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Abstract

In this paper, we study the localization phenomena in a slender cylinder composed of an incompressible hyperelastic
material subjected to axial tension. We aim to construct the analytical solutions based on a three-dimensional setting
and use the analytical results to describe the key features observed in the experiments by others. Using a novel approach
of coupled series-asymptotic expansions, we derive the normal form equation of the original governing nonlinear partial
differential equations. By writing the normal form equation into a first-order dynamical system and with the help of the
phase plane, we manage to solve two boundary-value problems analytically. The explicit solution expressions (in terms of
integrals) are obtained. By analyzing the solutions, we find that the width of the localization zone depends on the material
parameters but remains almost unchanged for the same material in the post-peak region. Also, it is found that when the
radius–length ratio is relatively small there is a snap-back phenomenon. These results are well in agreement with the exper-
imental observations. Through an energy analysis, we also deduce the preferred configuration and give a prediction when a
snap-through can happen. Finally, based on the maximum-energy-distortion theory, an analytical criterion for the onset of
material failure is provided.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The field of fracture mechanics is becoming extremely broad with the occurrence of unexpected failure of
weapons, buildings, bridges, ships, trains, airplanes, and various machines. There are two fundamental frac-
ture criterions: the strain energy release rate (i.e., G Theory) and the stress intensity factor (i.e., K Theory); see
0020-7683/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Arthur and Richard (2002). The experimentally determined stress intensity depends on the specimen size, and
the fracture is accompanied by energy localization and concentration.

Localization is manifested by degradation of material properties with localized large deformations, and this
feature often results in formation and propagation of macrocracks through engineering structures. Due to the
importance of localization phenomena in structural safety assessment, much research has been conducted to
resolve experimental, theoretical and computational issues associated with localization problems, as reviewed
by Chen and Schreyer (1994) and Chen and Sulsky (1995). For hyperelastic materials, important progress has
been made based on the gradient approach; see Aifantis (1984) and Triantafyllidis and Aifantis (1986). How-
ever, there is still a lack of analytical results for three-dimensional boundary-value problems. In this paper,
hence, we study the localization in a slender cylinder composed of an incompressible hyperelastic material sub-
jected to tension, based on an analytical approach to solve the three-dimensional governing equations. We
also intend to provide mathematical descriptions for some interesting phenomena as observed in experiments.

Jansen and Shah (1997) conducted careful experiments on concrete cylinders by using the feedback-control
method. From two test series, the typical stress–displacement behavior for different height–diameter ratios
with normal strength and high strength was obtained. It appears that the pre-peak segment of the stress–dis-
placement curves agrees well with the pre-peak part of the stress–strain curves, but the post-peak segment
shows a strong dependence on the geometric size (i.e., the radius–length ratio). More specifically, the longer
the specimen is, the steeper the post-peak part of the stress–displacement curves becomes. Also, they found
that the width of the localization zone changes with the specimen size. In the experiment by Gopalaratnam
and Shah (1985), it was found that the tangent value in the ascending part of the stress–strain curves seemed
to be independent of the specimen size but in the post-peak part there was a softening region and no unique
stress–strain relation. Schreyer and Chen (1986) studied the softening phenomena analytically based on a one-
dimensional model. Their results indicate that if the size of the softening zone is small enough (in a relative
sense), the behavior of displacement-prescribed loading is unstable, and the softening curves are steeper than
those with a larger size of the softening region. Here, we shall provide the three-dimensional analytical solu-
tions to capture all the localized features mentioned above.

Another purpose of this research is to provide a method judging the onset of failure in a slender cylinder
subjected to tension. Here, we use the maximum-distortion-energy theory (the Huber-Hencky-Von Mises the-
ory; see Riley et al., 2007), which depicts there are two portions of the strain energy intensity. One is the por-
tion producing volume change which is ineffective in causing failure by yielding, and the other is that
producing the change of shape which is completely responsible for the material failure by yielding.

By constructing the analytical solutions for localizations, it is possible to get the point-wise energy distri-
bution. Then, an expression for the maximum value of the strain energy can be obtained. With the Huber-
Hencky-Von Mises theory, we can then establish an analytical criterion for identifying the onset of failure.

Mathematically, to deduce the analytical solutions for localizations in a three-dimensional setting is a very
difficult task. One needs to deal with coupled nonlinear partial differential equations together with complicated
boundary conditions. Further, the existence of multiple solutions (corresponding to no unique stress–strain
relation) makes the problem even harder to solve. Here, the analysis is carried out by a novel method devel-
oped earlier (Dai and Huo, 2002; Dai and Fan, 2004; Dai and Cai, 2006), which is capable of treating the
bifurcations of nonlinear partial differential equations. Our results yield the analytical forms of the strain
and stress fields, total elongation, the potential energy distribution and the strain energy distribution, which
are characterized by localization phenomena. In particular, it is found that once the localization is formed its
width does not change with the further increase of the total elongation, which is in agreement with the exper-
imental observations. We also provide a description for the snap-through phenomenon.

