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Abstract

We perform the group classification of a bond-pricing partial differential equation of mathematical fi-
nance to discover the combinations of arbitrary parameters that allow the partial differential equation to
admit a nontrivial symmetry Lie algebra. As a result of the group classification we propose “natural” values
for the arbitrary parameters in the partial differential equation, some of which validate the choices of pa-
rameters in such classical models as that of Vasicek and Cox–Ingersoll–Ross. For each set of these natural
parameter values we compute the admitted Lie point symmetries, identify the corresponding symmetry Lie
algebra and solve the partial differential equation.
© 2008 Published by Elsevier Inc.
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1. Introduction

In recent years a number of studies have used Lie symmetries in finance to provide insight into
the structure of associated partial differential equations. One of the earliest studies was done by
Gazizov and Ibragimov [7], who dealt with the classical Black–Scholes–Merton equation. Since
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that time this approach has been applied to other partial differential equations from finance, for
example Lo and Hui [15] and Carr et al. [4].

In this paper we present the group classification of the linear second-order parabolic partial
differential equation

∂u

∂t
+ 1

2
ρ2x2γ ∂2u

∂x2
+ (

α + βx − λρxγ
)∂u

∂x
− xu = 0, (1.1)

where α, β , γ , ρ and λ are constants.1 In financial mathematics Eq. (1.1), with the terminal
condition

u(x,T ) = 1, (1.2)

models the value, u(x, t), of a zero-coupon bond with expiry at t = T when the short-term
interest rate (also called spot rate) is governed by a stochastic process of the form

dx = (α + βx)dt + ρxγ dW(t), (1.3)

where W(t) is a standard Wiener process [13]. The parameter λ in (1.1) is called the market
price of risk2; it is the extra increase in expected instantaneous rate of return on a bond per
additional unit of risk. The stochastic differential equation (1.3) is a variant of a one-dimensional
generalised square root process (GSR). Craddock and Platen [6] in 2004 applied symmetry group
methods to finding fundamental solutions to a class of partial differential equations that had been
derived from the GSR process. This process is associated with the minimum market model of
Platen [19].

The study of (1.1) is important because many one-factor interest rate models that have been
proposed in the literature can be nested in (1.3) with the precise forms of the arbitrary elements
depending upon the particular model under consideration. For example the Vasicek [23] and
Cox–Ingersoll–Ross (CIR) [5] models correspond to γ = 0 and γ = 1/2, respectively.

One would imagine that the values of the arbitrary parameters in (1.1) are determined through
experimentation or by making some simplifying assumptions. Obviously we would like if pos-
sible to select values for these parameters that make the model tractable. From the point of view
of symmetry methods (also called group-theoretic modelling) this means choosing parameter
values that result in (1.1) possessing a maximal symmetry Lie algebra.

We know that Eq. (1.1), being a linear partial differential equation, admits u∂u and φ∂u, where
φ(x, t) is any solution of (1.1). If, besides these two symmetries, (1.1) admits five additional
symmetries, then it can be reduced to the standard heat equation [14], for which the solution is
well known (see [21] and [12] for example).

Our goal in this paper is to determine systematically values of the arbitrary elements that
make Eq. (1.1) interesting in the sense that the corresponding model equation admits a “large”
symmetry Lie algebra and is consequently tractable. The problem of determining such elements
is known as the group classification problem and the first systematic investigation of the problem
was carried out by Sophus Lie [14] for general linear second-order partial differential equations
with two independent variables.

1 Typically α, β , γ and ρ are taken to be nonnegative, but in our study we remove this restriction and (as we explain
later) use symmetry analysis to assign to these parameters (any) values that make the model tractable.

2 In general λ = λ(x, t), i.e., it depends upon both x and t .
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The rest of this paper is organised as follows. In Section 2 we derive two equations, one for
γ �= 1 and the other for γ = 1, upon which the group classification of (1.1) depends. In Section 3
we present results of the group classification scheme and in Section 5 we conclude and make
some observations.

