol, and sinceβi and γi

coincide fori small enough, there is a finite number of them, sayp. This yields the subse
C(S) ⊂ Sy(k, r) of cardinality 2p obtained by permuting these pairs inS in all possible
ways, and forΣ ∈ C(S) the integern(Σ) of pairs in whichΣ differs fromS.

Having adapted in this way the notation, Theorem 3 holds without modification fo
algebraUv(sl∞).

Alternatively, following 2.6, we can replace Sy(k, r) by the set Pa(k, r) of all pairs
(λ,µ), where

(λi; i ∈ Z, i � k + r), (µi; i ∈ Z, i � k),

are weakly increasing sequences of nonnegative integers with finitely many no
elements. Equivalently, an element of Pa(k, r) can be regarded as a pair of Young diagra
with contents shifted byk andk + r, but now without the restriction (14) on the sizes oλ
andµ. The correspondence Sy(k, r) → Pa(k, r) is again given by

λi = βi − i, µj = γj − j (i � k + r, j � k). (15)

When indexed by Pa(k, r), the vectors of the standard basisS(Λ) will be denoted bys(λ,µ).
The elements(λ,µ) ∈ Pa(k, r) corresponding to the standard symbols are characterize

λi � µi (i � k). (16)

Example 6. Taker = 1 andk ∈ Z. The vectors of the standard basisS(Λ) of weight

ν = Λk + Λk+1 − αk−1 − 2αk − 2αk+1 − αk+2
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are labelled by pairs(λ,µ) ∈ Pa(k,1) with λi = µi = 0 for i � k − 2. Thus, ig-
noring the infinite common initial string of zeros, we can write for short(λ,µ) =
((λk−1, λk, λk+1), (µk−1,µk)). The vectors of the canonical basisB(Λ) of weight ν are
labelled by the following pairs(λ,µ):

(
(0,0,0), (3,3)

)
,

(
(0,0,1), (2,3)

)
,

(
(0,0,2), (2,2)

)
,

(
(0,1,1), (1,3)

)
,(

(0,1,2), (1,2)
)
.

By Theorem 3, the expansion of these vectors on the standard basis is given by the c
of the matrix:

((0,0,0), (3,3)) 1
((0,0,1), (2,3)) v 1
((0,0,2), (2,2)) v 1
((0,1,1), (1,3)) v 1
((0,1,2), (1,2)) v v2 v v 1
((1,1,1), (0,3)) v

((0,2,2), (1,1)) v2 v

((1,1,2), (0,2)) v2 v

((1,2,2), (0,1)) v v2

((2,2,2), (0,0)) v2

3. Constructible characters, left cell representations, and families

In this section we review following [20,22] the definition of constructible characters
families for Iwahori–Hecke algebras.

3.1. Let (W,S) be a finite Coxeter group, and letH(W) be the corresponding Iwahor
Hecke algebra overC(q1/2) with parametersqk(s). Herek(s) ∈ N andk(s) = k(s′) whens

ands′ are conjugate inW . The standard basis ofH(W) is denoted by{Tw | w ∈ W }.
The algebraH(W) is semisimple, and its irreducible characters are in natural bijec

with those ofCW via the specialization mapχ ∈ Irr H(W) �→ ψ ∈ Irr CW given by

ψ(w) = χ(Tw)|q=1. (17)

Let τ : H(W) → C(q1/2) be the symmetrizing trace defined byτ (Tw) = δw,1. Write

τ =
∑

χ∈Irr H(W)

c−1
χ χ. (18)

The Schur elementscχ are known to be Laurent polynomials inq1/2. Moreover, the lowes
exponent ofq in cχ is of the form−aχ for some nonnegative integeraχ . Hence, using the
bijection (17), we attach to eachψ ∈ Irr W an integeraψ := aχ called thea-invariant ofψ .
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3.2. Let I ⊂ S and let(WI , I) be the corresponding parabolic subgroup. LetH(WI )

be its Iwahori–Hecke algebra with parametersqk(s) (s ∈ I). By the above constructio
we can assign toξ ∈ Irr WI an a-invariantaξ . One can prove that ifψ ∈ Irr W occurs as
an irreducible constituent of IndW

WI
ξ , thenaψ � aξ . This suggests the definition of th

truncated induction, which is the linear map given forξ ∈ Irr WI by

jWWI
(ξ) =

∑
ψ∈Irr W,aψ=aξ

〈
χ, IndW

WI
ξ
〉
ψ,

where〈ψ, IndW
WI

ξ〉 is the multiplicity ofψ in the induced character IndW
WI

ξ . Note that the

a-invariants and the mapjWWI
depend on the choice of parametersqk(s).

