
The Journal of Logic and
Algebraic Programming 63 (2005) 271–297

��� �����	
��

��� 	��
	
����	�
�����	����

www.elsevier.com/locate/jlap

An object based algebra for specifying a fault
tolerant software architecture

Nicola Dragoni ∗, Mauro Gaspari
Department of Computer Science, University of Bologna, Via Mura Anteo, Zamboni 7, 40127 Bologna, Italy

Abstract

In this paper we present an algebra of actors extended with mechanisms to model crash failures
and their detection. We show how this extended algebra of actors can be successfully used to specify
distributed software architectures. The main components of a software architecture can be specified
following an object-oriented style and then they can be composed using asynchronous message pass-
ing or more complex interaction patterns. This formal specification can be used to show that several
requirements of a software system are satisfied at the architectural level despite failures. We illustrate
this process by means of a case study: the specification of a software architecture for intelligent agents
which supports a fault tolerant anonymous interaction protocol.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Process algebra; Software architectures; Actors; Fault tolerance; Object-oriented design

1. Introduction

The object-oriented paradigm has been successfully used in many fields of computer
science influencing methodologies, techniques, programming languages and tools. Among
them object-oriented design can be considered a standard approach for the design phase
in the development of software systems. Object-oriented design provides a methodology
to organize the main building blocks of a software system exploiting objects, classes and
inheritance. This also holds for the first phase of the design process which concerns the
specification of a software architecture. A software architecture is an abstract view of a
software system distinct from the details of implementation, algorithms, and data represen-
tation. The object-oriented approach allows a software designer to efficiently characterize
and organize the main components of a software architecture providing a clean and reus-
able formalization. However, in the design phase another dimension of complexity arises
which concerns the interaction among the components of a software architecture. In fact

∗ Corresponding author.
E-mail addresses: dragoni@cs.unibo.it (N. Dragoni), gaspari@cs.unibo.it (M. Gaspari).

1567-8326/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jlap.2004.05.006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81940224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dragoni@cs.unibo.it
mailto:gaspari@cs.unibo.it

272 N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297

formalisms for object-oriented design have often components to model the dynamics of
a system, for example the UML activity diagrams [1]. The object-oriented paradigm rec-
ommends object identity, methods and message-passing to govern object interaction, but
it is not trivial to extend all these concepts to a distributed scenario [2] and to encapsulate
them in an abstract and compositional specification language. On the other hand, due to
their compositional and abstract nature, process algebras have been widely adopted for
the specification of software systems, especially those with communicating, concurrently
executing components. However, most of the efforts are oriented to study process algebras
such as CCS [3] or the π-calculus [4] which do not provide a direct representation of
objects as first class entities. In these formalisms processes are stateless entities (although
a notion of state can be simulated using value passing combined with recursion or parallel
composition) which communicate using synchronous message passing and the representa-
tion of an object involves a large number of processes. As a consequence of this situation it
is difficult to import the compositional properties of standard process algebras to an object
oriented specification, because most of the laws concern stateless processes and not objects
(or complex components).

An additional problem arises when software architectures deal with distributed systems
which are often subject to failures of some of their components. A reasonable property
which could be expressed at the architectural level for these systems is to guarantee some
degree of fault tolerance. To achieve this goal a process algebra used for specifying a
software architecture should provide abstract mechanisms for modeling failures and for
reasoning about them. Despite distributed software systems have achieved a dominant role
in computing in the last decade, currently there are only a few proposal which extend
process algebras with mechanisms to model failures and to deal with them. A brief survey
of the literature is reported in [5].

We argue that both an object-oriented specification style and an adequate support for
modeling failures and their detection are fundamental advances in process algebra needed
to improve its capabilities in designing complex system at the architectural level.

In this paper we address this issue extending a process algebra based on a distributed
object-oriented model (the Actor model [6]) with mechanisms to model crash failures of
actors and their detection. The Algebra of Actors [7] represents a compromise between
standard process algebras and the Actor model, providing standard concurrency features in
a context where object-based mechanisms (such as object identity, asynchronous message
passing, implicit message acceptance and dynamic object creation) are supported. The
extended formalism allow us to model usual components of fault tolerant systems, for
example failure detectors, as actors.

We show how this extended algebra of actors can be successfully used to specify dis-
tributed software architectures. The main components of a software architecture can be
specified following an object-oriented style and then they can be composed using asyn-
chronous message passing or more complex interaction patterns. The result of a formal
specification is a set of actor terms which represent the main building blocks of a soft-
ware architecture. These terms can be used to demonstrate that several requirements of a
software system are satisfied at the architectural level despite failures.

We illustrate this process by means of a case study: the specification of a software
architecture for intelligent agents which supports a fault tolerant anonymous interaction
protocol.

The paper is organized as follows. In Section 2 we recall the algebra of actors. In Section
3 we provide a classification of failures in distributed systems and we introduce the concept

N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297 273

of unreliable failure detector. In Section 4 we present an extension of the actor algebra
to formalize crash failures of actors and failure detectors. In Section 5 we present the
specification of an agent architecture which supports an anonymous interaction protocol
outlining the main design requirements, and subsequently, in Section 6, we show that the
specification satisfies these requirements. We conclude the paper by discussing related
work and highlighting our future research directions.

2. An algebra of actors

Actors are self-contained stateful reactive processes whose behavior is a function of
incoming communications. Each actor has a unique name (e.g. mail address) determined
at the time of its creation. This name is used to specify the recipient of a message supporting
object identity, a property of an actor which distinguishes each actor from all others. Actors
communicate by asynchronous and reliable message passing, i.e., whenever a message is
sent it must eventually be received by the target actor. Actors make use of three basic
primitives which are asynchronous and non-blocking: create, to create new actors; send, to
send messages to other actors; become, to change the behavior of an actor [6].

Let A be a countable set of actor names: a, b, c, ai, bi, . . . will range over A and
L,L′, L′′, . . . will range over its (finite) power set Pfin(A) (i.e., L,L′, L′′ ⊆fin A). Let
V be a set of values (with A ⊂ V) containing, e.g., true, false, and let X, ranged over
by x, y, z, . . . , be a set of value variables that are bound to values at run-time. We as-
sume value expressions e built from actor names, value constants, value variables, the
expressions self, state, and message, and any operator symbol we wish. In the examples
we will use standard operators on sequences: 1st, 2nd, rest, empty. We will denote values
by v, v′, v′′, . . . when they appear as contents of a message and with s, s′, s′′, . . . when
they represent the state of an actor. [[e]]as gives the value of e in V assuming that a and s

are substituted for self and state inside e; e.g. [[self]]as = a and [[state]]as = s. The special
expression message represents the contents of the last received message. Whenever a mes-
sage is received, its contents are substituted for each occurrence of the expression message
in the receiving actor.

Let C be a set of actor behaviors identifiers: C,C′, . . . will range over C. We suppose

that every identifier C is equipped with a corresponding behavior definition C
def= P , where

P is an actor program defined as “a sequence of actor primitives (become, send and create)
and guarded choices e1 : P1 + · · · + en : Pn terminating in the null program

√
”. Formally:

P ::= become(C, e).P | send(e1, e2).P | create(b, C, e).P |
e1 : P1 + · · · + en : Pn | √

We allow recursive behaviors to be defined. For example, we could have

C
def= become(C, state).

√

Actor terms are defined by the following abstract syntax:

A ::= aCs | a[P]s | 〈a, v〉 | A|A | A\a | 0

An actor can be idle or active. An idle actor aCs (composed by a behavior C, a name a,
and a state s) is ready to receive a message. When a message is received, the actor becomes
active.

274 N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297

An active actor is denoted by a[P]s where P is the program that the actor is executing.
The actor a will not receive new messages until it becomes idle (by performing a become
primitive).

An actor term is the parallel composition of (active and idle) actors and messages. A
message is denoted by a term 〈a, v〉 where v is the contents and a the name of the actor the
message is sent to.

A restriction operator A\a is used in order to allow the definition of local actor names
(A\L is used as a shorthand for A\a1\ · · · \an if L = {a1, . . . , an}) while 0 is the usual
empty term.