The remaining parts of the paper are arranged as follows. In Section 2, we formulate the three-dimensional
governing equations for the axisymmetric deformations of a circular cylinder. We nondimensionalize them in
Section 3 to identify the key small variable and key small parameters. Then, in Section 4, a novel method of
coupled series-asymptotic expansions is used to derive the normal form equation of the original system. By the
variational principle, in Section 5, we derive the same equation by considering the energy. In Section 6, with
the help of the phase plane, we solve the boundary-value problems for a given external axial force and a given
elongation, respectively. In Section 7, through an energy analysis, we determine the most preferred configura-
tions and give a description of the snap-through phenomenon. Also, an analytical criterion for identifying
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material failure based on the Huber-Hencky-Von Mises theory is discussed. Finally, concluding remarks and
future tasks are given in Section 8.
2. Three-dimensional governing equations

We consider the axisymmetric deformations of a slender cylinder subjected to a static axial force at one
plane end with the other plane end fixed. The radius of the cylinder is a and the length is l. We take a cylin-
drical coordinate system, and denote ðR;H; ZÞ and ðr; h; zÞ as the coordinates of a material point of the cylin-
der in the reference and current configurations, respectively. The radial and axial displacements can be written
as:
uðR; ZÞ ¼ rðR; ZÞ � R; wðR; ZÞ ¼ zðR; ZÞ � Z: ð1Þ
We suppose that the cylinder is composed of an incompressible hyperelastic material, for which the strain en-
ergy density U is a function of the first two invariants I1 and I2 of the left Cauchy-Green strain tensor, i.e.,
U ¼ UðI1; I2Þ. Moreover the first Piola–Kirchhoff stress tensor R is given by
RT ¼ oU
oF
� pF�T ; ð2Þ
where F is the deformation gradient and p is the indeterminate pressure. If the strains are small, it is possible to
expand the first Piola–Kirchhoff stress components in terms of the strains up to any order. The expressions for
the stress components are very lengthy, and due to the complexity of calculations, we shall only work up to the
third-order material nonlinearity. The formula containing terms up to the third-order material nonlinearity
has been provided by Fu and Ogden (1999):
Rji¼ a1
jilkgklþ

1

2
a2

jilknmgklgmnþ
1

6
a3

jilknmqpgklgmngpqþp0ðgji�gjkgkiþgjkgklgliÞ�p�ðdji�gjiþgjkgkiÞþOðj gijj
4Þ;

ð3Þ
where
g ¼ F� I ¼

ou
oR 0 ou

oZ

0 u
R 0

ow
oR 0 ow

oZ

0B@
1CA;
p0 is the pressure value in Eq. (2) corresponding to zero strains, p� is the incremental pressure, and
a1

jilk; a2
jilknm, and a3

jilknmqp are incremental elastic moduli defined by
a1
jilk ¼

o2U
oF ijoF kl

jF¼I ; a2
jilknm ¼

o3U
oF ijoF kloF mn

jF¼I ;

a3
jilknmqp ¼

o4U
oF ijoF kloF mnoF pq

jF¼I :

ð4Þ
It can be found that
p0 ¼ 4U01 þ 2U10;
where U01 denotes the first-order partial derivative of U with respect to the invariant I2 at F ¼ I, and U10 de-
notes the first-order partial derivative of U with respect to the invariant I1 at F ¼ I. In the following deriva-
tions, we shall also use Uij to denote the i-th order and the j-th order partial derivative of U with respect to the
invariants I1 and I2 at F ¼ I. All the coefficients in Eq. (4) can be expressed in terms of U10;U20;U01;U02, and
U11, and here for brevity the expressions are omitted.

The equilibrium equations for a static and axisymmetric problem are given by



2616 H.-H. Dai et al. / International Journal of Solids and Structures 45 (2008) 2613–2628
oRzZ

oZ
þ oRrZ

oR
þ RrZ

R
¼ 0; ð5Þ

oRrR

oR
þ oRzR

oZ
þ RrR � RhH

R
¼ 0: ð6Þ
The incompressibility condition yields that
gii ¼
1

2
gmngnm �

1

2
g2

ii � detðgmnÞ: ð7Þ
We consider the case where the lateral surface of the cylinder is traction-free, then the stress components RrR

and RrZ should vanish on the lateral surface. Thus, we have the boundary conditions:
RrRjR¼a ¼ 0; RrZ jR¼a ¼ 0: ð8Þ
Eqs. (5)–(7) together with Eq. (3) provide three governing equations for three unknowns u;w and p�. The for-
mer two are very complicated nonlinear partial differential equations (PDE’s) and the boundary conditions (8)
are also complicated nonlinear relations (cf. (11)–(15)). To describe the localization, one needs to study the
bifurcation of this complicated system of nonlinear PDE’s. As far as we know, there is no available mathe-
matical method. Here, we shall adapt a novel approach involving coupled series-asymptotic expansions to
tackle this bifurcation problem. A similar methodology has been developed to study nonlinear waves and
phase transitions (Dai and Huo, 2002; Dai and Fan, 2004; Dai and Cai, 2006). First, we shall nondimension-
alize this system to identify the relevant small variable and small parameters.