3.3. Using the truncated induction, the constructible characters ofW (or of H(W)) are
defined inductively in the following way:

(1) If W = {1}, only the trivial character is constructible.
(2) If W �= {1}, the set of constructible characters ofW consists of all characters of th

form

jWWI
(ϕ) or sgn⊗ jWWI

(ϕ),

where sgn is the sign character ofW , andϕ is a constructible character ofWI for some
proper subsetI of S.

3.4. Using the Kazhdan–Lusztig basis ofH(W), Lusztig has defined a partition ofW

into subsets called left cells, and has associated to each left cell a representation ofH(W).
In the equal parameter case, that is, when allk(s) are equal, there is an identificatio
theorem between constructible representations and left cell modules as follows.

Theorem 7 (Lusztig).Assume thatW is a finite Weyl group and that allk(s) are equal.
Then, the constructible characters coincide with the characters of the left cell repres
tions ofH(W).

Lusztig conjectures a similar result in the unequal parameter case.

3.5. In his study of irreducible characters of Chevalley groupsG(Fq), Lusztig has
obtained a division of the irreducible unipotent characters ofG(Fq) into families. This
induces for the corresponding finite Weyl groupW a partition of IrrW into certain subset
also called families (see [20]).

Later, Lusztig has introduced the constructible characters ofW in order to obtain a more
direct way of describing the families of IrrW . This goes as follows. Consider the gra
GW with set of vertices IrrW in which two irreducible charactersχ andχ ′ are joined if
and only if there exists a constructible characterψ such thatχ andχ ′ both appear in the
decomposition ofψ . Then the families of IrrW are the connected components ofGW .
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4. Constructible characters of type B and D

4.1. We denote byWm the Weyl group of typeBm. The Coxeter generatorss0, s1,

. . . , sm−1 fall into two conjugacy classes{s0} and{s1, . . . , sm−1}.
Let r ∈ N. We are going to describe, following Lusztig [19,20,22], the construc

characters ofWm for the choice of parametersk(s0) = r, k(s1) = · · · = k(sm−1) = 1.

4.1.1. First, recall that the irreducible characters ofWm are labelled by the bipartition
(λ,µ) of m. Let k � m and n � m − 1 + k + r. Then, by 2.6, Pa(n, k, r) contains
all bipartitions ofm. Hence the irreducible characters may be indexed by symbo
Sy(n, k, r). More precisely, they are parametrized by all symbolsS = (

β
γ

)
such that

∑
i

βi +
∑
j

γj −
(

k + 1

2

)
−

(
k + r + 1

2

)
= m.

Let Sy(n, k, r,m) denote the subset of these symbols. ForS ∈ Sy(n, k, r,m) we denote by
χS the corresponding element of IrrWm.

4.1.2. ForS = (
β
γ

) ∈ Sy(n, k, r,m) we define

Z = {z1 < z2 < · · · < zM } := (β ∪ γ ) − (β ∩ γ ), Z̃ := (Z;β ∩ γ ),

and we denote byπ the mapS �→ Z̃. Note thatM + 2|β ∩ γ | = 2k + r, henceM − r is
even.

4.1.3. An involution ι of Z is calledr-admissible if

(1) ι hasr fixed points;
(2) if M = r there is no further condition; otherwise one requires that there exis

consecutive elementsz, z′ ∈ Z such thatι(z) = z′ and that the restriction ofι to
Z − {z, z′} is anr-admissible involution ofZ − {z, z′}.