The actor primitives and the guarded choice are described as follows.
• send:

The program send(e1, e2).P sends a message with contents e2 to the actor indicated by
e1:

a[send(e1, e2).P]s τ−→ a[P]s | 〈[[e1]]as , [[e2]]as 〉 (1)

where τ represents an internal invisible step of computation.
• become:

The program become(C, e).P ′ changes the state of the current actor from active to idle:

a[become(C, e).P ′]s τ−→ (d [P ′{a/self}]s)\d | aC[[e]]as with d fresh (2)

The primitive become is the only one that permits the state to change according
to the expression e; we sometimes omit e if the state is left unchanged (i.e. e = state).
The continuation P ′ is executed by the new actor d [P ′{a/self}]s . This actor will never
receive other messages (i.e. it is unreachable) as its name d cannot be known to any
other actor. Indeed, the expression self, which is the only one that returns the value d ,
is changed in order to refer to the name a of the initial actor.

• create:
The program create(b, C, e).P ′ creates a new idle actor having state s and behavior C:

a[create(b, C, e).P ′]s τ−→ (a[P ′{d/b}]s | dC[[e]]as)\d with d fresh (3)

The new actor receives a fresh name d . This new name is initially known only to the
creating actor. In fact, a restriction on the new name d is introduced.

• e1 : P1 + · · · + en : Pn:
In the agent e1 : P1 + · · · + en : Pn, the expressions ei are supposed to be boolean
expressions with value true or false. The branch Pi can be chosen only if the value
of the corresponding expression ei is true:

a[e1 : P1 + · · · + en : Pn]s τ−→ a[Pi]s if [[ei]]as = true (4)

The function n returns the set of the actor names appearing in an expression, a program,
or an actor term. Given the actor term A, the set n(A) is partitioned in fn(A) (the free names
in A) and bn(A) (the bound names in A) where the bound names are defined as those names
a appearing in A only under the scope of some restriction on a. We use act(A) to denote the
set of the names of the actors in A. An actor term is well formed if and only if it does not
contain two distinct actors with the same name. In the following we will consider only well
formed terms, and we will use � to denote the set of well formed terms (A,B,D,E, F, . . .

will range only over �).
We model the operational semantics of our language following the approach of Milner

[8] which consists in separating the laws which govern the static relation among actors

N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297 275

(for instance A|B is equivalent to B|A) from the laws which define their interaction.
This is achieved defining a static structural equivalence relation over syntactic terms and a
dynamic relation by means of a Labelled Transition System (LTS) [9].

Definition 1 (Structural congruence). A structural congruence is the smallest congruence
relation over actor terms (≡) satisfying:

(i) a
√

s ≡ a[√]s ≡ 0 (ii) A|0 ≡ A

(iii) A|B ≡ B|A (iv) (A|B)|D ≡ A|(B|D)

(v) 0\a ≡ 0 (vi) (A\a)\b ≡ (A\b)\a
(vii) (A|B)\a ≡ A|(B\a) (viii) A\a ≡ A{b/a}\b

where a �∈ fn(A) where b is fresh

Definition 2 (Computations). A transition system modeling computations in the actor alge-
bra is represented by the triple (�, T , { α→ | α ∈ T }). T = {τ } ∪ {av, avL | a ∈ A, v ∈
V, L ⊆ A} is a set of labels, where τ is the invisible action standing for local autonomous
steps of computation; av and avL respectively represent the receiving and the emission of
the message with receiver a and contents v. The set L in the label avL represents the set of
actor names in the expression v which were initially under the scope of some restriction,
i.e. names which are made available to actors which were outside their initial scope.

α→ is
the minimal transition relation satisfying the axioms and rules presented in Table 1.

Note that actors do not have an explicit receive primitive, which is instead implicit.
Therefore, the receive operation does not correspond to an operation in the programming

Table 1
Operational semantics of the actor algebra

Send a [send(e1, e2).P]s τ−→ a [P]s | 〈[[e1]]as , [[e2]]as 〉
Deliver 〈a, v〉 av∅−→ 0

Become a [become(C, e).P ′]s τ−→ (d [P ′{a/self }]s)\d | aC[[e]]as d fresh

Create a [create(b, C, e).P ′]s τ−→ (a [P ′{d/b}]s | dC[[e]]as)\d d fresh

Receive aCs
av−→ a [P {v/message}]s if C

def= P

Guard a [e1 : P1 + · · · + en : Pn]s τ−→ a [Pi]s if [[ei]]as = true

Res
A

α−→ A′

A\a α−→ A′\a
a �∈ n(α)

Open
A

avL−→ A′

A\b avL∪{b}−→ A′
a /= b ∧ b ∈ n(v)

Par
A

α−→ A′

A|B α−→ A′|B

if α = avL

then
a �∈ act(B) ∧
L ∩ fn(B) = ∅

Sinc
A

av−→ A′ B
avL−→ B ′

A|B τ−→ (A′|B ′) \ L
Cong

B ≡ A A
α−→ A′ A′ ≡ B ′

B
α−→ B ′

276 N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297

language and it is performed implicitly at certain points of the computation: only idle actors
receive messages, and so become activated.

The rules Send, Become, Create and Guard have been already discussed. Rule Deliver
states that the term 〈a, v〉 representing a message v sent to the actor a is able to deliver its
contents to the receiver by performing the action av∅. The corresponding receiving action
labelled with av can be performed by the actor a when it is idle (rule Receive). The other
rules are simply adaptations to our calculus of the standard laws for the π-calculus.

The restriction operator allows to define local names, hence only actions which does
not include restricted actor names can be executed by the agent A\a (rule Res). The only
way to pass through a restriction is defined by the rule Open: an actor can send restricted
actor names in order to make them known to actors external to the restriction. In this
case the names sent to the outside are no more restricted and they are stored in the set L
of the label avL. The process of extending the scope of the restriction terminates only
when the message is received (rule Sinc), here the restriction on the actor names in the set
L is reintroduced.

The rule Par states that the actor term A|B can deliver a message inferred by A (i.e. exe-
cute an emission action avL), only if B does not contain the target actor (i.e. a �∈ act(B))
and the names exported (i.e. names in L) are free names in B. In this way, an actor a, which
is initially out of the scope of an actor name b, will be able to send a message to the actor
b only if the name b is explicitly communicated to it.

2.1. Discussion

There are several differences with respect to the formal semantics of actors of Agha
et al. in [10–13] which is worth to point out.
• The algebra of actors describes only communication and synchronization primitives,

while in the semantics of Agha et al. actor primitives are embedded in a functional
language. This enables us to focus on concurrency and communication related aspects
and not with issues concerning the sequential execution of programs inside actors.

• The operational semantics of the algebra of actors is defined by means of a Labelled
Transition System LTS instead of a simple reduction system as in [10] or the rewrit-
ing rules in [13]. This allows to use standard observational equivalences of process
algebras, such as bisimulation, without defining explicit observers (as we show in [7]).

• We have introduced the guarded choice as an alternative to the conditional which is
present in previous formalization of actors [10].

• We provide an explicit representation of the state of an actor while in Agha et al. the
state is part of the behavior of an actor.

• We have introduced a mechanism to model termination of actors. Actors are not per-
petual processes with a default behavior as usual, but they can terminate: an actor ter-
minates whenever it finishes its internal computation. This is not a limitation because
a perpetual actor can always be obtained performing an explicit become operation for
each internal computation. Note that this mechanism slightly modifies the reliability
assumption of the actor model. In fact, we guarantee that a given message will always
reach its destination only if the receiving actor is alive.

• In the algebra of actors, the creation of an actor is performed by a single basic primitive
(create), while in the semantics of Agha et al. is composed of two basic operations: the
creation of an empty actor and the initialization of its behavior. The main advantage of

N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297 277

our approach is that we do not need to restrict the possible computations to guarantee
an atomic create operation.

• We introduce a restriction operator similar to the one of the π-calculus [4]. This oper-
ator is more tractable with respect to the approach of [10], which is based on the spec-
ification of the sets of receptionists and external actors in actor configurations. On the
other hand, the calculus presented in [12] uses the inverse operator indicating the actors
which are reachable from the outside world explicitly.
The full algebra of actors, including a discussion about different notions of equivalence

of actor terms, can be found in [7,14,15].

3. Failures and failure detectors

Classifying failures and understanding their nature is fundamental if one wants to design
an architecture of a distributed system which is able to tolerate and/or continue service
despite malfunctions. Hence failures must be considered essential aspects of distributed
systems. Problems in fault-tolerant distributed computing have been studied in a variety
of computational models [16]. Such models fall into two broad categories, message-pass-
ing and shared-memory. In the former, processes communicate by sending and receiving
messages over the links of a network; in the latter, they communicate by accessing shared
objects, such as registers, queues, etc. Since actors communicate by means of an asyn-
chronous message passing mechanism, in this paper we focus only on message-passing
models. The parameters which characterise a particular message-passing model may be
the following: synchrony of processes and communication, types of actor failures, types
of communication failures, network topology, and deterministic versus randomized pro-
cesses.