2. Determination of classification equations of (1.1)

In this section we derive two equations, one for γ �= 1 and the other for γ = 1, upon which
the group classification of (1.1) depends. We use Lie’s classical method (described, for example,
in [3] and [18]) to determine the conditions that the constants α, β , γ , ρ and λ must fulfil for (1.1)
to possess a “nontrivial” symmetry Lie algebra. We firstly introduce the idea of a symmetry of
a differential equation.

Consider a general second-order partial differential equation,

Δ(x, t, ux,ut , uxx, uxt , utt ) = 0, (2.1)

in one dependent variable u and two independent variables (x, t). Infinitesimal transformations,

t̃ = f (t, x,u, ε) = t + ετ(t, x,u) + O
(
ε2),

x̃ = g(t, x,u, ε) = x + εξ(t, x,u) + O
(
ε2),

ũ = h(t, x,u, ε) = u + εη(t, x,u) + O
(
ε2), (2.2)

depending on a continuous parameter, ε, are said to be a Lie point symmetry group of Eq. (2.1)
if the equation has the same form in the new variables, t̃ , x̃ and ũ, as in the original variables.
The set of all such transformations forms a continuous group called the Lie group, G, of (2.1).
According to Lie’s theory the construction of the symmetry group, G, is equivalent to the deter-
mination of the associated operator,

G = ξ(t, x,u)∂x + τ(t, x,u)∂t + η(t, x,u)∂u, (2.3)

called in the literature the generator or infinitesimal symmetry (or simply symmetry) of the
group G. The requirement that (2.1) be invariant under the transformations (2.2) is determined
by the invariance condition

G[2](Δ)
∣∣
Δ=0 = 0, (2.4)

where G[2] is the second-prolongation formula of G and is given by

G[2] = G + ηt ∂

∂ut

+ ηx ∂

∂ux

+ ηxx ∂

∂uxx

+ ηxt ∂

∂uxt

+ ηtt ∂

∂utt

with ηt , ηx, ηxx, . . . given in the context of the transformations specified in [3]. The invariance
condition and the fact that the derivatives of u are independent leads to a set of linear partial
differential equations in τ , ξ and η called the determining equations, which are then solved
to give the symmetries admitted by (2.1) [3,18]. Many computer algebra packages have been
developed to find symmetries of differential equations [10].
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2.1. Classification equation for γ �= 1

Suppose that (1.1) admits a symmetry of the form (2.3). Application of the invariance condi-
tion, (2.4), to Eq. (1.1) yields the following determining equations3:

τx = τu = 0, (2.5)

τuu = 0, (2.6)

ρ2x2γ τxu − 2ξu = 0, (2.7)

ξuu − (
α + βx − λρxγ

)
τuu = 0, (2.8)

2ξxu − ηuu + xuτuu − 2
(
α + βx − λρxγ

)
τxu = 0, (2.9)

4γ ξ − 4ξxx + 2xτt + 2x2uτu + ρ2x1+2γ τxx + 2x
(
α + βx − λρxγ

)
τx = 0, (2.10)

−2ηt + 2uξ + 2xη − 2xuηu + 2xuτt + 2x2u2τu − ρ2x2γ ηxx + ρ2x1+2γ uτxx

− 2
(
α + βx − λρxγ

)
ηx + 2xu

(
α + βx − λρxγ

)
τx = 0, (2.11)

−2xξt − 2x2uξu + 2ρ2x1+2γ ηxu − ρ2x1+2γ ξxx

+ (
2xτt − 2xξx + 2x2uτu + ρ2x1+2γ τxx

)(
α + βx − λρxγ

)
− 2ρ2x2+2γ uτxu + 2x

(
α + βx − λρxγ

)2
τx + 2

(
βx − γ λρxγ

)
ξ = 0. (2.12)

From (2.5) we deduce that

τ(x, t, u) = τ(t), (2.13)

whereby (2.7) is reduced to

ξu = 0 (2.14)

and hence

ξ(x, t, u) = ξ(x, t). (2.15)

If we now substitute (2.13) and (2.15) into (2.9), we find that

ηuu = 0 (2.16)

and therefore

η(x, t, u) = C1(x, t) + uC2(x, t) (2.17)

for some functions C1 and C2. If we substitute (2.13), (2.15) and (2.17) in (2.10) and solve the
resulting partial differential equation for ξ , we find that