4.1.4. We now fix Z̃ and we consider the setπ−1(Z̃) of all symbolsS ∈ Sy(n, k, r,m)

such thatπ(S) = Z̃. Let ι be anr-admissible involution ofZ. DefineC(Z̃, ι) to be the se
of all symbolsS = (

β
γ

) ∈ π−1(Z̃) such that for each nontrivial orbitO of ι, β contains one
element ofO andγ the other. Clearly, we have thatC(Z̃, ι) has cardinality 2(M−r)/2. The
following is [22, 22.24].

Theorem 8 (Lusztig).For everyr-admissible involutionι of Z, the character

ψι =
∑

S∈C(Z̃,ι)

χS

is constructible. Moreover, all constructible characters ofWm arise in this way.
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4.2. We now relate constructible characters to the canonical bases of Section 2. Rec
that we have defined in 2.5 the set of pairs of a standard symbolS.

Lemma 9.

(a) Let S ∈ π−1(Z̃) be a standard symbol. The involutionι of Z whose nontrivial orbits
are the pairs ofS is r-admissible.

(b) Conversely, letι be anr-admissible involution ofZ. Let S = (
β
γ

) ∈ π−1(Z̃) be the
symbol such that, ifι(z) = z′ > z, thenz ∈ β andz′ ∈ γ . ThenS is standard and the
pairs ofS are the nontrivial orbits ofι.

Proof. We shall use repeatedly the following easy remark:

(R) if S = (
β
γ

) ∈ π−1(Z̃) is a symbol and ifz ∈ β andz′ ∈ γ are equal, or are consecutive
Z with z < z′, thenS is standard if and only if the symbolS′ = (β ′

γ ′
)

with β ′ = β − {z}
andγ ′ = γ − {z′} is standard.

(a) We argue by induction on the number(M − r)/2 of pairs ofS. If M = r the claim
is trivial, so assume thatM > r. Recall the notation of 2.5. Letl � 1 be minimal such tha
γ l �= ∅. By the minimality ofl, for all 0< j < l and allx ∈ γ − β we havex − j /∈ β − γ .
Let z′ ∈ γ l and setz = ψ(z′) = z′− l. Thenz andz′ are consecutive inZ. Indeed, otherwise
there would existz′′ ∈ Z with z < z′′ < z′. But this would contradict the minimality ofl,
since ifz′′ ∈ β we would havez′ − j ∈ β − γ for j = z′ − z′′ < l, and ifz′′ ∈ γ we would
havez′′ − j ∈ β − γ for j = z′′ − z < l.

Let S′ = (β ′
γ ′

)
with β ′ = β − {z} andγ ′ = γ − {z′}. By (R), S′ is again standard, s

by induction we know that the involutionι′ of Z − {z, z′} whose non trivial orbits are th
pairs ofS′ is r-admissible. Thus, using the definition ofr-admissibility we see thatι is
r-admissible.

(b) If M = r, it follows immediately from (R) thatS is standard. Moreover,S has no
pair and the claim is proved. IfM > r, by definition ofr-admissibility, there exists a pa
z, z′ of consecutive elements ofZ such thatι(z) = z′, z < z′ and the restrictionι′ of ι

to Z − {z, z′} is r-admissible. By induction the symbolS′ = (β ′
γ ′

)
built from ι′ as in the

statement of the lemma is standard and its pairs are the nontrivial orbits ofι′. Hence, by
(R) the symbolS = (

β
γ

)
with β = β ′ ∪ {z} andγ = γ ′ ∪ {z′} is standard. Moreover, sinc

z andz′ are consecutive inZ, they form a pair inS and the other pairs are the pairs ofS′.
Thus, the pairs ofS are the nontrivial orbits ofι. �

It follows from Theorem 8 and Lemma 9 that the constructible characters ofWm can be
parametrized by the set SSy(n, k, r,m) of standard symbols of Sy(n, k, r,m). Moreover,
if S ∈ π−1(Z̃) is standard and ifι is ther-admissible involution corresponding toS as in
Lemma 9, we have

C(S) = C(Z̃, ι). (19)
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Therefore, comparing Theorems 8 and 3, weobtain immediately the main result of th
section:

Theorem 10. Let k � m andn � m − 1+ k + r. Letg = sln+1 and consider the canonica
basis

Bm = {
bS

∣∣ S ∈ SSy(n, k, r,m)
}

of the principal degreem component of the irreducibleUv(g)-moduleV (Λk+r + Λk). For
bS ∈ Bm write as in Theorem3

Φ(bS) =
∑

Σ∈C(S)

vn(Σ)uΣ.