3. Nondimensionalized equations

We introduce the dimensionless quantities through the following scales:
s ¼ l2~s; Z ¼ l~z; w ¼ h~w; v ¼ h
l

~v;
p�

l
¼ h

l
~p�; ð9Þ
where l is the length of the cylinder, h is the total elongation of the cylinder and l is the material shear mod-
ulus, with a transformation being defined by
u ¼ vR; s ¼ R2: ð10Þ
Substituting Eqs. (2), (9) and (10) into Eqs. (5)–(7), we obtain
� p�z þ b14vz þ 4b10ws þ b2wzz þ sðb14vsz þ 4b10wssÞ þ � � � ¼ 0; ð11Þ
� 2p�s þ 8b2vs þ b10vzz þ b14wsz þ s4b2vss þ � � � ¼ 0; ð12Þ
2vþ wz þ 2svs þ e½v2 þ 2vwz þ 2sðvvs � vzws þ vswzÞ� þ e2½v2wz þ 2svðvswz � vzwsÞ� ¼ 0; ð13Þ
where e ¼ h
l is regarded as a small parameter. For convenience, we have replaced ~s;~v; ~w;~z; ~p� by s; v;w; z; p� in

the nondimensionalized equations. Here and thereafter, a subscript letter is used to represent the correspond-
ing partial derivative (i.e., vz ¼ ov

oz). The full forms of (11) and (12) are very lengthy and we do not write out the
nonlinear terms explicitly for brevity.

Substituting (9) and (10) into the traction-free boundary conditions (8), we have
� p� þ b14vþ 2b1wz þ m2b2vs þ e½p�vþ b46v2 þ b39vwz þ b6w2
z

þ mð2p�vs þ b15vvs þ 3b4v2
z � 2b11vzws þ 12b4w2

s þ 4b6vswzÞ
þ m24b5v2

s � þ e2½�p�v2 þ 3b47v3 þ 30b7v2wz þ b16vw2
z þ 4b8w3

z

þ mð�2p�ð2vvs þ vzwsÞ þ b22v2vs þ 7b9vv2
z þ b23vvzws

þ 28b9vw2
s þ 72b12vvswz þ 2b19v2

z wz þ 2b8vzwswz þ 8b19w2
s wz

þ b18vsw2
z Þ þ m2ð�4p�v2

s þ 3b31vv2
s þ 4b19vsv2

z þ 8b13vsvzws

þ 16b19vsw2
s þ b20v2

s wzÞ þ m3b21v3
s �js¼m ¼ 0;

ð14Þ
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b10ðvz þ 2wsÞ þ e½p�vz � b41vvz þ 2b17vws � b11vzwz

þ 12b4wswz þ mð�2b11vsvz þ 24b4vswsÞ� þ e2½�p�ðvvz þ vzwzÞ
þ b44v2vz þ 2b16v2ws þ b30vvzwz þ b32vwswz þ b13vzw2

z

þ b33wsw2
z þ mð�2p�vsvz þ b23vvsvz � b3v3

z þ 56b9vvsws

þ 2b11v2
z ws � 12b3vzw2

s þ 16b5w3
s þ 2b8vzvswz

þ 16b19vswswzÞ þ m2ð4b13v2
s vz þ 16b14v2

s wsÞ�js¼m ¼ 0;

ð15Þ
where m ¼ a2

l2 is a small parameter for a slender cylinder.
Then, Eqs. (11)–(15) compose a new system of complicated nonlinear PDE’s with complicated boundary

conditions, which is still very difficult to solve exactly. However, it is characterized by a small variable s

and two small parameters (e and m), which permit us to use expansion methods to proceed further.

Remark. The coefficients b1; b2; � � � in Eqs. (11)–(15) can be expressed in terms of U10;U20;U01;U02 and U11,
and for brevity we omit their expressions.
4. Coupled series-asymptotic expansions

We note that s is also a small variable as 0 6 s 6 m. An important feature of the system (11)–(15) is that the
unknowns w; v, and p� become the functions of the variable z, the small variable s and the small parameters e
and m, i.e.,
w ¼ wðz; s; e; mÞ; v ¼ vðz; s; e; mÞ; p� ¼ p�ðz; s; e; mÞ: ð16Þ

Now, we shall use coupled series-asymptotic expansions to derive the normal form equation of the original
nonlinear PDE system. The calculations are very lengthy and can be found on an online report (see http://
www.arxiv.org/PS_cache/arxiv/pdf/0711/0711.2924v1.pdf). Here, we just describe the main ideas.

We assume that w; v; p� have the following Taylor expansions in the neighborhood of the small variable
s ¼ 0:
p� ¼ P 0ðz; e; mÞ þ sP 1ðz; e; mÞ þ s2P 2ðz; e; mÞ þ � � � ; ð17Þ
v ¼ V 0ðz; e; mÞ þ sV 1ðz; e; mÞ þ s2V 2ðz; e; mÞ þ � � � ; ð18Þ
w ¼ W 0ðz; e; mÞ þ sW 1ðz; e; mÞ þ s2W 2ðz; e; mÞ þ � � � : ð19Þ
Substituting Eqs. (17)–(19) into Eqs. (11)–(13), the left-hand sides become infinite series in s. All the coeffi-
cients of sn ðn ¼ 0; 1; 2; . . .Þ should be zero, and as a result, one obtains three sets of infinitely-many equa-
tions. Take for consideration the first five equations (coming from the coefficients of s0 and s1 from the
axial equilibrium Eq. (11), the coefficients of s0 from the radial equilibrium Eq. (12), and the coefficients of
s0 and s1 from the incompressibility condition (13)). They contain seven unknowns: P 0; P 1; V 0; V 1;W 0;W 1

