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We study localization of various spin fields on flat thick branes, two different models are considered. For
spin 0 scalar field, the massless zero mode is found to be normalizable on both the thick brane models.
Spin 1 vector field cannot be normalizable on either of the two brane models. And for spin 1/2 field there
is no bound zero mode for both the left and right chiral fermions. In order to localize the left or right
chiral fermions on the thick brane models, the usual Yukawa scalar-fermion coupling is considered. It is
shown that, the two models give different localization properties for fermions. Namely, whether there is
a bound zero mode is related to the considered model.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

In recent years, brane world received a considerable attention
from the physical community, as addressing the hierarchy prob-
lem [1–3], the supersymmetry breaking and the cosmological con-
stant problem and so on [4,5]. In brane world scenarios, our world
is a 3-brane embedded in a higher-dimensional space–time, and
the Standard Model particles are assumed to live on the 3-brane,
whereas the gravitational field is free to propagate in the whole
space–time (the so-called bulk). Branes can be classified as thin
and thickness ones [6]. Thin branes are constructed after intro-
ducing a tension term in the action, localized by a Dirac delta
function. (See Ref. [7] and references therein.) The issue of fields
and gravity localization in such branes is addressed with the help
of Dirac delta functions, without any clear subjacent dynamics. On
the other hand, thick branes are constructed in a dynamical way
after one or more scalar fields coupled with gravity [5,6,8–10].
Thick branes are more natural in the sense that field and gravity
localization can be studied with the introduction of smooth func-
tions (instead of Dirac ones). Moreover, the thin brane solutions
are recovered in certain limits [11,12].
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In the brane world scenarios, an important issue is how grav-
ity and different observable matter fields of the Standard Model
of particle physics are localized on the brane. It has been shown
that, in the Randall–Sundrum model in 5-dimensional space–time,
graviton and spin 0 field can be localized on a brane with pos-
itive tension [13–15]. Spin 1 field cannot be localized either on
a brane with positive tension or on a brane with negative ten-
sion [15]. (But spin 1 field can be localized on a string-like defect
in high-dimensional space–time [16].) And moreover spin 1/2 and
3/2 can be localized on a negative-tension brane [15]. In order to
achieve localization of fermions on a brane with positive tension,
it seems that additional interactions except the gravitational inter-
action must be including in the bulk.

Of late, Bazeia, et al. investigate gravity localization on diverse
thick brane models. The aim of the present Letter is to study local-
ization of various spin fields on flat thick branes. Two thick brane
models with analytic Schrödinger-like potential in Refs. [17,18]
are considered. The organization of the Letter is as follows: First,
in Section 2 we review the analytic models of Refs. [17,18]. In
Section 3 we then study localization of various matters on thick
branes. Finally, a summary and outlook are presented in Section 4.

2. Thick brane models

We start with [17]
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S =
∫

d4x dy
√|g|

[
−1

4
R + 1

2
∂aφ∂aφ − V (φ)

]
, (1)

where g = det(gab) and the metric

ds2 = gab dxa dxb = e2Aημν dxμ dxν − dy2 (2)

describes a background with 4-dimensional Poincaré symmetry
with y as the extra dimension. Here a,b = 0,1,2,3,4, and e2A is
the warp factor. We suppose that the scalar field and the warp fac-
tor only depend on the extra coordinate y. The action given by (1)
leads to the following equations for the scalar field φ(y) and the
function A(y) from the warp factor:

φ′′ + 4A′φ′ = dV (φ)

dφ
, (3)

A′′ = −2

3
φ′2, (4)

A′2 = 1

6
φ′2 − 1

3
V (φ), (5)

where the prime is used to represent derivative with respect to y.
The potential is supposed to have the form

V (φ) = 1

8

(
dW

dφ

)2

− 1

3
W 2, (6)

where W (φ) is in principle an arbitrary function of the field φ

– in the supersymmetric context W is named superpotential. The
particular relation between V and W in (6) leads to a description
in terms of a set of first-order differential equations, which are
given by Refs. [8–12,19–26]