3 We used program LIE [9] to generate the determining equations (2.5)–(2.12) and MATHEMATICA [24] to solve them.
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ξ(x, t) = xγ C3(t) + xτ̇ (t)

2(1 − γ )
, γ �= 1, (2.18)

where C3 is another function. If we now substitute (2.13), (2.15) and (2.17) into (2.11) and solve
the resulting partial differential equation for C2, we have

C2(x, t) = 1

4ρ2(γ − 1)2

[
2(γ − 1)2x−(1+γ )

(
γρ2x2γ − 2αx − 2βx2)C3(t)

− 4(γ − 1)x1−γ Ċ3(t) + 2(γ − 1)x1−2γ
(
α + βx − λρxγ

)
τ̇ (t)

+ x2(1−γ )τ̈ (t)
] + C4(t), (2.19)

where C4 is yet another arbitrary function of integration. If we now suppose that C1 is a solution
of (1.1), then substitution of (2.13), (2.17) (with C2 given by (2.19)) and (2.18) into (2.11) gives
what we call the classification equation of (1.1) for γ �= 1:

h0(t) + x−2+3γ h1(t) + x−γ h2(t) + x−1+2γ h3(t) + xγ h4(t) + x2h5(t)

+ x2(1−γ )h6(t) + x2−γ h7(t) + x1+γ h8(t) + xh9(t) + x1−2γ h10(t)

+ x1−γ h11(t) + x3−2γ h12(t) + x−1+γ h13(t) = 0, (2.20)

where

h0(t) = −8α(γ − 1)2γ λρC3(t) + 4α(γ − 1)γ (2γ − 1)ρ2τ̇ (t),

h1(t) = 2(γ − 2)(γ − 1)3γρ4C3(t),

h2(t) = 8α2(γ − 1)2γC3(t),

h3(t) = −4(γ − 1)3γ λρ3C3(t),

h4(t) = −2(γ − 1)2γ λρ3τ̇ (t),

h5(t) = −4(γ − 1)(2γ − 3)ρ2τ̇ (t),

h6(t) = −4αβ(γ − 1)(4γ − 3)τ̇ (t),

h7(t) = 8β2(γ − 1)3C3(t) + 12β(γ − 1)2λρτ̇ (t) − 8(γ − 1)C̈3(t),

h8(t) = −8(γ − 1)2ρ2C3(t),

h9(t) = −8β(γ − 1)3λρC3(t) − 8(γ − 1)2λρĊ3(t) + 8(γ − 1)2ρ2Ċ4(t)

+ (γ − 1)2(β(8γ − 4) − 4λ2)ρ2τ̇ (t) + 2(γ − 1)(2γ − 1)ρ2τ̈ (t),

h10(t) = −4α2(γ − 1)(2γ − 1)τ̇ (t),

h11(t) = 8αβ(γ − 1)2(2γ − 1)C3(t) + 4α(γ − 1)(3γ − 2)λρτ̇ (t),

h12(t) = −8β2(γ − 1)2τ̇ (t) + 2
...
τ (t),

h13(t) = −8αγ (γ − 1)2ρ2C3(t).
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2.2. Classification equation for γ = 1

In the case of γ = 1 we proceed as in Section 2.1 and deduce that the coefficient functions, ξ ,
τ and η, of the symmetry (2.3) are given by

ξ(x, t, u) = xC3(t) + 1

2
τ̇ (t)x lnx, (2.21)

τ(x, t, u) = τ(t) (2.22)

and

η(x, t, u) = φ(x, t) + u

[
C4(t) − αC3(t)

ρ2x
+ Ċ3(t) lnx

ρ2

+ lnx[τ̈ (t)x lnx − (2α + (2β + 2λρ − ρ2)x)]τ̇ (t)