Then the set of constructible characters ofWm for the parametersqr, q, . . . , q is obtained
“by specializingv �→ 1 in Φ(Bm),” namely it consists of the

ψS =
∑

Σ∈C(S)

χΣ

(
S ∈ SSy(n, k, r,m)

)
.

Taking into account the remarks of 2.7, one can reformulate Theorem 10 as a sta
aboutUv(sl∞), as we did in the introduction. It is in fact more natural, since in this w
one gets rid ofk andn which are irrelevant as long as they are large enough. This am
to replace symbols by certain inductive limits of them, as in [22, 22.7].

4.3. Recall from 3.5 the partition of IrrWm given by the connected components of
graphGWm . Lusztig has shown [22, 22.2, 23.1] thatχS andχS ′ belong to the same clas
if and only if the symbolsS,S′ ∈ Sy(n, k, r,m) have the same content, that is, the sa
elements with the same multiplicities. Using Eq. (5), it is easy to deduce the follo
alternative description.

Corollary 11. χS andχS ′ belong to the same component ofGWm if and only ifuS anduS ′
belong to the same weight space of theUv(sl∞)-moduleF(Λ).

4.4. Let W ′
m denote the Weyl group of typeDm. The irreducible characters ofW ′

m are
indexed by unordered bipartitions{λ,µ} of m, with the convention that pairs of the for
{λ,λ} label two irreducible characters. Takingk andn large enough, we can equivalen
index the elements of IrrW ′

m by the orbits on the set of symbols Sy(n, k,0,m) of the
involution� exchanging the two rows of a symbol, except that one point orbits label in
two characters. We denote the elements of IrrW ′

m by χS = χS� in the first case, and b
χI

S ,χII
S in the second case.

Note that all generatorss of W ′
m are conjugate, hence all parametersk(s) of the Iwahori–

Hecke algebraH(W ′
m) must be equal.
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4.4.1. Retain the notation of 4.1.2–4.1.4, withr = 0.

Theorem 12 (Lusztig).Suppose thatZ �= ∅ and let ι be a0-admissible involution ofZ.
Then the character

ψι = 1

2

∑
S∈C(ι)

χS

is constructible. On the other hand, ifZ = ∅, the charactersχI
S and χII

S are both
constructible. Moreover, all constructible characters ofW ′

m arise in this way.

4.4.2. It follows from Theorems 12, 3, and Lemma 9 that:

Theorem 13. Let k � m and n � m − 1 + k. Let g = sln+1 and consider the canonica
basis

Bm = {
bS

∣∣ S ∈ SSy(n, k,0,m)
}

of the principal degreem component of the irreducibleUv(g)-moduleV (2Λk). For
bS ∈ Bm write as in Theorem3

Φ(bS) =
∑

Σ∈C(S)

vn(Σ)uΣ.

(Note that ifS� = S, thenΦ(bS) = uS .) Then the set of constructible characters ofW ′
m is

obtained by “specializingv �→ 1 in Φ(Bm),” namely it consists of the characters

ψS = 1

2

∑
Σ∈C(S)

χΣ,

for S� �= S, and of the charactersχI
S andχII

S for S� = S.

5. Relation with results of Gyoja

5.1. Let R be an integral domain and assume thatq and Q are invertible element
of R. We shall denote byHm(Q;q)R the Iwahori–Hecke algebra of typeBm over R

with parametersQ for the special generatorT0 and q for the remaining generato
Ti (1 � i � m − 1).

We denote byS(λ,µ)
R the SpechtHm(Q;q)R-module corresponding to a bipartition

(λ,µ) of m [10]. Let {D(λ,µ)
R } be a complete set of non-isomorphic simpleHm(Q;q)R-

modules parametrized as in [2] by the Kleshchev bipartitions(λ,µ) of m. LetP (λ,µ)
R be the

projective indecomposableHm(Q;q)R-module corresponding to a Kleshchev bipartition
(λ,µ), that is, the projective cover ofD(λ,µ).
R
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Note that whenHm(Q;q)R is semisimple, every bipartition is a Kleshchev bipartitio
On the other hand, in the case whereQ = −qr andq has infinite multiplicative order
the Kleshchev bipartitions are precisely the elements of Pa(k, r) corresponding to standar
symbols described in Section 2, Eq. (16).