φ′ = 1

2

∂W

∂φ
, (7)

A′ = −1

3
W . (8)

2.1. Model 1: W1(φ) = 3a sinh(bφ)

For this model, we have

A(y) = − 1

3b2
ln

[
sec2

(
3

2
ab2 y

)]
. (9)

We introduce a new variable z that turns the metric into a confor-
mal one. The new conformal coordinate z is defined by

dz = e−A(y) dy. (10)

In general, this model doesn’t give an analytic relation for z(y).
However, for b2 = 1

3 we get

z =
∫

e−A(y) dy = 2

a
tan

ay

2
. (11)

Inverting this expression and substituting in the expression for
A(y), we further get

A(z) = − ln

(
1 + a2z2

4

)
, (12)

where a is a parameter. Differentiating (9) with respect to y and
using (7) and (8) we can obtain

φ(y) = √
3 ln

(
sec

ay

2
+ tan

ay

2

)
. (13)

We turn back to z coordinate, (13) becomes

φ(z) = √
3 ln

[√
1 +

(
a

2
z

)2

+ a

2
z

]
. (14)
2.2. Model 2: W2(φ) = 3 arcsin(bφ)

For this model, we have

A(y) = − 2

3b2
ln

[
q cosh

(
3

2
ab2 y

)]
. (15)

For b2 = 2
3 we can obtain an analytic expression for z(b)

z = q

a
sinh(ay) (16)

with

A(z) = − ln

(
q

√
a2z2

q2
+ 1

)
(17)

and

φ(z) =
√

3

2
arcsin

[
tanh

(
arcsinh

az

q

)]
. (18)

3. Localization of various matters

In this section, we study whether various bulk fields with spin
ranging from 0 to 1 can be localized on thick branes by means of
only the gravitational interaction.

3.1. Spin 0 scalar field

In this subsection we study localization of a real scalar field
on thick branes described in previous section. Let us consider the
action of a massless real scalar coupled to gravity:

S0 = 1

2

∫
d5x

√−g gMN∂MΦ∂NΦ, (19)

from which the equation of motion can be derived:

1√−g
∂M

(√−g gMN∂NΦ
) = 0. (20)

By considering (2) the equation of motion (20) becomes[
∂2

z + 3(∂z A)∂z + ημν∂μ∂ν

]
Φ = 0. (21)

The separation of variable is taken as

Φ(x, z) =
∑

n

φn(x)χn(z), (22)

and demanding φn(x) satisfies the 4-dimensional massive Klein–
Gordon equation

ημν∂μ∂νφn(x) = −m2
nφn(x), (23)

we obtain the equation for χn(z)[
∂2

z + 3(∂z A)∂z + m2
n

]
χn(z) = 0. (24)

The 5-dimensional action (19) reduces to the 4-dimensional action
for massive scalars, when integrated over the extra dimension un-
der (24) is satisfied and the following orthonormality condition is
obeyed

+∞∫
−∞

dz e3Aχm(z)χn(z) = δmn. (25)

Define χ̃n(z) = e
3
2 Aχn(z), we get the Schrödinger-like equation[−∂2

z + V (z)
]
χ̃n(z) = m2

nχ̃n(z), (26)
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Fig. 1. The dashed line and solid one for the potential (28) and the zero mode (29),
respectively. The parameter is set to a = 2.

where mn is the mass of the Kaluza–Klein (KK) excitation and the
potential is given by

V (z) = 3

2
∂2

z A + 9

4
(∂z A)2. (27)

The potential only depends on the warp factor exponent A and
has the same form as the case of graviton [17]. For Model 1, the
Schrödinger-like potential is reduced to

V (z) = 3a2(a2z2 − 1)

4(1 + a2z2/4)2
. (28)