4ρ2x

]
, (2.23)

where φ(x, t) is any solution of (1.1) and the functions C3, C4 and τ satisfy the classification
equation

h1(t) + h0(t) lnx + h8(t)(lnx)2 + h2(t) + h3(t) lnx

x

+ h4(t) + h5(t) lnx

x2
+ x

(
h6(t) + h7(t) lnx

) = 0 (2.24)

with

h0(t) = 8

ρ2
C̈3(t),

h1(t) = 8Ċ4(t) + 4(2β − 2λρ − ρ2)

ρ2
Ċ3(t)

− (ρ(2λ + ρ) − 2β)2

ρ2
τ̇ (t) + 2τ̈ (t),

h2(t) = 8α(β − ρ(λ + ρ))

ρ2

(
C3(t) − τ̇ (t)

)
,

h3(t) = 4α(β − ρ(λ + ρ))

ρ2
τ̇ (t),

h4(t) = 4α2

ρ2

(
2C3(t) − τ̇ (t)

)
,

h5(t) = 4α2

ρ2
τ̇ (t),

h6(t) = −8
(
C3(t) + τ̇ (t)

)
,

h7(t) = −4τ̇ (t),

h8(t) = 2
2

...
τ (t).
ρ
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3. Results of the group classification of Eq. (1.1)

3.1. The Lie point symmetries

It is clear that

τ(t) = ε1, C3(t) = 0 and C4(t) = ε2 (3.1)

for constants ε1 and ε2 solve both classification equations (2.20) and (2.24), i.e.

ξ = 0, τ = ε1 and η = uε2 + φ(x, t), (3.2)

where φ(x, t) is any solution of (1.1), solves the determining equations. Thus we have:

Case 0. α, β , γ , ρ, λ arbitrary.

G1 = ∂t , G2 = u∂u, Gφ = φ(x, t)∂u, (3.3)

where φ(x, t) is any solution of (1.1). The symmetries in (3.3) generate the principal Lie algebra,
LP , of (1.1).

We deduce from the form of Eq. (2.20) that extensions of the principal Lie algebra are only
possible for those values of γ for which the coefficients of the functions, hi(t), in (2.20) are not
distinct. Therefore for possible extension of the principal Lie algebra we investigate among these
values of γ :

0,
1

3
,

1

2
,

3

5
,

2

3
,

3

4
,

4

5
,1,

4

3
,

3

2
,2,3.

In fact we see that the principal Lie algebra is extended for only γ ∈ {0, 1
2 , 3

2 ,2} as follows:

Case 1. γ = 2, α = 0, β �= 0, λ = − 1
ρ

.

G3 = eβt

[
x2∂x −

(
2

ρ2
+ 2β

ρ2x
− x

)
u∂u

]
,

G4 = e−βt
[
x2∂x + xu∂u

]
,

G5 = e2βt

[
1

2

(
x + x2

β

)
∂x − 1

2β
∂t +

(
3

2
− 1

βρ2
− β

ρ2x2
− 2

ρ2x
+ x

2β

)
u∂u

]
,

G6 = e−2βt

[
1

2

(
x + x2

β

)
∂x + 1

2β
∂t + xu

2β
∂u

]
.

Case 2. γ = 3 , α = 0, β �= 0, λ = 0.
2
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G3 = eβt

[
x∂x − 1

β
∂t + 2

(
1 − β

ρ2x

)
u∂u

]
,

G4 = e−βt

[
x∂x + 1

β
∂t

]
.

Case 3a. γ = 1/2, λ = 0 (μ = √
β2 + 2ρ2 ).

G3 = eμt

[
x∂x + 1

μ
∂t + β − μ

ρ2

(
α

μ
− x

)
u∂u

]
,

G4 = e−μt

[
x∂x − 1

μ
∂t − β + μ

ρ2

(
α

μ
+ x

)
u∂u

]
.

Case 3b. γ = 1/2, α = ρ2/4 (μ = √
β2 + 2ρ2 ).