In this section we present the failure model that we consider for actors based on a well
known classification of process failures in distributed systems [16]. Then we recall the
notion of unreliable failure detector for asynchronous distributed systems [17] which will
be used as a starting point to model a failure detector primitive in the actor algebra.

3.1. Actor failures

An actor is faulty in an execution if its behavior deviates from that prescribed by the
algorithm it is running; otherwise, it is correct. A model of failure specifies in what way a
faulty actor can deviate from its algorithm. The following is a list of models of failures that
have been studied in the literature:
• Crash: a faulty actor stops prematurely and does nothing from that point on. Before

stopping, however, it behaves correctly.
• Send omission: a faulty actor stops prematurely, or intermittently omits to send mes-

sages, or both.
• Receive omission: a faulty actor stops prematurely, or intermittently omits to receive

messages sent to it, or both.
• General omission: a faulty actor is subject to send or receive omission failures, or both.
• Arbitrary (sometimes called Byzantine): a faulty actor can exhibit any behavior what-

soever. For example, it can change state arbitrarily.

278 N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297

Arbitrary with
message authentication

Arbitrary

Crash

Receive omission

General omission

Send omission

Fig. 1. Classification of failure models. An arrow from type B to type A indicates that A is more severe than B.

• Arbitrary with message authentication: faulty actors can exhibit arbitrary behavior
but a mechanism for authenticating messages using unforgeable signature is available.
With arbitrary failures, a faulty actor may claim to have received a particular message
from a correct actor, even though it never did. A message authentication mechanism
allows the other correct processes to validate this claim.
Note that these failures can be classified in terms of “severity”, as shown in Fig. 1.

Model A is more severe than model B if the set of faulty behaviors allowed by B is a
proper subset of the set of those allowed by A. Thus, an algorithm that tolerates failures of
type A, also tolerates those of type B. Arbitrary failures are the most severe failures, since
they do not place any restrictions on the behavior of a faulty actor. Crash failures are the
least severe failures listed above.

The failure model we consider in this proposal is characterised by crash failures of
actors in a fully asynchronous system. Note that considering only crash failures is a com-
mon fault assumption in distributed systems, since several mechanism can be used to detect
more severe failures and to force a crash in case of detection. Actors communicate by
asynchronous and reliable message passing, i.e. whenever a message is sent it must be
eventually received by the target actor (thus we do not handle communication failures,
such as send or receive omission). The asynchrony of the system implies that there is no
bound on message delay, clock drift or the time necessary to execute a step (so we omit all
timing-based failures).

3.2. Failure detectors

Since impossibility results for asynchronous systems stem from the inherent difficulty
of determining whether a process has actually crashed or is only “very slow”, Chandra and
Toueg [17] propose to augment the asynchronous model of computation with a model of
an external failure detection mechanism that can make mistakes. In particular, they model
the concept of unreliable failure detector for systems with crash failures.

Failure detectors are distributed: each process has access to a local failure detector
module. Each local module monitors a subset of the processes in the system, and maintains
a list of those that it currently suspects to have crashed. Each failure detector module can
make mistakes by erroneously adding processes to its list of suspects: i.e., it can suspect
that a process p has crashed even though p is still running. If this module later believes
that suspecting p was a mistake, it can remove p from its list. Thus, each module may
repeatedly add and remove processes from its list of suspects. Furthermore, at any given
time the failure detector modules at two different processes may have different lists of
suspects. It is important to note that the mistakes made by an unreliable failure detector

N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297 279

should not prevent any correct process from behaving according to specification even if
that process is (erroneously) suspected to have crashed by all the other processes.

4. Modeling crash failures and failure detectors

In this section we present an extension of the actor algebra to formalize crash failures of
actors and failure detectors. Our aim is to extend the computational model of the algebra
with rules for modeling possible crashes of actors. We assume that any given actor can
crash at any time and we introduce specific (crash) transitions to model these events. Crash
transitions will be always enabled in the transition system and they will fire for both idle
and active actors. However, although the transition system has been extended for modeling
crashes, actors will not be able to detect faulty actors using their standard primitives. In
fact the behavior of an actor only depends on its local state and on the incoming messages.
An actor (and in general a process) is not aware of the state and properties of other actors,
unless it will be explicitly notified by appropriate messages. For this reason we extend the
algebra with a specific ping primitive which will be the basis to realize an unreliable failure
detector.

4.1. Crash failures in the actor algebra

In order to model a crash failure in the algebra, we need to extend the standard behaviors
of actors. As we have seen in Section 2, an actor can be idle (when is ready to receive a
message) or active (when it receives a message). To model a crash, we provide a syntactic
symbol a0 for each actor a ∈ A, which indicates that actor a has crashed. Consequently
the set of actor terms of the algebra is updated with this new term:

A ::= aCs | a[P]s | a0 | 〈a, v〉 | A|A | A\a | 0

Any correct actor in the system can crash and consequently become a faulty actor, as
described in the following transition rules:

bCs
τ−→ b0 (5)

b[P]s τ−→ b0 (6)

The first rule deals with a crash of an idle actor bCs . We model this failure by means of a
transition from the idle actor to the respective faulty actor. The second rule is analogous to
the first one and deals with a crash of an active actor b[P]s .

When one of the previous transitions fires, then an actor becomes faulty and therefore
will not be able to do nothing from that point on. Note that, consistently with the rules Send
and Receive (Table 1), only correct actors are able to send and receive messages.

4.2. Detecting failures in the actor algebra

To detect crashes of actors we need to extend the algebra with an appropriate primitive
that is usually called ping in distributed systems. The task of this primitive is inherently
difficult in asynchronous distributed systems, because in general it is not possible to detect
if a certain site has crashed or is only very slow. Our aim is to model this uncertainty in

280 N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297

Table 2
Fault tolerant transition rules

Crash b
Cs

τ−→ b0

Ping1 b0 | a [ping(b, x).P]s τ−→ b0 | a [P {false/x}]s
Ping2 b

Cs | a [ping(b, x).P]s τ−→ b
Cs | a [P {true/x}]s

Ping3 b
Cs | a [ping(b, x).P]s τ−→ b

Cs | a [P {false/x}]s

the actor algebra. We introduce a primitive having the form: ping(a, x), where a ∈ A and
x ∈ X, and we assume the following behavior. Given an actor b:
• If b has crashed then ping(b, x) binds x to false.

This means that if an actor b really crashes, then it is suspected by every correct actor
which executes ping(b, x).

• If b is alive then ping(b, x) binds x to true, but it can also make a mistake:
· ping(b, x) binds x to true (b is alive) OR
· ping(b, x) binds x to false (b is assumed to be crashed but is only very slow).
As a consequence, if an actor b is correct then it can be erroneously suspected by any
correct actors.

To formalize these features we add three transition rules:

b0 | a[ping(b, x).P]s τ−→ b0 | a[P {false/x}]s (7)
b
Cs | a[ping(b, x).P]s τ−→ b

Cs | a[P {true/x}]s (8)
b
Cs | a[ping(b, x).P]s τ−→ b

Cs | a[P {false/x}]s (9)

For the sake of readability we denote a correct actor by b
Cs = bCs or b[P]s , which means

that the actor a is idle or active but not faulty. The first rule ensures that if b is really crashed
(b0), then ping detects the failure (the variable x assumes the value false). Observe that the
transition does not change the behavior of the faulty actor, which remains crashed. The
second and the third rules implement the unreliable behavior of the primitive ping. If rule
(8) fires the behavior is correct and ping binds x to true. Otherwise, if rule (9) fires then
ping binds x to false, that is, it detects a faulty actor even if this actor is not really crashed
but only very slow1. In summary, the labelled transition system of the extended algebra is
obtained adding the rules in Table 2 to the ones of Table 1.

4.3. Modeling an unreliable failure detector

An unreliable failure detector can be modeled in the actor algebra using the ping primi-
tive. Typically a failure detector is a distributed program: each site in a distributed system
has its own failure detector module.

In the algebra of actors if we consider a system composed of a fixed set of actors
a1, a2, . . . , an, we can specify a distributed failure detector as a set of local detector-actors
a1
d, a

2
d , . . . , a

n
d which run the same actor program. The state of a local detector consists of

a pair (dnames, failures), where dnames is the list of all the detector-actors in the system

1 In the algebra of actors we have no formal notion of time and thus we cannot formalize the concept of
“actor (or system) slow”. However, we consider only asynchronous systems and we know that, in such systems,
a process may appear failed because it is slow or because the network connection to it is slow. In our proposal we
are not interested in formalizing the concept of “slow”, but only in modeling this property of uncertainty.