This potential has the asymptotic behavior: V (z = ±∞) = 0 and
V (z = 0) = −3a2. In fact this is a volcano type potential [27–31],
this means that the potential provides no mass gap to separate
the scalar zero mode from KK modes. The zero mode m2

0 = 0 is
determined analytically as

χ̃01(z) = N01

(1 + a2z2/4)3/2
, (29)

where N01 = (8/3π)1/2(a/2)1/2. This function represents the low-
est energy eingenfunction of the Schrödinger-like equation (26).
In fact, (26) can be written as Hχ̃ = m2

nχ̃ [5,8,9,32], where the
Hamiltonian operator is given by H = Q † Q with Q = −∂z + 3

2 ∂z A.
Since the operator H is positive definite, there are no normaliz-
able modes with negative m2

n , namely, there is no tachyonic scalar
mode, the scalar zero mode is the lowest mode in the spectrum. In
addition to the massless mode, the volcano type potential (28) sug-
gests that there exists a continuum gapless spectrum of KK mode
with positive m2

n > 0, which is delocalized KK massive scalars [5,8,
9,32,33]. The shapes of the potential (28) and the zero mode (29)
are shown in Fig. 1.

For Model 2, we can get the following Schrödinger-like potential

V (z) = 3a2(−2q2 + 5a2z2)

4(q2 + a2z2)2
, (30)

and the normalizable zero mode

χ̃02(z) = N02

(q2 + a2z2)3/4
, (31)

where N02 = 1√
2
(a)1/4(q)5/4 is a normalization constant. The po-

tential (30) and the corresponding zero mode (31) are shown in
Fig. 2.

3.2. Spin 1 vector field

Let us start with the action of U(1) vector field:

S1 = −1
∫

d5x
√−g gMN g R S F M R F N S , (32)
4

Fig. 2. The dashed line and solid one for the potential (30) and the zero mode (31),
respectively. The parameters are set to a = 2 and q = 1.

where F MN = ∂M AN − ∂N AM as usual. From this action the equa-
tion motion is given by

1√−g
∂M

(√−g gMN g R S F N S
) = 0. (33)

In the background metric (2), this equation of motion (33) is re-
duced to

ημν∂μFν4 = 0, (34)

∂μFμν + (∂z + ∂z A)Fν4 = 0. (35)

We assume that Aμ are Z2-even and that A4 is Z2-odd with re-
spect to the extra dimension z, which results in that A4 has no
zero mode in the effective 4-dimensional theory. Furthermore, in
order to consistent with the gauge invariant equation

∮
dz A4 = 0,

we use gauge freedom to choose A4 = 0 [31]. After an integration
by parts, (32) yields

S1 = −1

4

∫
d4x dz

[
e Aηνληνρ Fμν Fλρ + 2ημν Aμ∂z

(
e A∂z Aν

)]
.

(36)

Let us decompose the vector field as follows

Aμ(x, z) = Σna(n)
μ ρn(z), (37)

and imposing orthonormality condition

+∞∫
−∞

dz e Aρm(z)ρn(z) = δmn. (38)

The action (36) reduces to

S1 =
∑

n

∫
d4x

(
−1

4
ημληνρ f (n)

μν f (n)
λρ + 1

2
m2

nη
μνa(n)

μ a(n)
ν

)
, (39)

where f (n)
μν = ∂μa(n)

ν − ∂νa(n)
μ is the 4-dimensional field strength

tensor, and ρn(z) has been required to satisfy the equation[
∂2

z + (∂z A)∂z + m2
n

]
ρn(z) = 0. (40)

By defining ρ̃n = e A/2ρn , we get the Schrödinger-like equation for
the vector field[−∂2

z + V (z)
]
ρ̃n(z) = m2

nρ̃n(z), (41)

where the potential V (z) is given by

V (z) = 1

2
∂2

z A + 1

4
(∂z A)2. (42)

For Model 1, the potential (42) is reduced to

V (z) = a2(a2z2/2 − 1)

2 2 2
. (43)
4(1 + a z /4)
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The vector zero mode is determined analytically as

ρ̃01(z) = N01

(1 + a2z2/4)1/2
, (44)

where N01 is a normalization constant. As the integral of ρ̃2
01(z)

does not convergent on (−∞,+∞), the vector zero mode is non-
normalized.