G3 = eμt/2
[√

x∂x − β − μ

ρ2

(
λρ

μ
+ √

x

)
u∂u

]
,

G4 = e−μt/2
[√

x∂x + β + μ

ρ2

(
λρ

μ
− √

x

)
u∂u

]
,

G5 = eμt

[(
x − βλρ

μ2

√
x

)
∂x + 1

μ
∂t + {

a0(μ) + √
xa1(μ) + xa2(μ)

}
u∂u

]
,

G6 = eμt

[(
x − βλρ

μ2

√
x

)
∂x − 1

μ
∂t + {

a0(−μ) + √
xa1(−μ) + xa2(−μ)

}
u∂u

]
,

where

a0(ζ ) = β − ζ

4ζ
− λ2[ρ2 + (β − ζ )ζ ]

ζ 3
,

a1(ζ ) = λ(β − ζ )2

ρζ 2
,

a2(ζ ) = ζ − β

ρ2
.

Case 3c. γ = 1/2, α = 3ρ2/4, λ = 0 (μ = √
β2 + 2ρ2 ).

G3 = eμt/2
[√

x∂x −
(

1

2
√

x
+ β − μ

ρ2

√
x

)
u∂u

]
,

G4 = e−μt/2
[√

x∂x −
(

1

2
√

x
+ β + μ

ρ2

√
x

)
u∂u

]
,

G5 = eμt

[
x∂x + 1

μ
∂t + β − μ

ρ2

(
3ρ2

4μ
− x

)
u∂u

]
,

G6 = e−μt

[
x∂x − 1

∂t − β + μ

2

(
3ρ2

+ x

)
u∂u

]
.

μ ρ 4μ



2828 W. Sinkala et al. / J. Differential Equations 244 (2008) 2820–2835
Case 4a. γ = 0, β �= 0 (κ = α − λρ, θ = κ
β

+ ρ2

2β2 ).

G3 = e−βt

[
ρ2

2β
∂x − (x + l1)u∂u

]
,

G4 = eβt

[
∂x + 1

β
u∂u

]
,

G5 = e−2βt

[(
l2 + ρ2

2β
x

)
∂x − ρ2

2β2
∂t + (

l3 − l4x − x2)u∂u

]
,

G6 = e2βt

[
(l5 + βx)∂x + ∂t +

(
ρ2

2β2
+ x

)
u∂u

]
,

where

l1 = θ, l2 = βκρ2 + ρ4

2β3
, l3 = −

(
ρ2

2β
+ θ2

)
,

l4 = 2θ + ρ2

2β2
, l5 = κ + ρ2

β
.

Case 4b. γ = 0, β = 0 (κ = α − λρ).

Σ1 = ∂t ,

Σ2 = u∂u,

Σ3 = ∂x + ut∂u,

Σ4 = ρ2t∂x − (
κt − ρ2t2/2 − x

)
u∂u,

Σ5 = (
x + 3ρ2t2/2 + κt

)
∂x + 2t∂t + (

3tx + ρ2t3/2 − κt2)u∂u,

Σ6 = [
ρ4t4/4 − κρ2t3 + κ2t2 − ρ2t + x

(
3ρ2t2 − 2κt

) + x2]u∂u

+ (
ρ4t3 + 2ρ2tx

)
∂x + 2ρ2t2∂t .

4. Solution of (1.1) and (1.2) in Cases 1–4 of Section 3

From Lie’s result of group classification of linear second-order partial differential equations
with two independent variables [14] it follows that, in the cases in which (1.1) admits the maximal
seven Lie point symmetry algebra, (1.1) can be mapped into the standard heat equation by an
invertible transformation of the form

z = f (x, t), τ = g(t), w = h(x, t)u (4.1)

for some functions f , g and h, with fx �= 0 and gt �= 0. The transformation (4.1) may be obtained
with the help of two quadratures as was done in Gazizov and Ibragimov [7]. Another (and perhaps
simpler) method is to exploit the algorithm of Bluman and Kumei (see Chapter 6 of [3]) whereby
symmetries admitted by a variable coefficient partial differential equation are used to transform
the equation into one with constant coefficients. The application of this method in each of the
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Cases 1, 3b, 3c, 4a and 4b maps (1.1) into an equation of the form wτ + δwzz = 0 for some
constant δ, which can easily be scaled away. Further one can choose (some of) the free parameters
in (4.1) suitably so that (1.1) and (1.2) is mapped by (4.1) into the standard heat equation Cauchy
problem,

∂w

∂τ
= ∂2w

∂z2
, (4.2)

w(z,0) = η(z), (4.3)

for some function η. Provided η is “well-behaved” the solution to (4.2) and (4.3) is well
known [12,21]; it is

w(z, τ ) = 1

2
√

πτ

∞∫
−∞

η(ζ ) exp

{
− (z − ζ )2

4τ

}
dζ. (4.4)

The solution obtained from (4.4) is (of course) transformable back into a solution to (1.1)
and (1.2) by the inverse of (4.1).