N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297 281

Fig. 2. A simple failure detector service.

and failures is the list of suspected actors. We also assume that ai has crashed ⇔ aid has
crashed. The behavior of a detector–actor is shown in Fig. 2.

In order to provide a more compact notation we use the following functions which
operate on the state of the detector:
• addnames(dlist): updates the field f ailures of the state with dlist.
• updfail(bd): adds the actor bd to the list failures.
• updnofail(bd): removes the actor bd from the list failures.

When a detector aid receives an initialization message from the actor ai (i) it stores in
its state the list of actors to be checked (dnames) (i1). Then the detector starts checking
all the actors in the system by means of the primitive ping (ii1). Since in the algebra of
actors there are no loop statements, we implement these checks by means of the following
behavior: an actor sends to itself a message (pingall) with content the list of actors to be
checked (dnames) (i1); when it receives this message (ii and iii), it checks the first actor
of the list (1st(nl)) and it sends to itself the rest of the list (ii1). Observe that after each
execution of ping, the detector updates the list failures according to the result of the check
(which is stored in y) (ii2a and ii2b). The detector executes this program forever (iii): after
the check of the last actor in the list dnames, the detector restarts its work with the first
actor of the list. This is made by means of the message pingall(dnames) in (iii1).

Though the program can receive init messages more than once, we are assuming that
only one init message is sent to it. Moreover, we do not model a termination protocol.
The main reason for these choices is for the sake of simplicity and readability of the actor
program. In fact, it is very simple to modify the program in order to restrict the detector
to receive only one init message and to terminate in accordance with a particular protocol.
However we think these adjustments are out of the scope of the paper and thus, in our
opinion, they only complicate the actor program and its understanding.

Let us show that the above failure detector satisfies the following two properties.

Property 1. If an actor b really crashes, then it is permanently suspected by every correct
actor.

Proof. In order to prove this property, we proceed as follows. First (a) we show that a
really crashed actor is suspected by every correct actor. Then (b) we show that this actor is
also permanently suspected by every correct actor.

(a) If an actor b really crashes, then it becomes a faulty actor b0 by means of a Crash
transition. If a detector, say ad , later checks the actor b using the ping(b, y) primitive (ii1),
then it discovers the failure because the transition P ing1 fires (and no other transitions can

282 N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297

fire). As a consequence, the variable y is bound to false and the failure detector updates its
state adding the failure to the list failures (ii2b).

(b) We have to show that no transition can cancel actors from the list failures. An actor
has only one way to remove an actor b from the list failures: to execute the primitive
become in (ii2a). This is possible only if y = true, that is, if the execution of ping in (ii1)
has bound y to true. But this is impossible because b is really crashed (for hypothesis) and
thus ping can only bound y to f alse (rule Ping1 in the LTS). �

Property 2. If an actor b is correct, then it can be erroneously suspected by any correct
actors.

Proof. This property follows directly from the unreliable behavior of the primitive ping. If
an actor b is correct, it can be erroneously suspected by a detector, say ad , which executes
ping(b, y) (ii1) and the transition Ping3 fires. Consequently the detector updates its state
adding the actor b to its list of suspects (ii2b). Note that if the detector later discovers the
actor is correct, then it updates its state removing b from the list failures (ii2a). Thus at any
given time a detector can correct its mistakes. �

5. A case study: an agent architecture for anonymous interaction

The algebra of actors we have presented above is a powerful tool for specifying soft-
ware architectures. A software architecture is described specifying its main components
as actors and connecting them. Given this specification, the properties of the architecture
can be discussed and proved at the architectural level. We illustrate this process by means
of a case study: the design of an agent architecture for supporting anonymous interaction.
Agents provide services to the outside world and request services to other agents. Follow-
ing the style of [18], we assume a description of agents based on two levels: a knowledge
level which focuses on agents’ competences and abstracts from implementation details,
and a symbol level (our architectural level) which specifies how these competences are
realized. This approach has several advantages which allows us to illustrate the utility and
the expressive power of our formalism. Firstly, there is a clear distinction between the
knowledge level and the architectural level. Agents are abstract entities which operate at
the knowledge level executing high level communication primitives, while the architectural
level concerns actors and their interaction, synchronization and management of failures.
Secondly, it’s possible to define a set of requirements that should be satisfied at the agent
level and that can be proved at the architectural level. Finally, it is not trivial to provide a
direct operational characterization of the agent behavior (for example defining an ad hoc
transition system for agents) well integrated with standard mechanisms to model commu-
nication and concurrency in process algebra (for example handshake communication). This
approach was focused in a previous work of one of the authors where a specific transition
system was defined and successfully exploited to give an operational definition of a simple
agent communication language [19]. However we have realized that this approach does not
scale when we need to model more complex communication primitives. In fact, it is dif-
ficult to integrate standard low level communication and concurrency mechanisms, which
are necessary to describe the real behavior of a system, in a transition system describ-
ing high level multi-party communication primitives, providing a tractable formalism. The

N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297 283

reader interested in this issue will find in [18] an extended discussion on the motivations
of using an actor algebra for this class of architectures.

5.1. Knowledge level description

An agent in the system has a symbolic (logical) name and a virtual knowledge base
(VKB), which is a set of first order formulas. Agents only interact with requests of knowl-
edge which is stored in VKBs of other agents. The requests of knowledge are anonymous
and independent from low level issues, such as management of agent names, routing and
agent reachability.

Let AACL be a countable set of agent names ranged over by â, b̂, ĉ, Let VKBâ be
the virtual knowledge base of agent â and p, p′, p′′, . . . first order formulas.

The anonymous interaction protocol which we study is realized by means of the follow-
ing two agent primitives:
• ask-everybody(â, p) asks all agents interested in p for an instantiation of p which is true

in their VKB.2

• all-answers(p) allows to know if all the replies concerning the proposition p have been
received.

These primitives should satisfy the following specification requirements.

1 Knowledge-level programming requirements. The notion of knowledge-level in the
context of multi-agent systems has been discussed in detail by Gaspari in [18]. Following
that approach, we require a knowledge-level model for agents: that is, they should pro-
vide communication primitives which support the use, request and supply of knowledge
independently from implementation-related aspects. Syntactically both ask-everybody and
all-answers can be considered at the knowledge-level, since both have propositional con-
tents. However, this is not enough to guarantee a correct knowledge-level behavior. In
[18] additional conditions are postulated which require an accurate specification of the
underlying agent architecture in order to ensure knowledge-level behavior. We recall these
conditions below.
(1) The programmer should not have to handle physical addresses of agents explicitly.
(2) The programmer should not have to handle (2.1) communication faults and (2.2) agent

crashes explicitly.3

(3) The programmer should not have to handle starvation issues explicitly. A situation of
starvation arises when an agent’s primitive never gets executed despite being enabled.

(4) The programmer should not have to handle communication deadlocks explicitly. A
communication deadlock situation occurs when two agents try to communicate, but
they do not succeed; for instance because they mutually wait for each other to answer
a query [22].

2 Open system requirement. In the research on multi-agent systems there is an increasing
emphasis on the open-ended nature of agent systems, which refers to the feature of support-
ing the dynamic integration of new agents into an existing agent system. The anonymous

2 Note that the ask-everybody primitive includes the name of the sender agent. This is necessary because the
recipient agents need to know the name of the sender to send it the replay. As discussed in [18] agents modeling
real world situations in many cases need to know the name and the beliefs of a partner agent in order to perform an
agent-to-agent interaction. This name is usually included in the primitives of Agent Communication Languages
[20,21].

3 Condition (2.2) has been added here to consider possible crash failures.

284 N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297

LAYER
VKB

LAYER
FACILITATOR

FAILURE
DETECTOR

Fig. 3. Fault tolerant agent architecture for anonymous interaction.

interaction protocol should function correctly in open multi-agent systems where agents
are added dynamically to cooperate with the existing ones. To this purpose we establish
the following requirement:4

(5) Only registered agents are involved in the anonymous interaction protocol. This means
that only registered agents can be reached through the ask-everybody primitive.

The informal definition of ask-everybody and all-answers we have given above is not suf-
ficient to show that these requirements hold. To achieve this goal we have to specify the
details of the concurrent behavior of these primitives and of the underlying agent architec-
ture.