5.2. LetA= Z[q1/2, q−1/2], whereq1/2 is an indeterminate. We consider the followi
modular system(K,O,k). LetA2 be the localization ofA at the prime ideal 2A, letO be
its completion,K the fractional field ofO, andk = F2(q

1/2) the residue field ofO. Then,
K containsZ[q1/2] andq has clearly infinite order inO andk.

For a finite-dimensional associative algebraA let R0(A) be the Grothendieck group o
the category mod-A. We denote by[M] the class ofM in R0(A).

Since−qr = qr in k, the natural mapA → k gives rise to two decomposition maps

d2
r,+ : R0

(
Hm

(
qr;q

)
K

) → R0
(
Hm

(
qr;q

)
k

)
,

d2
r,− : R0

(
Hm

(−qr;q
)
K

) → R0
(
Hm

(
qr;q

)
k

)
.

Note thatHm(qr;q)K is semisimple butHm(−qr;q)K is not semisimple in general.
Let F be a field containingZ[q1/2,Q1/2] where Q is an indeterminate. The

Hm(Q;q)F is semisimple. In particular, we know thatR0(Hm(Q;q)F) is isomorphic
to R0(Hm(qr;q)K). We denote this isomorphism byi. Also, we denote byd the
decomposition map

d : R0
(
Hm(Q;q)F

) → R0
(
Hm

(−qr;q
)
K

)
.

So, we have the following commutative diagram:

R0
(
Hm(Q;q)F

) i

d

R0
(
Hm

(
qr;q

)
K

)
d2

r,+

R0
(
Hm

(−qr;q
)
K

) d2
r,−

R0
(
Hm

(
qr;q

)
k

)
.

Combining Proposition 4 and [4, Corollary 3.7], we deduce immediately that

Proposition 14. For every Kleshchev bipartition(λ,µ),

d2
r,−

([
P

(λ,µ)
K

]) = [
P

(λ,µ)
k

]
.

Hence, the decomposition matrices ofd2
r,+ andd are the same and preserve their canoni

indices.
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[6].
5.3. By Ariki’s theorem [1], the decomposition matrix ofd is given by the canonica
basis of theUv(sl∞)-moduleV (Λr+k + Λk) calculated in Section 2.

More precisely, write againΛ = Λr+k + Λk . Let {s(λ,µ)} be the standard basis of th
degreem component ofF(Λ), and for a Kleshchev bipartition(λ,µ) let b(λ,µ) be the
element of the canonical basis ofV (Λ) ⊂ F(Λ) such thatb(λ,µ) ≡ s(λ,µ) modvL. Let
F(Λ) and V (Λ) denote thesl∞-modules obtained by specializingv to 1 in F(Λ) and
V (Λ) using theZ[v, v−1]-lattices spanned by{s(λ,µ)} and{b(λ,µ)}, respectively. By abus
of notation we continue to write{s(λ,µ)} and{b(λ,µ)} for the images of these bases inF(Λ)

andV (Λ).
Then the complexified Grothendieck groupRC(Hm(Q;q)F) is isomorphic to the

degreem component ofF(Λ), the basis{[S(λ,µ)

F
]} being mapped to{s(λ,µ)}. Similarly,

RC(Hm(−qr;q)K) is isomorphic to the degreem component ofV (Λ), the basis{[P (λ,µ)
K ]}

being mapped to{b(λ,µ)}. Finally, the mapd corresponds to the natural homomorphism
sl∞-modules fromF(Λ) to V (Λ).

5.4. In the equal parameter case, the decomposition mapd2
1,+ was first investigated

by Gyoja [11] in terms of Kazhdan–Lusztig cell representations. Taking into acc
Theorem 7, he proved the following theorem.

Theorem 15 (Gyoja). The decomposition matrix ofd2
1,+ is equal to the matrix whos

columns give the expansion of the constructible characters ofHm(q;q) in terms of the
irreducible ones.