and W 2. To obtain a closed-system, we further substitute Eqs. (17)–(19) into the traction-free boundary con-
ditions (14) and (15). Then by neglecting the terms higher than Oðme; e2Þ, two more equations for
P 0; P 1; V 0; V 1;W 0;W 1 and W 2 are obtained. Therefore, we have seven nonlinear ODE’s for these seven un-
knowns. However, these seven equations are still very complicated and it is very difficult to analyze them di-
rectly. By further using asymptotic expansions in the small parameter e, it is possible to express the other six
unknowns in terms W 0z. Then, we obtain a single equation for W 0z. It turns out that equation can be integrated
once to give
3b10W 0z � e
b100

2
W 2

0z þ e2b110W 3
0z �

3

4
mb10W 0zzz þ meb35ðW 2

0zz þ 2W 0zW 0zzzÞ ¼ C; ð20Þ
where C is an integration constant.
To find the physical meaning of C, we consider the resultant force T acting on the material cross section

that is planar and perpendicular to the cylinder axis in the reference configuration, and the formula is

http://www.arxiv.org/PS_cache/arxiv/pdf/0711/0711.2924v1.pdf
http://www.arxiv.org/PS_cache/arxiv/pdf/0711/0711.2924v1.pdf
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T ¼
Z 2p

0

Z a

0

RzZRdRdH: ð21Þ
After expressing RzZ in terms of W 0z by using the results obtained above, the integration can be carried out,
and as a result we find that
T ¼ 8pa2le 3b10W 0z � e
b100

2
W 2

0z þ e2b110W 3
0z

�
� 3

4
mb10W 0zzz þ meb35ðW 2

0zz þ 2W 0zW 0zzzÞ
�
: ð22Þ
Comparing Eqs. (20) and (22), we have C ¼ T
8pa2le. Thus, we can rewrite Eq. (22) as
3b10eW 0z �
b100

2
ðeW 0zÞ2 þ b110ðeW 0zÞ3 �

3

4
meb10W 0zzz þ me2b35ðW 2

0zz þ 2W 0zW 0zzzÞ ¼
T

8pa2l
: ð23Þ
If we retain the original dimensional variable and let V ¼ W 0Z ¼ eW 0z, we have
V þ D1V 2 þ D2V 3 þ a2 � 1

4
V ZZ þ D3V 2

Z þ 2D3VV ZZ

� �
¼ c; ð24Þ
where
D1 ¼ �
b100

6b10

; D2 ¼
b110

3b10

; D3 ¼
b35

3b10

; c ¼ T
24b10pa2l

: ð25Þ
Since Eq. (24) is derived from the three-dimensional field equations, once its solution is found, the three-
dimensional strain and stress fields can also be found. Also, it contains all the required terms to yield the lead-
ing-order behavior of the original system. Therefore, we refer Eq. (24) as the normal form equation of the sys-
tem of nonlinear PDE’s (11)–(13) together with boundary conditions (14) and (15) under a given axial
resultant.

5. The Euler–Lagrange equation

It is also possible to deduce the equation for V ¼ eW 0z by considering the total potential energy and then
using the variational principle. By using the expansions obtained in Section 4, we can express the strain energy
in terms of W 0z, and the result is
U ¼ e2lð6b10W 2
0z �

2

3
eb100W 3

0z þ e2b110W 4
0zÞ

þ se2l
81

64
b10W 2

0zz �
15

64
b10W 0zW 0zzz þ eðF 1W 0zW 2

0zz þ F 2W 2
0zW 0zzzÞ

� �
: ð26Þ
The stored energy per unit length is given by
W ¼
Z a

0

Z 2p

0

URdRdH: ð27Þ
Substituting Eq. (26) into Eq. (27) and carrying out the integration, we obtain the average stored energy
over a cross section:
eW ¼ W
pa2
¼ 2e2l 6b10W 2

0z �
2

3
eb100W 3

0z þ e2b110W 4
0z

� �
þ 2a2e2l

81

64
b10W 2

0zz �
15

64
b10W 0zW 0zzz þ eðF 1W 0zW 2

0zz þ F 2W 2
0zW 0zzzÞ

� �
: ð28Þ
Letting V ¼ W 0Z ¼ eW 0z, we can further rewrite the above equation as
eW ¼ E
1

2
V 2 þ 1

3
D1V 3 þ 1

4
D2V 4 þ a2 27

256
V 2

Z �
5

256
VV ZZ þ F 1VV 2

Z þ F 2V 2V ZZ

� �� �
; ð29Þ
where E ¼ 24lb10 is the Young’s modulus, F 1 and F 2 are constants related to material parameters.
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The total potential energy for a force-controlled problem is given by
L ¼ pa2