To construct (4.1) we used the symmetries G4 and G6 in Cases 1 and 4a, Σ4 and Σ6 in
Case 4b, and G3 and G5 in Cases 3b and 3c. We now present explicitly in each of these cases the
function η in (4.3), the functions f , g and h in (4.1), and the solution to (1.1) and (1.2). In the
expressions that follow K1 and K2 are arbitrary constants.

Case 1.

f (x, t) = K1 − eβt

(
1

β
+ 1

x

)
, g(t) = ρ2(e2βT − e2βt )

4β
, h(x, t) = K2eβt

x
,

η(ζ ) = K2(βK1 − eβT − βζ)

β
,

u(x, t) = 1 + x(1 − eβ(T −t))

β
.

Case 3b. (μ = √
β2 + 2ρ2, Ω = λ2(β2+ρ2)

μ2 + μ−β
4 − λ2).

f (x, t) = K1 + e−μt/2
(

2
√

x − 2βλρ

μ2

)
,

g(t) = ρ2(e−μt − e−μT )

2μ
,

h(x, t) = K2 exp

[
Ωt + (β − μ)x

ρ2
+ 2λ(β − μ)

√
x

ρμ

]
,

η(ζ ) = exp

{
ΩT + (μ − β)

[
eμT/2λ(μ + β)(K1 − ζ )

ρμ2
− eμT (K1 − ζ )2

4ρ2
− βλ2(β + 2μ)

μ4

]}
,

u(x, t) = eϕ(x,t)√
1 + (

β−μ
)ψ2(T − t)

,

2
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where

ϕ(x, t) = 1

1 + (
β−μ

2 )ψ2(T − t)

{
2λρψ1(T − t)2√x + xψ2(T − t)

+ Ω

2

[
βψ2(T − t) + μψ3(T − t)

]
(T − t) − λ2ρ2

μ2

[
2βψ1(T − t)2 + ψ2(T − t)

]}

and

ψ1(y) = 1 − eμy/2

μ
, ψ2(y) = 1 − eμy

μ
, ψ3(y) = 1 + eμy

μ
.

Case 3c. (μ = √
β2 + 2ρ2 ).

f (x, t) = K1 + 2e−μt/2√x, g(t) = ρ2(e−μt − e−μT )

2μ
,

h(x, t) = K2
√

x exp

[
(β − μ)x

ρ2
+ (μ − 3β)t

4

]
,

η(ζ ) = K2(K1 − ζ )

2
exp

[
(3ρ2T − K1

2eμT )(μ − β)

4ρ2
+ eT μ(μ − β)(2K1 − ζ )ζ

4ρ2

]
,

u(x, t) = exp

{
3(μ − β)

4

[
μψ2(T − t) − βψ1(T − t)

]
(T − t) − 2xψ1(T − t)

}

×
(

2μ

2β + (μ − β)ψ2(T − t)

)3/2

,

where

ψ1(y) = eμy − 1, ψ2(y) = eμy + 1.

Case 4a. (κ = α − λρ, θ = κ
β

+ ρ2

2β2 ).

f (x, t) = K1 + e−βt (βκ + ρ2 + β2x)

β2
, g(t) = ρ2(e−2βt − e−2βT )

4β
,

h(x, t) = K2 exp

{
(2κβ + ρ2)t

2β2
− x

β

}
,

η(ζ ) = K2 exp

{
κβ + ρ2

β3
+ θT + eβT (K1 − ζ )

β

}
,

u(x, t) = exp

{
θ(T − t) + (θ + x)ψ(T − t)