5.2. Architectural level description

Each agent has a knowledge-level (KL) component which implements the VKB of the
agent and its reactive behavior (see Fig. 3)). This component only deals with knowledge-
level operations and it is able to answer requests from other agents. To realize the anon-
ymous interaction protocol we exploit a distributed facilitator service which is hidden at
the knowledge-level and provides mechanisms for registering capabilities of agents and
delivering messages to the recipient actors.

Facilitators are distributed and encapsulated in the architecture of agents. Each agent
has its own local facilitator component which executes a distributed algorithm: it forwards
control information to all the other local facilitators, and delivers messages to their destina-
tions. Since the facilitators are encapsulated in the agent architecture, they are not visible
at the knowledge-level. Therefore, although facilitators deal with some low-level issues,
we do not violate our knowledge-level requirement.

An additional difficulty which the specification of the anonymous interaction protocol
should take into account is that multi-agent systems are prone to the same failures that can
occur in any distributed software system. An agent may become suddenly unavailable due
to various reasons. The agent may die due to unexpected conditions, improper handling
of exceptions and other bugs in the agent program or in the supporting environment. The

4 Of course, many other requirements can be discussed for open multi-agent systems. However, here we prefer
to focus only on the requirement which we consider the most interesting in the context of the paper.

N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297 285

a

cd

cf

s

â

c

ad

af

failure detector mechanism

control
messagesmessages

outgoing

incoming messages
which need control

incoming
messages

sd

sf

Fig. 4. Actor-based agent architecture.

machine on which the agent process is running may crash due to hardware and software
faults.

Since we have postulated that to ensure knowledge-level programming the programmer
should not have to handle agent crashes and communication faults explicitly, it is important
to guarantee that the ask-everybody and all-answers primitives are fault tolerant in some
way. In order to address this issue we provide a failure detector component which is also
encapsulated in the agent architecture (Fig. 3). The aim of this component is to check all
the agents in the system trying to discover the ones which have crashed.

Observe that this is a generic agent architecture: the failure detector and the facilitator
components are standard for all the agents in a multi-agent system, while the KL compo-
nent can be instantiated with different VKB.

This architecture is formally specified in the actor algebra. The architecture of an agent
is illustrated in Fig. 4. An agent â is composed of three actors (a, af , ad) which run in
parallel (a | af | ad) and which implement the behavior of the components of the general
agent architecture (Fig. 3):
• kb-actor a: this actor implements the agent at the knowledge-level, it contains the VKB

of the agent â.
• facilitator–actor af : this actor implements the distributed facilitator mechanism and

the anonymous interaction protocol.
• detector–actor ad : this actor implements the distributed failure detector mechanism. It

monitors all the agents in the system and individuates those that it currently suspects to
have crashed.
We assume a simple mapping between the logical names of agents and the physical

names of actors. Given an agent name â, the corresponding physical name of the kb-actor
is obtained removing the hat (thus it is a), its facilitator–actor is af and its detector–actor
is ad . This mapping is known by all the facilitators. In a more general architecture the
translation between logical and physical names of agents can be embedded in the facili-
tator process. In general, incoming messages are handled by the kb-actor, but if incoming
messages need some control operations then they are sent through the facilitator layer. The
facilitator–actor deals with the outgoing messages and it also receives control information
from other facilitators. The detector–actor implements the local unreliable failure detector
mechanism: it checks all the agents in the system and it manages the list of suspected
agents.

A formal specification of an unreliable failure detector component has been presented
in Section 4.3. In the following we describe the kb-actor and the facilitator components
and then we discuss their integration with the failure detector component.

286 N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297

5.2.1. Kb-actor component
The kb-actor implements the knowledge-level agent which performs requests for knowl-

edge and it is able to answer requests from other agents. The kb-actor is realized exploiting
the guarded program of the actor algebra to implement its reactive behavior:

Ca def= e1 : P1 + · · · + en : Pn. (10)

All the outgoing primitives are sent to the facilitator. We provide here the encoding of the
ask-everybody and all-answers primitives which are relevant for the scope of this paper.
The reader interested to the full specification of a kb-actor can refer to [18,23].

An agent â uses the ask-everybody(â, p) primitive to ask all agents interested in p

for an instantiation of p which is true in their VKB. Subsequently, â can execute the
all-answers(p) primitive to know if all the replies concerning the proposition p have been
received.

The two agent primitives are translated into actor messages sent from the kb-actor a to
the facilitator af , as follows:5

[[ask-everybody(â, p)]]a = send(af , ask-everybody(â, [[p]]a))

[[all-answers(p)]]a = send(af , allanswers(â, p)).become(C′a)
where C′a def=

(i) message=allanswersyes: [[Rest of the program]] +
(ii) message=allanswersno: become(Ca) +

(iii) otherwise: send(self, message).become(C′a)

where otherwise (iii) is a boolean expression which is true if all the previous guards are
false (it is defined more formally in [15]).

We briefly discuss the encoding of all-answers. This primitive is implemented by send-
ing a request to the local facilitator–actor and waiting for its answer. If the kb-actor receives
a positive answer (i) then it continues the execution of the rest of the program which fol-
lows the all-answers call; otherwise (ii) it stops the program C′a and starts waiting for
other messages (become(Ca)). Note that while the kb-actor waits for the answer to the
all-answers query, all the other messages are delayed (iii).

5.2.2. Facilitator component
The distributed facilitator is formally specified as a dynamic set of local facilitator act-

ors {af , a′
f , a

′′
f , . . .} which run (in parallel) the same actor program. This set may evolve

dynamically whenever a new agent is created or an agent terminates its computation.
The state of a local facilitator is a triple (fnames, competence, answers), where fnames

is the list of all the local facilitators, competence is a data structure which stores the com-
petence of the agents in the system and answers contains information on the active conver-
sations involving multicasting. In Fig. 5 we present a specification of a facilitator service
which supports the ask-everybody and all-answers primitives. The specification of a com-
plete facilitator program for a knowledge-level Agent Communication Language can be
found in [23].

5 The encoding is defined by means of a function [[Ag]] which translates agent terms into actor terms. We use
the notation [[Ag]]a when we translate an agent â (see [18] for more details on this translation function).

N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297 287

Fig. 5. A facilitator service which supports the ask-everybody and all-answers(p) agent primitives.

When a facilitator receives an init message from a kb-actor (i), it updates its own state
by means of a become primitive. This initialization depends on the parameters (e1, e2, e3)

received in the init message. When a facilitator receives an ask-everybody(ŝ, p) mes-
sage, it consults its database (the field competence of its state) by means of the function
getcomp(p). According to the information retrieved from its database, the facilitator for-
wards an ask-one message to all the agents interested in p (ii). The program (iii) deals with
all the replies concerning p: when a facilitator receives the message updandfrw(tell(self,
ŝ, p)) (which stores the information that the agent ŝ is able to deal the proposition p)
and it is waiting this answer (function alltag(p)), then it sends this information to the kb-
actor and updates its own state. The program (iii) is needed to implement the all-answers
primitive. Indeed, when a facilitator receives the message all-answers(self, p) it checks if
all the replies concerning proposition p have been received and then communicates the
result of this control to the local kb-actor (iv). The register(self, p) and unregister(self, p)
messages are forwarded to all the other facilitators in the system (v). When a facilitator
receives these messages from another facilitator it updates the competence data structure
(v3). The protocol in (vi) supports the dynamic creation of new agents. The protocol in
(vii) and (viii) supports the termination of a facilitator. When a facilitator receives a halt
message (vii) it forwards a stop message to all the facilitators to communicate its own
termination. Then the facilitator terminates. When another facilitator receives the stop
message (viii), it updates its own state removing the name of the sender (in the program:
when the facilitator receives the stop message the variable x is bound to this name). Table
3 summarizes the functions which operate on the fields of the state of the facilitator.