For Model 2, the potential (42) is reduced to

V (z) = a2(−2q2 + 3a2z2)

4(q2 + a2z2)2
, (45)

and the zero mode is

ρ̃02(z) = N02

(q2 + a2z2)1/4
. (46)

As the integration
∫ +∞
−∞ [(q2 + a2z2)−1/2]dz is not convergent, we

cannot still obtain normalizable vector zero mode on the brane.

3.3. Spin 1 spinor field

Now we are ready to consider spin 1/2 fermion. We introduce
the vielbein eM̄

M (and its inverse eM
M̄

) through the usual definition

gMN = eM̄
M eN̄

NηM̄N̄ , where M̄, N̄, . . . , denote the local Lorentz in-

dices. From the formula Γ M = eM
M̄

Γ M̄ with Γ M and Γ M̄ being the
curved gamma matrices and the flat gamma ones, respectively. We
have Γ M = (e−Aγ μ,−ie−Aγ 5). Our starting action is the Dirac ac-
tion of a massless spin 1/2 fermion coupled to gravity and scalar
[16,34–38]

S1/2 =
∫

d5x
√−g

[
Ψ̄ iΓ M DMΨ − ηΨ̄ F (φ)Ψ

]
, (47)

from which the equation of motion is given by[
iΓ M DM − ηF (φ)

]
Ψ = 0, (48)

where DM = (∂M + ωM) = ∂M + 1
4 ωM̄N̄

M ΓM̄ΓN̄ is the covariant

derivative, where the spin connection ωM̄ N̄
M is defined as

ωM̄ N̄
M = 1

2
eN M̄(

∂MeN̄
N − ∂N eN̄

M

) − 1

2
eN N̄(

∂MeM̄
N − ∂N eM̄

M

)
− 1

2
eP M̄eQ N̄(∂P eQ R̄ − ∂Q eP R̄)eR̄

M . (49)

The non-vanishing components of ωM are

ωμ = − i

2
(∂z A)γμγ5. (50)

And the Dirac equation (48) becomes[
iγ μ∂μ + γ 5(∂z + 2∂z A) − ηe A F (φ)

]
Ψ = 0. (51)

The full 5-dimensional spinor can be split in the general chiral de-
composition

Ψ (x, z) =
∑

n

ψLn(x)αLn(z) +
∑

n

ψRn(x)αRn(z), (52)

with γ 5ψLn(x) = −ψLn(x) and γ 5ψRn(x) = ψRn(x), where ψLn(x)
and ψRn(x) are left-hand and right-hand components of a 4-
dimensional Dirac field, respectively. Let us assume that ψLn,Rn

satisfy 4-dimensional massive Dirac equations iγ μ∂μψLn(x) =
mnψRn(x) and iγ μ∂μψRn(x) = mnψLn(x). We obtain the following
coupled eigenvalue equations:[
∂z + 2∂z A + ηe A F (φ)

]
αLn = mnαRn, (53)[

∂z + 2∂z A − ηe A F (φ)
]
αRn = −mnαLn. (54)
Fig. 3. Plot of the scalar field (58).

Fig. 4. The dashed line corresponds to the potential (59) for left chiral fermions
whereas the solid one represents the potential (60) for right chiral fermions. The
parameters are set to a = 2 and η = 1.