β
+ ρ2ψ(T − t)2

4β3

}
,

where

ψ(y) = 1 − eβy.
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Case 4b. (κ = α − λρ).

f (x, t) = K1 − t

2
+ x

ρ2t
, g(t) = T − t

2ρ2tT
,

h(x, t) = K2
√

t exp

{
ρ2t3

24
− κ2t

2ρ2
+

(
κ

ρ2
− t

2

)
x − x2

2ρ2t

}
,

η(ζ ) = K2
√

T exp

{
T 2[κ + 2ρ2(K1 − ζ )]

2
− ρ2T 3

3
− T [κ + ρ2(K1 − ζ )]2

2ρ2

}
,

u(x, t) = exp

{
(T − t)[ρ2(T − t)2 − 3κ(T − t) − 6x]

6

}
.

In Cases 2 and 3a (1.1) and (1.2) does not lend itself to solution via the heat equation. We pro-
ceed to find the solution in each of these cases as an invariant solution [7,8,17,20,22]. One starts
by finding a symmetry admitted by both (1.1) and (1.2) and then uses this symmetry to construct
a general invariant solution of (1.1). The free parameters in the general invariant solution are then
chosen suitably so that the solution satisfies the auxiliary condition (1.2).

Case 2. Using the routine outlined in [17,22] it turns out that in this case

Γ = e−β(t−T )

[
x∂x + 1 − eβ(t−T )

β
∂t

]
(4.5)

is admitted by both (1.1) and (1.2). Therefore the general invariant solution of (1.1) arising
from (4.5) can be written in the form

u(x, t) = y(ζ ), ζ = x
(
1 − eβ(T −t)

)
, (4.6)

where y(ζ ) satisfies the ordinary differential equation

ρ2ζ 2y′′ + 2βy′ − 2y = 0. (4.7)

The solution to (4.7) in terms of a Whittaker function (as the equation does not seem to admit a
solution in ordinary functions) is obtained as follows: We make the change of variable

z = 2β

ρ2ζ
, w(z) = y(ζ ) (4.8)

followed by

w(z) = v(z) exp{z/2}
z

, (4.9)

after which we obtain the Liouville standard form (or normal form),

v′′ +
(

1/4 − m2

2
+ 1 − 1

)
v = 0, (4.10)
z z 4
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where

m =
√

ρ2 + 8

2ρ
.

The general solution of (4.10) is [2] (see also [1])

v = C1M1,m(z) + C2M1,−m(z), 2m �= 0,±1,±2, . . . , (4.11)

where C1 and C2 are arbitrary constants, and Mk,m(z) is a Whittaker function of the first kind
defined by

Mk,m(z) = e−z/2zm+1/2M

(
1

2
+ m − k,2m + 1, z

)
, 2m �= 0,−1,−2,−3, . . . . (4.12)

In view of (4.8), (4.9) and (4.11) we have that

y(ζ ) = ζ exp

{
β

ρ2ζ

}[
D1M1,m

(
2β

ρ2ζ

)
+ D2M1,−m

(
2β

ρ2ζ

)]
,

2m �= 0,±1,±2, . . . , (4.13)

where Di = ρ2

2β
Ci , i = 1,2, is the solution to (4.7). In conclusion we state simply that the in-

variant solution of (1.1) compatible with the terminal condition, (1.2), is obtained from (4.6)
and (4.13) after a suitable choice of the free parameters D1 and D2. This may be done for spe-
cific (numerical) values of the parameters.

Case 3a. In Case 3a we note that an obvious renaming of the parameters in (1.1) converts the
problem (1.1) and (1.2) into the CIR problem [5], the solution of which was constructed as an
invariant solution in [22]. So, after adjusting the parameters in the CIR problem appropriately,
we have the following solution to (1.1) and (1.2):

u(x, t) = exp

{
2xψ(T − t)

2μ + (μ − β)ψ(T − t)

}{
2μ exp[(μ − β)(T − t)/2]

2μ + (μ − β)ψ(T − t)

}2α/ρ2

, (4.14)

where

ψ(y) = eμy − 1

and

μ =
√

β2 + 2ρ2.
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Table 1

Scaling factors for “standardising” the commutation relations of the symmetries in Section 3.1, ω1 = 2βκ+ρ2−β3