In order to forward a message the facilitator uses the forward primitive which imple-
ments a multicast interaction mechanism. We introduce it because the algebra of actors
does not provide an explicit primitive for forwarding a message to a set of known act-
ors. In the following we show that this explicit forward primitive can be simply imple-
mented in the algebra. In order to prove this, we extend the algebra with a new primitive
forward(x, nl,m) which allows actors to forward a message m to all the actors in a list

288 N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297

Table 3
Functions which operate on the state of the facilitator

Function Operates on Description

getcomp(p) competence Retrieves the list of all the agents which are able to deal with
proposition p and returns the list of the associated facilitators

alltag(p) answers Returns true if an alltag on p has been set
setalltag(p) answers Returns a new facilitator state where the field answers includes

a record with the query p and the list of all the agents which
have this competence

updalltag(p, â) answers Returns a new facilitator state where answers contains the fact
that a reply concerning proposition p has been received

testalltag(p) answers Returns true if all the replies concerning proposition p have
been received

cleanalltag(p) answers Returns a new facilitator state where the tags concerning prop-
osition p have been removed

deltag(p, b̂) answers Removes agent b̂ from the list of agents which have to answer
about p. To remove a list of agents we can use deltag(p, list)

setcomp(â, p) competence Adds to the competence data structure the information that
agent â is able to deal with proposition p

delcomp(â, p) competence Removes agent â from the competence list of p

nl. If the variable x is in m then it will be instantiated with the elements of nl. Hence, we
extend the syntax by allowing also:

P ::= forward(x, nl,m).P

and the operational semantics by adding the axiom:

a[forward(x, nl,m).P]s τ−→a[P]s | 〈a1, m{a1/x}〉 | . . . | 〈anl,m{anl/x}〉
Our idea for implementing the program forward(x, nl,m).P in a term of the algebra

[[forward(x, nl,m).P]] is to create a new actor whose behavior (FWD) is to execute the
forward of a message (see Fig. 6). When this actor finishes to send all the messages it
terminates (correctly) its execution (i.e. becomes the empty term 0). Formally:

[[forward(x, nl,m).P]] def= create(d, FWD, []).send(d, frw(x, nl, m)).P

where d is fresh and

FWD
def=

message=frw(x, nl, m) ∧ ¬empty(nl) :
send(self, frw(x, rest(nl), m)).send(1st(nl), m[ˆ1st (nl)/x]).
become(FWD) +

message=frw(_, nl, m) : √

5.2.3. Integrating the components of the architecture
The components of the agent architecture previously discussed have been specified indi-

vidually and their integration is not always trivial. The integration of the kb-actor and the
facilitator–actor is simple and requires just an agreement on their respective names. In
Section 5.2 we have already bound the kb-actor to the facilitator because in the encoding
of the primitives the kb-actor a sends the messages to the local facilitator af . Therefore, in
order to integrate these two components we only need to bind the facilitator with the kb-

N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297 289

actor. This can be done substituting the expression kb-local in the facilitator program with
the name of the local kb-actor a. The new behavior C′′f of the facilitator-actor is formally
defined as

C′′f def= C′f [a/kb-local]
which means that the program C′′f is exactly the program C′f where each occurrence of
the expression kb-local is substituted with a, i.e. with the local kb-actor name.

The integration of the facilitator component with the unreliable failure detector is more
complex and requires a careful analysis and more complex connectors. A critical point of
the facilitator program which is related to failures is the implementation of the all-answers
primitive (see the facilitator program in Fig. 5 line (iv)). When a facilitator receives an
allanswers message from the kb-actor and an answer from an agent interested in p is
still not arrived, it is possible that the agent has crashed. This means that the all-answers
predicate will never succeed (because testalltag(p) will be always false and thus the facili-
tator will always reply allanswerno to the kb-actor). Thus whenever such a situation arises
it is reasonable to contact the failure detector component to verify whether that agent is
suspected to have crashed or not.

A possible solution to this problem can be obtained contacting the failure detector com-
ponent and asking it for the list of suspected actors. Unfortunately this solution requires
a synchronization which may slow down the performance of the facilitator component. In
fact, it should wait for the list of suspected agents before answering to other queries.

The solution that we have adopted exports part of the state of the failure detector com-
ponent to the facilitator: the list failures which contains the suspected agents. The new
failure detector just notifies the results of its checks to the facilitator. The state of the new
local detector consists only of a list dnames, which is the list of all the detector actors in
the system, while the list f ailures is exported to the facilitator.

Since the new failure detector is part of the agent architecture, we also have the follow-
ing assumptions:
• af has crashed ⇔ a has crashed ⇔ ad has crashed ⇔ â has crashed; thus we can

say that “a detector checks the agent â in the system” to mean “a detector checks the
detector ad of the agent â”.

• The communication between a kb-actor a, a facilitator-actor af and a detector–actor ad
is reliable.

The behavior of a detector-actor when integrated in the agent architecture is shown in
Fig. 7.

In a similar way to the integration between the kb-actor and the facilitator, we also need
to insert the name of the facilitator in the program C′′d and the name of the failure detector
in the program C′′f . This can be done by means of the following substitutions:

Fig. 6. THE FORWARD PRIMITIVE. (1) In order to forward a message a new actor d is created. (2) The behavior
of this new actor is to execute the forward of a message. When it finishes to send all the messages it terminates
correctly its execution. Note that in the meantime the actor a does not suspend its execution but it continues the
program P .

290 N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297

Fig. 7. The program of the failure detector actor integrated in the agent architecture. Note that this program is
similar to the one in Fig. 2 except for the lines presented in bold.

Cf def= C′′f [ad/fd-local] Cd def= C′′d [af /fac-local]
When a detector receives an initialization message from the local facilitator (i) it starts
checking all the agents in the system (ii). The result of each check is sent to the local
facilitator to update the list failures. The detector executes this program until it receives a
halt message from the local facilitator. If this event occurs then the detector stops forever
its execution (v).

Note that the state of the detector is dynamically updated when a new agent is created
and when an existing agent terminates its computation. Indeed, when a detector receives
a message addname(d) or delname(d) from the local facilitator it updates its state adding

Fig. 8. Integrating the facilitator program with the failure detector and the kb-actor. Note that all the occurrences
of the expressions kb-local and fd-local have been replaced by a and ad respectively.

N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297 291

Table 4
Functions which operate on the field f ailures of the state of the facilitator

Function Operates on Description

addfail(b) failures Adds the actor b to the list
remfail(b) failures Removes b if it is in the list

(iii) or deleting (iv) d to/from the list dnames respectively. This functionality has been
added to ensure to support dynamic creation of new agents.

The second step of this integration is the extension of the facilitator program to include
the list of suspected agents. In Fig. 8 we show the new facilitator program Cf obtained
after the integration of the facilitator component with the kb-actor and the failure detector.
Note that the properties of Section 4.3 are still satisfied by this new failure detector.

Note that all the occurrences of the expressions kb-local and fd-local have been replaced
by the name of the local kb-actor a and the name of the local failure detector ad respec-
tively. This program is analogous to that presented in Fig. 5 except for the lines presented
in bold. The function deltag(p, failures) updates the tags related to the query p canceling
all the suspected agents. Thus, if an answer is still not arrived, but the agent which has to
reply is suspected by the failure detector, then that answer is ignored and the all-answers
primitive succeeds. The behavior of the facilitator is extended with the protocol in (ix) to
deal with messages from the failure detector component and update the list of suspected
actors. In Table 4 the functions which update the failures field of the state are summarized.

6. Analysis of requirements

The aim of this section is to show that our specification satisfies the requirements dis-
cussed in Section 5 at the architectural level. To address this issue we proceed as follows.
First, in Section 6.1, we focus on knowledge-level programming requirements. Then, in
Section 6.2, we focus on the open system requirement. We think that this analysis shows
even more the benefits of distinguishing between a knowledge level description from an
architectural level where we can reason about the (concurrent) behavior of the components
of the agent’s architecture.

6.1. Knowledge-level programming requirements

In the following theorem we prove that our architectural specification based on the alge-
bra of actors satisfies the knowledge-level requirements (1), (2), (3) and (4) of Section 5.1.
Since in [18] a similar Theorem is already proved for multi-agent systems in which no
failures can occur, here we focus only on fault-tolerant issues of the Theorem.

Theorem 3 (Knowledge-level requirements). The actor based specification of the agent
architecture and of the anonymous interaction primitives satisfies the requirements for
knowledge-level programming.

Proof. Requirements (1), (2.1) and (3) are not influenced by crash failures of agents and
thus we omit the complete proof because is the same as the one in [18].

292 N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297

Requirement (2.2) is trivially satisfied. Indeed, to guarantee that the interaction primi-
tives are fault tolerant we provide a failure detector component. This component is encap-
sulated in the agent architecture and is hidden at the knowledge-level.

Requirement (4) is not trivial and requires a more careful analysis. Also this requirement
is proved in [18] for system without crashes and thus here we focus only on fault tolerant
issues. If we admit crashes, then a communication deadlock can occur when a correct
agent waits for answers of crashed agents. Consider a set S of m agents â1, â2, . . . , âm and
suppose without loss of generality that the agent âi ∈ S is waiting for replies about a prop-
osition p from a subset S ⊂ S which has cardinality n, 1 � n � m − 1, and which does not
include âi . To avoid a communication deadlock, the agent must wait only for answers of
correct agents and must continue the execution of its program after it has received all these
answers. Our architecture satisfies these properties as stated by the following two Lemmas.