The full 5-dimensional action then reduces to the standard 4-
dimensional action for the massive chiral fermions (with mass mn),
provided the above (53) and (54) are satisfied by the bulk fermions
and the following orthonormality conditions are obeyed:

+∞∫
−∞

e4AαLnαRn dz = δLmδRn. (55)

By defining α̃Ln = e2AαLn , we get the Schrödinger-like equation for
the left chiral fermions[−∂2

z + V L(z)
]
α̃Ln = m2

nα̃Ln, (56)

where the potential V L(z) is given by

V L(z) = e2Aη2 F 2(φ) − e Aη∂z F (φ) − ∂z Ae AηF (φ). (57)

For the right chiral fermions, the corresponding potential can be
written out easily by replacing η → −η from the above poten-
tial (57). It can be seen clearly that, for localization of the left
(right) fermions, there must be some kind of Yukawa coupling
since both the potentials for left and right chiral fermions are van-
ish in the case of no coupling (η = 0). A simple choice for F (φ)

is F (φ) = φ. In the following, we will discuss for Model 1 and
Model 2, respectively.

For Model 1, without loss generality we set a = 2, then (14)
becomes

φ(z) = √
3 ln

(√
1 + z2 + z

)
. (58)

The shape of the scalar field (58) is plotted in Fig. 3. And the po-
tential (57) is reduced to

V L(z) = 6η2[ln(
√

1 + z2 + z)]2

(1 + z2)2

+ 2ηz ln(
√

1 + z2 + z)
√

6
2 2

−
√

6η
2 3/2

. (59)

(1 + z ) (1 + z )
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For the right chiral fermions, we have

V R(z) = V L(z)
∣∣
η→−η

= 6η2[ln(
√

1 + z2 + z)]2

(1 + z2)2

− 2ηz ln
√

1 + z2 + z)
√

6

(1 + z2)2
+

√
6η

(1 + z2)3/2
. (60)

Noticing that both the potentials for the left and right fermions
have the asymptotic behavior: V L,R(z = ±∞) = ∞; the value of
the potential (59) at z = 0 is given by V L(0) = −√

6η and the value
of the potential V R(z) at z = 0 is given by V R(0) = √

6η. They are
shown in Fig. 4. As the potential V L(z) for left fermions has a neg-
ative value at the location of brane for only positive η, it could trap
the left chiral fermion zero mode solved in (53) by setting m0 = 0:

α̃L0(z) = e2AαL0(z) ∝ exp

[
−η

z∫
dz′e A(z′)φ(z′)

]
(η > 0).

(61)

In order to check the normalization condition (55) for the zero
mode (61), we need to check whether the integral

+∞∫
−∞

dz exp

[
−2η

z∫
dz′e A(z′)φ(z′)

]
(62)

is convergent. This integral can be written as

+∞∫
−∞

exp

(
−2η

z∫
dz′ e A(z′)φ(z′)

)
dz

=
+∞∫

−∞
exp

[
−2η

z∫
dz′

√
3 ln(

√
1 + z′2 + z′)

1 + z′2

]
dz. (63)

The shape of the function
√

3 ln(
√

1+z′ 2+z′)
1+z′ 2 is shown in Fig. 5. As

limz′→±∞
√

3 ln(
√

1+z′ 2+z′)
1+z′ 2 → 0, the integral (62) is divergent, that

is to say, the left chiral fermions cannot be localized on the brane.
For potential (60), by analogous analysis, it is found that the right
fermions cannot be localized on the brane either.

Let us now turn to Model 2. For this model, φ(z) is expressed
by (18), it’s shape is plotted in Fig. 6. And the potential is reduced
to

V L(z) =
3
2η2{arcsinh[tanh(arcsinh az

q )]}2

q2(a2 z2

q2 + 1)

−
√

3
2η a

q

q(a2 z2

q2 + 1) cosh(arcsinh az
q )

+
√

3
2η a2

q2 z{arcsin[tanh(arcsinh az
q )]}

q2(a2 z2

q2 + 1)
3
2

. (64)

For the right chiral fermions, the corresponding potential is given
by V R(z) = V L(z)|η→−η .