Thus we see that using Gyoja’s theorem, Ariki’s theorem, and Proposition 14, we obta
a more conceptual proof of Theorem 10 in the equal parameter case, which does
explicit combinatorial calculations.

On the other hand, using our approach and Ariki’s theorem, we obtain that Theor
also holds in the unequal parameter case:

Theorem 16. The decomposition matrix ofd2
r,+ is equal to the matrix whose columns gi

the expansion of the constructible characters ofHm(qr;q) in terms of the irreducible ones

Note that recently, Bonnafé and Iancu [5] have determined the left cells ofHm(qr;q) in
the asymptotic caser � m. They proved that in this case the characters supported b
left cells are irreducible and coincide with the constructible characters.

6. Cyclotomic algebras

The results of Gyoja [11] together with some recent work of Rouquier [23] provi
way of generalizing the definition of families of characters of a Weyl group to com
reflection groups and their cyclotomic Hecke algebras. For the groupsW = G(d,1,m) =
Zd � Sm, these generalized families have been explicitly described by Broué and Kim
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6.1. Let d,m ∈ N∗ andr = (r0, . . . , rd−1) ∈ Zd . Let F be a field containingA and a
primitive d th root of unityζ . We denote byH(d,m,r) the unital associative algebra overF

generated byT0, . . . , Tm−1 subject to the relations

(Ti + 1)(Ti − q) = 0 for 1� i � m − 1,

d−1∏
j=0

(
T0 − ζ jqrj

) = 0, T0T1T0T1 = T1T0T1T0,

Ti+1TiTi+1 = TiTi+1Ti for 1 � i � m − 2,

TiTj = TjTi for 0 � i < j − 1 � m − 2.

Note that the Hecke algebraHm(qr;q)F of type Bm is isomorphic toH(2,m,r) with
r = (r + k, k) for any k ∈ Z. The algebrasH(d,m,r) have been introduced independen
by Ariki and Koike [3] and Broué and Malle [7].

The algebraH(d,m,r) is semisimple and its irreducible modules are naturally labelle
d-tuples of partitionsλ = (λ0, . . . , λ(d−1)) with

∑
j |λ(j)| = m [3]. Denote the irreducible

character ofH(d,m,r) indexed byλ by χλ. To ad-partitionλ, one can associate ad-tuple
of Young diagrams whose cells are filled with their content shifted by the parameterj .
More precisely, the cell with row numberi and column numberj belonging to thesth
Young diagram is filled with the integeri − j + rs . Reading all the cells ofλ, one obtains
a multiset of integers called the content ofλ, that we shall denote byc(λ).

Theorem 17 (Broué–Kim).The charactersχλ andχµ belong to the same Rouquier fam
of Irr H(d,m,r) if and only ifc(λ) = c(µ).

6.2. To the same data we associate thesl∞-weight Λ = ∑d−1
j=0 Λrj and theUv(sl∞)-

modulesF(Λ) andV (Λ). Here,V (Λ) is the irreducible integrable module with highe
weightΛ andF(Λ) = ⊗d−1

j=0 V (Λrj ). Moreover, as before ford = 2, the standard basis o
F(Λ) is indexed in a natural way by alld-tuples of Young diagrams with contents shift
by r0, . . . , rd−1. We shall denote this basis by{sλ}. TheUv(sl∞) weight ofsλ is equal to

wt sλ = Λ −
∑
j∈Z

cjαj ,

wherecj denotes the number of elements equal toj in c(λ) and theαj are the simple root
of sl∞. From this and Theorem 17 it is easily deduced that

Proposition 18. The charactersχλ and χµ belong to the same Rouquier family
Irr H(d,m,r) if and only ifsλ andsµ belong to the same weight space ofF(Λ).
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6.3. By analogy with the cased = 2, one can then consider the canonical basis ofV (Λ)

and its expansion on the standard basis ofF(Λ), which can be calculated via a simp
algorithm [18]. Attached to each element

b =
∑
λ

αb
λ(v)uλ

of this basis, we have a certain character ofH(d,m,r):

ψ =
∑
λ

αb
λ(1)χλ.

It would be interesting to understand whether these characters are good analog
G(d,1,m) of the constructible or left cell characters of the Weyl groups of typeBm.
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