Lemma 4. An agent which executes the all-answers(p) primitive does not wait for replies
of crashed agents forever.

Proof. We have to prove that âi does not wait the replies forever, even if some (or all the)
agents in S become crashed before to reply. This result holds. In fact, whenever an agent
âk ∈ S crashes, sooner or later the crash will be discovered and âi will not wait for that
answer anymore. This agent behavior follows directly from Property 1 of the failure detec-
tor component proved in Section 4.3. Indeed, when the detector aid checks ak executing
ping(ak, y) ((ii) in Fig. 7), it discovers the crash because of the transition:

ak0 | aid [ping(ak, y).P]s τ−→ ak0 | aid [P {false/y}]s
Then the detector executes the branch otherwise of its program and communicate the crash
to the facilitator by means of the updfail(ak) message. When the facilitator receives this
message, it updates the list failures adding ak ((ix) in the facilitator program of Fig. 8):

message=updfail(ak) : become(Cf , addfail(ak)) +
Therefore we are sure that sooner or later the facilitator will remove âk from the list of
agents which have to reply about p. Thus we have proved that âi does not wait replies of
crashed agents forever. �

Lemma 5. If an agent has received all the replies of correct agents, then it is able to
continue the execution of its program.

Proof. Consider the encoding of the agent primitive all-answers(p) (executed by âi) into
the algebra of actors:

[[all-answers(p)]]ai = send(aif , allanswers(âi , p)).become(C′ai)
C′ai def=

message=allanswersyes: [[Rest of the program]] +
message=allanswersno: become(Cai) +
otherwise: send(self, message).become(C′ai)

The kb-actor sends the message all-answers(âi , p) to the local facilitator aif and then it
blocks the execution of the rest of the program until it receives the allanswersyes message

N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297 293

from aif . So we have to prove that sooner or later the kb-actor will receive this message.
To show this, consider the behaviour of the facilitator (program in Fig. 8):

Cf def= · · ·
(iv) message=allanswers(self, p) ∧ testalltag(p):

send(a, allanswersyes).become(Cf , cleanalltag(p)) +
(iv2) message=allanswers(self, p) ∧ ¬testalltag(p):

send(a, allanswersno).become(Cf , deltag(p, failures)) +
· · ·

The facilitator sends the allanswersyes message if and only if testalltag(p) returns true
(iv), which means that all the agents which are not crashed or suspected have replied. Thus
there is to prove that sooner or later the predicate testalltag(p) returns true. This predicate
returns true if and only if

(P1) all the replies of correct agents have been received AND
(P2) all the replies of crashed agents are not waited forever.

Property (P1) is satisfied for hypothesis (a proof can be found in [18]). Property (P2) is
satisfied thanks to the previous lemma. In fact, if all the replies of correct agents have been
received but testalltag(p) is still false because of crashed agents, we are sure that sooner
or later all the crashes will be discovered and the predicate will return true. To show this,
consider the above facilitator program. If testalltag(p) is false (iv2) then the facilitator uses
the predicate deltag(p, failures) to remove all the agents in failures from the list of agents
which have to reply about p. The list failures is dymanically and continuously updated by
the local detector aid and the previous Lemma assures us that sooner or later the crashed
agents in S will be added to failures. Therefore, whenever all crashed agents are discovered
the predicate testalltag(p) returns true and thus the facilitator can reply allanswersyes to
the local kb-actor ai . �

Thanks to the above lemmas, our architecture satisfies the requirement (4) also for multi-
agent systems in which agents can crash. Since all the knowledge-level requirements have
been satisfied, the theorem is proved. �

6.2. Open system requirement

In this section we show that our agent’s architecture supports the open system require-
ment which establish that only registered agents can be reached through the anonymous
interaction protocol.

Suppose that an agent â is able to execute tasks which take a long time to solve. An
efficient and intelligent behaviour of that agent would be the following: â does not han-
dle directly the queries sent from other agents, but instead it creates new working agents
which serve the requests in place of it. This is a reasonable situation: the role of agent â
could be to filter the incoming requests and distribute them to the most adequate working
agents. Although they are based on the same architecture, working agents must not be
directly reachable through the anonymous interaction protocol because agent â should be
the only responsible of the tasks allocation policy. In fact, working agents cannot explicitly

294 N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297

Fig. 9. Dynamic agent creation. The dashed line shows the scope of the name of the created agent b̂: the new
agent is accessible (known) only by its creator â.

register their competence to the distributed facilitator because both their local facilitator
and detector components are not initialized.

Assume to have defined an agent primitive create(b̂, w) which creates a new working
agent with a new fresh name b̂ and a new VKB w. We require a fresh name because we
want to ensure that, at the time of creation, the name of the new agent is known only by the
agent that creates it. If we suppose that the primitive is executed by an agent â, as shown
in Fig. 9, we can specify its behaviour in the actor algebra as follows:

[[create(b̂, w)]]a = create(bf , C
f
, []).create(b, Cb, [[w]]).create(bd, C

d
, [])

where C
f def= Cf [bd/ fd-local, b/ kb-local] and C

d def= Cd [bf / fac-local].
The creation of a new working agent is translated into the algebra with the creation of

all the actors which compose the architecture of an agent. Note that the integration of these
components is realized by means of dynamic substitutions of names in the actor programs.
Note also that the facilitator actor bf is created but its state is empty. This means that it is
not fully integrated with the distributed facilitator because it does not know the names of
the other facilitators. These names are transmitted only if the facilitator is initialised ((i) in
the program of Fig. 8). However the facilitator is able to perform all its standard functions
despite being disconnected from the distributed facilitator mechanism.

Now we want to show that the anonymous interaction protocol is not able to reach the
working agent. As mentioned above, the informal semantics of the agent primitive create
requires that, at the time of creation, the name of the new agent is known only by the agent
that creates it. We call this property hiding name creation. The following Theorem states
that our encoding satisfies this property.

Theorem 6 (Hiding name creation). The encoding of the agent primitive create into the
actor algebra satisfies the hiding name creation property.

Proof. The hiding name creation property follows directly from the semantics of the actor
primitive create (Table 1). Indeed, this primitive allows to hide the name of a newly created
actor by means of the restriction operator \. This operator ensures that the name of a newly
created actor is not reachable from the external world, but only from the creating actor.
In our encoding we create a new agent by means of three create actor primitives which
build the components of an agent architecture. Therefore the only actors which are able to

N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297 295

communicate with these new ones are those of the creator agent. Then we are sure that the
new agent is only accessible (known) by its creator. �

Thus a new working agent is unreachable from the external world (as stated in the
theorem), it cannot receive messages sent from other agents. Therefore the only way for
a working agent to receive a message sent by means of an ask-everybody primitive is to
record its interests. This cannot be done by the working agent directly because the local
facilitator is not integrated with the distributed facilitator. Only the creator agent can inte-
grate the new agent in the anonymous interaction protocol. Here we do not show how this
integration can be realized and how an agent can register its interests because these issues
are out of the scope of the paper. However, readers interested in a formal specification of a
create primitive which allows new agents to register their interests can find it in [23,24].

7. Related work

In the subfield of agent research that focuses on agent architectures, various types of
agents have been proposed that facilitate the communication process in a multi-agent sys-
tem. These agents, referred to with terms like routers, mediators, brokers and so on [25],
act as intermediaries between communicating agents by providing some services. Such
facilitating activities are indispensable in the context of open multi-agent systems and in
particular in the context of knowledge-level communication. As mentioned before, in our
approach we encapsulate a distributed facilitator mechanism in the agent architecture pro-
viding both facilitating services and knowledge-level communication.