For the case η > 0, only the potential for the left chiral fermions
have negative value at the location of the brane, which could trap
the left chiral fermionic zero mode (61). It is the same as Model 1,
we need to check whether (62) is convergent in order to check the
Fig. 5. Plot of the function
√

3 ln(
√

1+z′2+z′)
1+z′2 .

Fig. 6. Plot of the scalar field (18). The parameters are set to a = 1 and q = 1.

normalization condition (55). It is convenient to analyze the prob-
lem in y coordinate for this case. In y coordinate (62) becomes

+∞∫
−∞

exp

[
−A(y) − 2η

y∫
dy′φ(y′)

]
dy. (65)

Substituting (15), (16) and (18) into (62), and noting b2 = 2
3 , (65)

is changed into

q

+∞∫
−∞

exp

{
ln

[
cosh(ay)

] − 2η

y∫
dy′ arcsin

[
tanh(ay′)

]}
dy. (66)

For simplicity, we set a = 1. The functions ln[cosh(y)] and
arcsin[tanh(y)] are plotted in Fig. 7 and Fig. 8, respectively. From
these figures we see that, when y → ∞, ln[cosh(y)] ∼ y, and
arcsin[tanh(y)] ∼ π

2 , and so, ln[cosh(y)]−2η
∫ y arcsin[tanh(y′)]dy′

∼ −(−1+ηπ)y. Then the inequality −1+ηπ > 0, namely, 1 < ηπ
should be satisfied if the integral (66) is finite. When y → −∞, we
can get the same restriction condition for the integral (66) being
finite. Therefore, the zero mode of the left chiral fermions can be
localized on the brane under certain condition. In Fig. 9 we plot
the left chiral fermion potential (64) and the corresponding zero
mode, which is gotten by solved (56) numerically under boundary
conditions α̃L0(0) = 1 and α̃′

L0(0) = 0. The first condition is arbi-
trarily fixed, and is adjusted with the normalization condition (55).
Since for positive η the potential for right chiral fermions is always
positive, it cannot trap the right chiral zero mode.

For the case η < 0, things are the opposite and only the right
chiral zero mode can be trapped on the brane.

4. Summary and outlook

In this Letter, we investigate the possibility of localizing vari-
ous matter field on flat thick branes. Two analytical thick brane
models which localize the graviton are considered. We have the
same result for spin 0 field as in the case of gravity [17], i.e., the
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Fig. 7. Plot of the function ln[cosh(y)].

Fig. 8. Plot of the function arcsin[tanh(y)].

Fig. 9. The dashed line and solid one for the potential (64) and the corresponding
zero mode, respectively. The parameters are set to η = 2, a = 1 and q = 1.

massless zero mode of spin 0 scalar field is found to be normal-
izable on both thick brane models. However, the zero mode for
spin 1 vector field is non-normalized, in other words, the vector
field cannot be localized on the thick brane models considered in
this Letter. For spin 1/2 fermionic field, it is shown that, for the
case of no Yukawa-type coupling, there is no existence of localized
zero mode for both left and right chiral fermions. After including
a Yukawa coupling to a scalar field, it is found that, fermions have
different localization properties on the two thick brane models,
whether there is a localized zero mode is decided by the consid-
ered model.

Finally, we want to mention that it has been pointed out that
the matter fields with spin 1 and 1/2 can be confined on an AdS4
brane in AdS5 space–time [39]. We will also extend our analysis
to curved thick brane. The crucial ingredient is the introduction
of W = W (φ) and Z = Z(φ). In certain particular case, A and φ

can be expressed by the extra coordinate z and the cosmological
constant of the 4-dimensional space–time Λ. (See Refs. [18,40] for
details.) Thus we can discuss localization of matter fields on the
curved thick brane by the procedure used in this Letter. The work
in this direction is now in progress, we wish to report it in the
near future.
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