2β3 ,

ω2 = 4λ2(
ρ2

μ2 − 1) + 4β2λ2

μ2 − β

Case Scaling factors

G1 G2 G3 G4 G5 G6

1 1
β

3
2 1 3ρ2

4β
− 4β

3ρ2 − 3ρ2

4β

2 1
β

1 1 1
2

3a 1
μ − αβ

μρ2 1 1
2

3b 2
μ

ω2
2μ

ρ

μ
√

2
ω2ρ

μ
√

2
1

ω2
ω2

3c 2
μ − 3β

2μ
− 3βρ2

2μ
1
μ − 3βρ2

2 − 2
3βρ2

4a − 1
β −ω1 ω1 1 ω1

2
1

ω1ρ2

4b 1 1 1 1 1 1

4.1. Identification of the associated Lie symmetry algebras

In this section we identify the finite-dimensional symmetry Lie algebras of Section 3.1 ob-
tained by excluding the solution symmetries. Firstly, for the purpose of identification, we change
the set of basis operators of the Lie algebra generated by the symmetries in Case 4b to

G1 = Σ5, G2 = 1

2
Σ2, G3 = 1

2
Σ4, G4 = Σ3,

G5 = 1

4
Σ6, G6 = − 2

ρ2
(Σ1 + κΣ3 + Σ4).

Secondly, we standardise the commutation relations in the various cases by multiplying the
symmetries with suitable scaling factors given in Table 1. Then, denoting the Heisenberg–Weyl
algebra with

[Γ1,Γ2] = 0, [Γ1,Γ3] = 0, [Γ2,Γ3] = Γ1

by W , we identify the following two types of symmetry Lie algebra:

Cases 1, 3b, 3c, 4a, 4b. sl(2,R) ⊕s W .

[G1,G3] = G3, [G1,G4] = −G4, [G1,G5] = 2G5,

[G1,G6] = −2G6, [G3,G4] = −G2, [G3,G6] = G4,

[G4,G5] = G3, [G5,G6] = G1 − G2.

Cases 2, 3a. sl(2,R) ⊕s A1.

[G1,G3] = G3, [G1,G4] = −G4, [G3,G4] = G1 − G2.
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5. Summary and discussion

We have performed the group classification of the partial differential equation (1.1) and shown
that the Lie algebra of this equation essentially depends upon the parameters α, β , γ , ρ and λ.
Every member of the family (1.1) admits the symmetries G1 = ∂t , G2 = u∂u and the solu-
tion symmetries. However, admission by (1.1) of additional symmetries is only possible for
γ ∈ {0,1/2,3/2,2} as is presented in Cases 1 to 4 in Section 3. For each of these cases we
have computed the Lie point symmetries, calculated their commutation relations and identified
the corresponding Lie algebras. Further we have used the admitted symmetries to solve (1.1)
and (1.2) completely in each of Cases 1 to 4.

It is noteworthy that through the method of group classification we have rediscovered (or
validated parameter choices in) some of the interesting models that have been proposed in the
literature:

• Case 4a with γ = 0 and β �= 0 is the Vasicek model [23],
• Case 3a with γ = 1/2 and λ = 0 is the Cox–Ingersoll–Ross model [5],
• Case 3b with γ = 1/2 and α = ρ2/4 is the Longstaff model [16].

The other models that have arisen from the group classification procedure such as Case 3c have
probably not been considered before. We defer to future research investigation of the possible
usefulness of these models in the wonderful world of financial mathematics.

In the light of the theory on relating different differential equations [3] we observe an inter-
esting relationship between the algebras sl(2,R)⊕s A1 (admitted in Cases 2, 3a) and the algebra
sl(2,R) ⊕s W (admitted in Cases 1, 3b, 3c, 4a, 4b); the former is a subalgebra of the latter, with
the following correspondence establishing an isomorphism between the corresponding (scaled)
symmetries:

2G1 ←→ G1, 2G2 ←→ G2, νG3 ←→ G5,
2

ν
G4 ←→ G6, ν �= 0.
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