Z 1

0

eWdZ � E
Z 1

0

cV dZ
� �

¼ pa2E
Z 1

0

�cV þ 1

2
V 2 þ 1

3
D1V 3 þ 1

4
D2V 4 þ a2 27

256
V 2

Z �
5

256
VV ZZ þ F 1VV 2

Z þ F 2V 2V ZZ

� �� �
dZ: ð30Þ
By the variational principle, we have the following Euler-Lagrange equation:
oL
oV
� d

dZ
oL
oV Z
þ d2

dZ2

oL
oV ZZ

¼ 0; ð31Þ
which yields that
V þ D1V 2 þ D2V 3 þ a2 D3V 2
Z �

1

4
V ZZ þ 2D3VV ZZ

� �
¼ c; ð32Þ
which is just Eq. (24). This shows that the normal form Eq. (24) obeys the variational principle for energy.
If we multiply V Z to both sides of Eq. (32), it can be integrated once to yield that
1

2
V 2 þ 1

3
D1V 3 þ 1

4
D2V 4 � a2 1

8
V 2

Z � D3VV 2
Z

� �
¼ cV þ K; ð33Þ
where K is an integration constant.
In the following section, we shall discuss the solutions for two boundary-value problems based on Eqs. (32)

and (33), and reveal their main characteristics.
6. Solutions for two boundary-value problems

We rewrite Eq. (32) as a first-order system as follows:
V Z ¼ y;

yZ ¼
�cþ V þ D1V 2 þ D2V 3 þ a2D3y2

a2ð1
4
� 2D3V Þ :

ð34Þ
Without loss of generality, we take the length l of the cylinder to be 1, then a is equivalent to the radius–length
ratio. We suppose that the two plane ends of the cylinder are attached to rigid bodies. Then we have
z ¼ 0 ðor constantÞ; at Z ¼ 0; 1; ð35Þ
and
r ¼ R; at Z ¼ 0; 1: ð36Þ
We point out that although Eq. (32) is one-dimensional, it is derived from the three-dimensional governing
equations, and as a result we can also derive the proper boundary conditions by considering the condition
in the other (radial) dimension such as Eq. (36). If one directly introduces a one-dimensional model (say, using
a gradient theory), such an option is not available. So, this is another advantage of Eq. (32). From Eqs. (35)
and (36), we have
wR ¼ 0ði:e:; zR ¼ 0Þ; and uR ¼ 0 ði:e:; rR ¼ 1Þ at Z ¼ 0; 1: ð37Þ
Substituting Eq. (37) into Eq. (7) and integrating with respect to R once, we obtain
wz ¼ 0; at Z ¼ 0; 1: ð38Þ
Thus, the proper boundary conditions for Eq. (32) are
V ¼ 0; at Z ¼ 0; 1: ð39Þ



Fig. 1. c� V plot.

2620 H.-H. Dai et al. / International Journal of Solids and Structures 45 (2008) 2613–2628
To solve this boundary-value problem of the first-order system (34) under Eq. (39), we shall conduct a phase-
plane analysis with the engineering stress as the bifurcation parameter. The critical points of this system is
given by
y ¼ 0; and V þ D1V 2 þ D2V 3 ¼ c: ð40Þ
Here, we shall consider a class of strain energy functions UðI1; I2Þ such that the c� V plot based on Eq. (40)2

has one peak, and this requires that
D1 < 0; D2 > 0; D2
1 > 4D2:
The c� V curves corresponding to Eq. (40)2 are plotted in Fig. 1.
In this figure, cm is the local maximum of the stress and V m is the corresponding strain value, and they are

given by V m ¼ �
D1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
D2

1
�3D2

p
3D2

; cm ¼ �
2D3

1
þ2ðD2

1
�3D2Þ3=2�9D1D2

27D2
2

. When we take D1 ¼ �9:45;D2 ¼ 22 and D3 ¼ �2,

V m ¼0:07; when we take D1 ¼�6:65;D2 ¼ 11 and D3 ¼ �2, V m ¼ 0:1; when we take D1 ¼ �5:53;D2 ¼ 7:6 and
D3 ¼ �2, V m ¼ 0:12. The three curves in Fig. 1 correspond to these values of D1, D2 and D3, respectively.In the
following discussions we consider the tension case so that c > 0. Similar analysis can be made for the compres-
sion case, which will not be discussed here. Eq. (33) can be rewritten as
V 2
Z ¼
�K � cV þ 1

2
V 2 þ 1

3
D1V 3 þ 1

4
D2V 4

a2 1
8
� D3V

� � : ð41Þ
In this paper, we consider the case of D3 6 0. New phenomena can arise for D3 > 0 and the results will be
reported elsewhere. For the present case, the phase plane always has a saddle point and a center point as c
varies, which is shown in Fig. 2.

In this figure, ðV s; 0Þ and ðV c; 0Þ are a saddle point and a center point, respectively. There are two solutions
for the same stress c, which are represented by the curve 1 and the curve 2 in Fig. 2, respectively. For curve 1,
the right hand of Eq. (41) have four real roots, which we label in an increasing order by a1; g1; g2 and a2. We
note that the smallest root a1 is smaller than V s. So, from Eq. (41) we obtain the following expression:
V Z ¼ �
ffiffiffiffiffiffiffiffi
2D2

p

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8D3V
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV � a1ÞðV � g1ÞðV � g2ÞðV � a2Þ

p
: ð42Þ
Then, an integration leads to
Z ¼
1
2
� affiffiffiffiffiffi

2D2

p R a1

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�8D3t

ðt�a1Þðt�g1Þðt�g2Þðt�a2Þ

q
dt; Z 2 0; 1

2

	 

1
2
þ affiffiffiffiffiffi

2D2

p R a1

V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�8D3t

ðt�a1Þðt�g1Þðt�g2Þðt�a2Þ

q
dt; Z 2 1

2
; 1

	 

:

8><>: ð43Þ
By Eq. (39), a1 can be determined by the following two equations:



Fig. 2. The phase plane.

Fig. 3. V –Z plot. From bottom to top, c ¼ 0:037825; c ¼ 0:04005; c ¼ 0:0445.
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1

2
¼ a

ffiffiffiffiffiffiffiffiffi
�D3

p Z a1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � 1

8D3

�K � ct þ 1
2
t2 þ 1

3
D1t3 þ 1

4
D2t4

s
dt; ð44Þ

K ¼ �ca1 þ
1

2
a2

1 þ
1

3
D1a

3
1 þ

1

4
D2a

4
1: ð45Þ
Once a1 is found, the solution corresponding to curve 1 can be obtained from Eq. (43) by numerical integra-
tion. In Fig. 3, we have plotted the solution curves for three different values of the engineering stress c.

From this figure, we find there is nearly a uniform extension in the middle part, but there are two boundary-
layer regions near the two ends of the cylinder in order to satisfy the boundary conditions.

There is another solution which is represented by curve 2 in Fig. 2, and we denote the point as a at which
V Z ¼ 0. Then, Eq. (41) can be rewritten as
V Z ¼ �
ffiffiffiffiffiffiffiffi
2D2

p

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8D3V
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� V Þðb� V Þ½ðV � mÞ2 þ n2�

q
; ð46Þ
where b is another real root of the right-hand of Eq. (41), and m ¼ � 4D1þ3ðaþbÞD2

6D2
and n2 ¼

�16D2
1
þ24ðaþbÞD1D2þ9D2ð8þð3a2þ2abþ3b2ÞD2Þ

36D2
2

. Then, we obtain
Z ¼
1
2
� affiffiffiffiffiffi

2D2

p R a
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�8D3t

ða�tÞðb�tÞ½ðt�mÞ2þn2�

q
dt; Z 2 0; 1

2

	 

1
2
þ affiffiffiffiffiffi

2D2

p R a
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�8D3t

ða�tÞðb�tÞ½ðt�mÞ2þn2�

q
dt; Z 2 1

2
; 1

	 

:

8><>: ð47Þ



Fig. 4. V –Z plot. From top to bottom (along the dashed line): c ¼ 0:037825; c ¼ 0:04005; c ¼ 0:0445.

2622 H.-H. Dai et al. / International Journal of Solids and Structures 45 (2008) 2613–2628
By Eq. (39), a can be determined by
1

2
¼ a

ffiffiffiffiffiffiffiffiffi
�D3

p Z a

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � 1

8D3

�K � ct þ 1
2
t2 þ 1

3
D1t3 þ 1

4
D2t4

s
dt; ð48Þ

K ¼ �caþ 1

2
a2 þ 1

3
D1a

3 þ 1

4
D2a

4: ð49Þ
By numerical integration, we can get a from Eqs. (48) and (49). Then the solution corresponding to curve 2 can
be obtained from (47) by numerical integration. In Fig. 4, we have plotted the solution curves for three dif-
ferent values of the engineering stress c.

In this figure, there is a sharp-change region in the middle of the slender cylinder, that represents the local-
ization and energy concentration. Moreover, the tip is sharper when the engineering stress is smaller.

From Eq. (47), one can see that the localization solution depends on Z through the form Z � 1
2

� �
=a, and this

implies that the localization zone width is proportional to a for a fixed length; cf. Jansen and Shah (1997).
The solutions obtained above are for a given c. To obtain the solutions for a displacement-controlled problem,

we follow the idea in Dai and Bi (2006). For that purpose, we need to get the engineering stress–strain curve.
The total elongation is given by
W 0jZ¼1 � W 0jZ¼0 ¼
Z 1

0

V dZ ¼ D; ð50Þ
where the total elongation D is actually the engineering strain since we have taken the length of the cylinder to
be 1. According to the symmetric phase plane and Eqs. (43) and (47), V is a function of Z, so we can get the
total elongation by numerical integrations. In Fig. 5, we have plotted the curves between the total elongation D
and the engineering stress c with different material coefficients corresponding to Fig. 1.
Fig. 5. The engineering stress–strain curves.
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Segment 1 corresponds to the solution given by Eq. (43) (we call it as Solution 1), and segment 2 corre-
sponds to the solution given by Eq. (47) (we call it as Solution 2). For a displacement-controlled problem
(i.e., given D), from Fig. 5, we can get the corresponding c value(s), then the solution(s) is given by Eq.
(43) or Eq. (47).

From Eqs. (1), (9), (10), (18) and (19), we can get the shapes of the cylinder corresponding to Eq. (47) under
different material coefficients for a given D, which are shown in Fig. 6, where we take D3 ¼ �0:5; F 2 ¼ �4, and
a ¼ 0:04.

In this figure, the width d of the localization is defined as 1� 2Z, where Z is the point where the rate of the
slope of the surface radial displacement is the maximum. From the above figure, one can see that for different
material coefficients the localization widths are different and the localization width is almost the same for the
same material coefficients with different loads of engineering stress. That is to say, for different materials the
localizations have different widths, but for the same material, the localization width is almost uniform during
the loading process.
Fig. 6. Shapes of the cylinder corresponding to the localization solutions and the comparison of the localization widths d.



Fig. 7. The engineering stress–strain curves for different a.
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Here and thereafter, we fix the material constants to be D1 ¼ �6:65;D2 ¼ 11, and D3 ¼ �2. By the same
way, we can get the relations between the total elongation D and the engineering stress c with different
radius–length ratios, which are shown in Fig. 7.

In this figure, we observe that there is a snap-back for a relatively small value of a. We also see that the
point c (across which there are multiple values for c for a given D) moves up and toward right as the value
of a increases. For example, when a ¼ 0:03; cc ¼ 0:0339, and when a ¼ 0:04; cc ¼ 0:0399. The post-peak
curves show very significant changes. There is no unique stress–displacement relationship in the post-peak
region. The thinner the specimen is, the steeper the curve becomes, which is in agreement with the experimen-
tal results by Jansen and Shah (1997). From this figure, we see that for a ¼ 0:03, unstable behavior is predicted
for a displacement-controlled loading whereas larger values of a yield results that are stable. Similar conclu-
sions follow from the examples given by Schreyer and Chen (1986).

As to a ¼ 0:045, there is a stable relation between the total elongation D and the engineering stress c, which
is in agreement with the experiment result by Gopalaratnam and Shah (1985), who conducted tensile tests on
concrete under carefully controlled loading conditions and with refined measuring techniques.

We note that for a displacement-controlled problem, after the elongation D P Dc (cf. Fig. 7) there are bifur-
cations from one solution to two solutions (at D ¼ Dc), to three solutions ðDc < D < DpÞ, to two solutions
ðD ¼ DpÞ, and to one solution ðD > DpÞ. The shapes of the cylinder corresponding to these solutions are shown
in Fig. 8 for F 2 ¼ �4, and a ¼ 0:03.

The above figure also manifests that the middle of the cylinder becomes thinner than the two ends as we
pull the slender cylinder. The middle part is thinner as the engineering stress decreases for a given D, which
agrees well with the experimental results.
7. Energy analysis and failure criterion

As discussed in the previous section, for a relatively small a, there are multiple solutions for D P Dc. Of
course, in reality only one solution can be observed at one instant. In this section, we shall further consider
the energy values for these solutions to deduce which one is most preferred.

From Eq. (33), we have
V 2
Z ¼

2ð12K þ 12cV � 6V 2 � 4D1V 3 � 3D2V 4Þ
3a2ð�1þ 8D3V Þ : ð51Þ
Substituting Eq. (51) into Eq. (32), we obtain
V ZZ ¼ �
4

3ð�1þ 8D3V Þ2
ð3cþ 24KD3 � 3V � 3D1V 2 � 3D2V 3 þ 12D3V 2 þ 16D1D3V 3 þ 18D2D3V 4Þ:

ð52Þ
Then by using Eq. (30), we can express the potential energy (for a given c) in terms of V (scaled by pa2E):



Fig. 8. The shapes of the cylinder under different elongations.
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Fig. 9. The stored energy distribution curves for different elongations.
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P ¼ � 1

384ð�1þ 8D3V Þ2
ð2D1V 3ð�118þ 15a2 � 8192D2

3V 2 � 256ð4þ 3a2ÞF 2V

þ 16D3V ð123� 5a2 þ 256ð2þ a2ÞF 2V ÞÞ þ 3ðD2V 4ð�59þ 10a2 � 4096D2
3V 2 � 512ð1þ a2ÞF 2V

þ 4D3V ð246� 15a2 þ 256ð4þ 3a2ÞF 2V ÞÞ þ 2ð54K � 59V 2 þ 5a2V 2 þ 118cV � 5a2cV

þ 4096V 2ðK � V ðV � 2cÞÞD2
3 þ 256V ð4K þ V ð�ð2þ a2ÞV þ ð4þ a2ÞcÞÞF 2 þ 4D3V ð�2ð118þ 5a2ÞK

þ V ð246V � 5a2V � 492cÞ þ 256V ð2ð�4þ a2ÞK þ V ðð4þ a2ÞV � 8cÞÞF 2ÞÞÞÞ: ð53Þ
The stored energy is given by
G ¼ P þ cV : ð54Þ

Then from Eqs. (44), (47), (53) and (54), one can calculate the energy distributions for a given elongation. The
stored energy curves corresponding to those values of D in Fig. 8 are plotted in Fig. 9. In this figure, labels 1, 2
and 3 correspond to different values of c (in a decreasing order).

In Fig. 9(a), the total stored energy values for curve 1 and curve 2 are respectively Gt
1 ¼ 0:00241013 and

Gt
2 ¼ 0:00206265. Thus for a displacement-controlled problem, as Gt

2 < Gt
1, the shape in the right of

Fig. 8(a) represents a preferred configuration, and at D ¼ Dc there could be a bifurcation from Solution 1
to Solution 2 (a localization solution). Correspondingly, there is a snap-through in the engineering stress–
strain curve at D ¼ Dc.

In Fig. 9(b), the total stored energy values for curve 1, curve 2 and curve 3 are respectively
Gt

1 ¼ 0:00247747; Gt
2 ¼ 0:00230487 and Gt

3 ¼ 0:00186959. For a displacement-controlled problem, as Gt
3 is

the smallest, the shape in the bottom of Fig. 8(b) represents a preferred configuration.
In Fig. 9(c), the total stored energy value for curve 1 and curve 2 are respectively Gt

1 ¼ 0:00275441 and
Gt

2 ¼ 0:00170114. For a displacement-controlled problem, as Gt
2 < Gt

1, the shape in the right of Fig. 8(c) rep-
resents a preferred configuration.



Fig. 10. The engineering stress–strain curve.
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In Fig. 10, we have plotted the engineering stress–strain curve corresponding to the preferred configuration
for a displacement-controlled problem. We see that a snap-through takes place at D ¼ Dc, which leads to the
localization (as represented by Solution 2).

Once the localization happens, there is a high concentration of energy around the middle of the cylinder. It
is known that if the strain energy density reaches a critical value there will be the material failure. The ana-
lytical results obtained here can be used to calculate the stored energy at any material point. The largest energy
value is attained at ðR; ZÞ ¼ ða; 1

2
Þ at which V ¼ a (cf. Eqs. (47)–(49)). From Eqs. (26), (51) and (52), we can

express the energy value at this point in terms of a, and the result is
Gm ¼ �
1

384ð�1þ 8D3aÞ2
ð2D1a

3ð�118þ 15a2 � 8192D2
3a

2 � 256ð4þ 3a2ÞF 2a

þ 16D3að123� 5a2 þ 256ð2þ a2ÞF 2aÞÞ þ 3ðD2a
4ð�59þ 10a2 � 4096D2

3a
2 � 512ð1þ a2ÞF 2a

þ 4D3að246� 15a2 þ 256ð4þ 3a2ÞF 2aÞÞ þ 2ð54K � 59a2 þ 5a2a2 þ 118ca� 5a2ca

þ 4096a2ðK � aða� 2cÞÞD2
3 þ 256að4K þ að�ð2þ a2Þaþ ð4þ a2ÞcÞÞF 2 þ 4D3að�2ð118þ 5a2ÞK

þ að246a� 5a2a� 492cÞ þ 256að2ð�4þ a2ÞK þ aðð4þ a2Þa� 8cÞÞF 2ÞÞÞÞ þ ca: ð55Þ
The values of Gm corresponding to those values of D (in an increasing order) in Fig. 8 for preferred configu-
rations are respectively Gm ¼ 0:00722628; Gm ¼ 0:00742384; Gm ¼ 0:00742989, and Gm ¼ 0:00742989.

Based on the maximum-distortion-energy theory (the Huber-Hencky-Von Mises theory; see Riley et al.,
2007), there are two portions of the strain energy intensity: one for volume change and the other for shape
change. In the present work, we consider an incompressible material, so there is no strain energy intensity cor-
responding to the volume change. Then the strain energy is only due to distortion. On the other hand, the
strain energy intensity attains its maximum value at the material point a; 1

2

� �
. Thus, we can give the failure

criterion
Gm ¼ Gf ; ð56Þ
where Gf is the failure value of the strain energy intensity for a given material. Fracture will occur whenever
the energy by Eq. (56) exceeds the limiting value Gf .

8. Concluding remarks and future tasks

To study the localization phenomenon, a phenomenological approach is employed to formulate a three-
dimensional boundary value problem with an incompressible hyperelastic constitutive law. A coupled
series-asymptotic expansion procedure is developed to solve the nondimensionalized system of governing dif-
ferential equations with given boundary data for a slender cylinder subjected to axial tension. With the
assumptions appropriate for the slender cylinder, analytical solutions have been obtained for the axisymmetric
boundary value problem, which demonstrate the essential features of localization problems and are consistent
with the experimental data available. Specifically, the width of localization zone depends on the material
parameters, and it remains almost unchanged for the same material in the post-peak regime. Also, the
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snap-back and snap-through phenomena could be predicted with the analytical approach, and a preferred
configuration in the post-peak regime could be identified via an energy analysis. Due to the lack of three-
dimensional analytical results available in the open literature, the analytical work presented in this paper could
complement the analytical, experimental and numerical efforts made by the research community for the local-
ization problems over the last several decades.

As indicated by Buehler et al. (2003), the hyperelasticity is crucial for understanding and predicting the
dynamics of brittle fracture. Especially, the effect of hyperelasticity is important for understanding the failure
evolution in nanoscale materials. Since localization identifies the onset of material failure, future work will
focus on the identification of the parameters proposed in the current phenomenological model, and on the
linkage between the continuum and fracture mechanics approaches, via multiscale analysis.
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