Regarding the formalization of failures and fault tolerance, we do not know works that
explicitly address the issue of formally modeling failures and failure detectors in an actor
based approach. Instead, there are many works on the possibility of modeling faults and
fault tolerance mechanisms using standard process algebras. A brief survey of the related
literature is reported in [5]. Several of these proposals share with our approach the explicit
modeling of a fault as a transition. For example, a first work on the specification and proof
of a simple fault tolerant system in CCS is done by Prasad in [26]. With the work [27]
a research line which focuses on providing a direct modeling of fault tolerance issues
started. More precisely, the focus is modeling certain relevant aspects of systems such as
the distribution of processes on different locations, the impact of failures on the behavior
of the system and their detection. In [28] Amadio pursues and improves this research line
modeling location failures and detection in a fragment of the asynchronous π-calculus.
As in our approach, Amadio follows the work of Chandra and Toueg [17] and enriches
its model with a failure detector ping which eventually allows any process to know if a
location runs or not. The differences with our approach consists in the unit of failure and
in its detection. In Amadio’s paper locations are the units of failure: a location can fail,
entailing the failure of all the processes running at it. Moreover, Amadio focuses on a
perfect failure detector, that is a failure detector that cannot make mistakes (like an oracle).
Other works that follows the line of research based on the concept of locations are [29,
30]. In [29] the authors (Riely and Hennessy) define a distributed language with location
failures which has much in common with the language developed by Amadio. The main
difference is that the language of Riely and Hennessy has no value-passing, allowing the
authors to concentrate on the effects of location failures and simplifying the statement of
some results.

296 N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297

In a recent work of Nestmann and Fuzzati [31] failure detectors are modeled using
the operational semantics. The formal framework has been successfully used to model
distributed consensus algorithms with a process calculus [32]. Following this technique a
single failure detector is directly hardcoded in the transition system, while in our approach
several failure detectors can be specified in the algebra using the ping primitive as a basic
building block. The main advantages of our approach are generality and flexibility. Firstly,
given a basic mechanism that allows actors to detect failures (for example our ping primi-
tive) we can specify all the failure detectors which use this mechanism in a single formal
framework. Secondly, a failure detector is not a black box component and can be tailored
to the needs of a specific software system or architecture, as we have shown in Section 5.
We claim that these features of our approach are particularly relevant if the purpose of the
formalism is to specify software architectures rather than discussing theoretical issues.

8. Conclusions

We have presented an algebra of actors extended with mechanisms to model crash fail-
ures and their detection. We have shown that this algebra can be used to describe a fault
tolerant software architecture specifying its main components as actors and connecting
them. We have presented simple connectors which allows to integrate actor specifications
of architectural components linking their names. We have shown that these assembled
components satisfy our design requirements assuming the correctness of the components
when considered in isolation. All this process has been illustrated by means of a case study:
the design of an agent architecture for supporting anonymous interaction.

Our future work will concern the study of more expressive connectors among compo-
nents. For example we would like to express more formally a “state export” operation by
means of an adequate connector, generalizing the technique described in Section 5.2.3 to
integrate the failure detector with the facilitator component. Moreover we would like to
explore more severe failure models to detect and single out communication failures among
components.

Acknowledgement

The authors would like to thank Gianluigi Zavattaro for his contribution in the develop-
ment and presentation of the algebra of actors.

References

[1] P. Harmon, M. Watson, Understanding UML, Morgan Kaufmann, Palo Alto, CA, 1998.
[2] B. Meyer, Systematic concurrent object-oriented programming, Journal of ACM 36 (9) (1993) 56–80.
[3] R. Milner, Communication and Concurrency, Prentice Hall, 1989.
[4] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, Information and Computation 100 (1)

(1992) 1–77.
[5] L.S.C. Bernardeschi, A. Fantechi, Formally verifying fault tolerant system designs, The Computer Journal

43 (3) (2000) 191–205.
[6] G. Agha, Actors: a Model of Concurrent Computation in Distributed Systems, MIT Press, 1986.

N. Dragoni, M. Gaspari / Journal of Logic and Algebraic Programming 63 (2005) 271–297 297

[7] M. Gaspari, G. Zavattaro, An Algebra of Actors, in: Proceedings of IFIP Conference on Formal Methods
for Open Object-based Distributed Systems (FMOODS), Kluwer Academic Publisher, 1999, pp. 3–18.

[8] R. Milner, Functions as processes, Mathematical Structures in Computer Science 2 (2) (1992) 119–141.
[9] G. Plotkin, A Structural Approach to Operational Semantics, Tech. Rep. DAIMI FN-19, Department of

Computer Science, Aarhus University, Denmark, 1981.
[10] G. Agha, I.A. Mason, S. Smith, C. Talcott, Towards a theory of actor computation, in: W.R. Cleaveland

(Ed.), Proceedings of the 3rd International Conference on Concurrency Theory (CONCUR), Lecture Notes
in Computer Science, vol. 630, Springer-Verlag, Berlin, Heidelberg, 1992, pp. 565–579.

[11] G. Agha, I.A. Mason, S.F. Smith, C.L. Talcott, A foundation for actor computation, Journal of Functional
Programming 7 (1) (1997) 1–72.

[12] C. Talcott, Interaction semantics for components of distributed systems, in: Proceedings of Formal Methods
for Open Object-based Distributed Systems (FMOODS), Chapman & Hall, 1996, pp. 154–169.

[13] C. Talcott, An actor rewriting theory, in: J. Meseguer (Ed.), First International Workshop on Rewriting Logic
and its Applications, Electronic Notes in Theoretical Computer Science, vol. 4, Elsevier, Amsterdam, 1996,
pp. 360–383.

[14] M. Gaspari, G. Zavattaro, A process algebraic specification of the new asynchronous Corba Messaging Ser-
vice, in: Proceedings of European Conference on Object Oriented Programming (ECOOP), Lecture Notes
in Computer Science, vol. 1628, Springer-Verlag, Berlin, 1999, pp. 495–518.

[15] M. Gaspari, G. Zavattaro, An actor algebra for specifying distributed systems: the hurried philosophers case
study, in: G. Agha, F. Decindio, G.Rozenberg (Eds.), Concurrent Object-Oriented Programming and Petri
Nets, Lecture Notes in Computer Science, vol. 200, Springer-Verlag, Berlin, 2001, pp. 428–444.

[16] S. Mullender, Distributed Systems, Addison-Wesley, 1993.
[17] T. Chandra, S. Toueg, Unreliable failure detectors for reliable distributed systems, Journal of ACM 43 (2)

(1996) 225–267.
[18] M. Gaspari, Concurrency and knowledge-level communication in agent languages, Artificial Intelligence

105 (1–2) (1998) 1–45.
[19] M. Gaspari, E. Motta, Symbol-level requirements for agent-level programming, in: A.G. Cohn (Ed.), Pro-

ceedings of the 11th European Conference on Artificial Intelligence (ECAI), John Wiley, Amsterdam, 1994,
pp. 264–268.

[20] T. Finin, Y. Labrou, J. Mayfield, KQML as an agent communication language, Software Agents, MIT Press,
1997, pp. 291–316.

[21] Foundation for Intelligent Physical Agents, FIPA Communicative Act Library Specification, 2001. Available
from <http://www.fipa.org/specs/fipa00037>.

[22] M. Singhal, Deadlock detection in distributed systems, IEEE Computer 22 (11) (1989) 37–48.
[23] M. Gaspari, An ACL for a dynamic system of agents, Computational Intelligence 18 (2) (2002) 102–119.
[24] N. Dragoni, M. Gaspari, Integrating agent communication languages in open services architectures, Tech-

nical Report UBLCS-2003-12, Department of Computer Science, University of Bologna, Italy, 2003.
[25] M.H. Nodine, A. Unruh, Facilitating open communication in agent systems: the InfoSleuth Infrastructure,

in: Agent Theories, Architectures, and Languages, 1997, pp. 281–295.
[26] K. Prasad, Specification and proof of a simple fault tolerant system in CCS, Technical Report CSR-178-84,

Department of Computer Science, University of Edinburgh, Scotland, 1984.
[27] R. Amadio, S. Prasad, Localities and failures, in: Proceedings of the 14th Foundations of Software Technol-

ogy and Theoretical Computer Science Conference, Lecture Notes in Computer Science, vol. 880, Springer-
Verlag, 1994, pp. 205–216.

[28] R. Amadio, An asynchronous model of locality, failure, and process mobility, in: Proceedings of COORDI-
NATION, Lecture Notes in Computer Science, vol. 1282, Springer-Verlag, 1997, pp. 374–391.

[29] J. Riely, M. Hennessy, Distributed processes and location failures, Theoretical Computer Science 266 (1–2)
(2001) 693–735.

[30] C. Fournet, G. Gonthier, J. Levy, L. Maranget, D. Remy, A calculus of mobile agents, in: Proceedings of the
7th International Conference on Concurrency Theory (CONCUR), Springer-Verlag, 1996, pp. 406–421.

[31] U. Nestmann, R. Fuzzati, Unreliable failure detectors via operational semantics, in: V.A. Saraswat (Ed.),
Proceedings of ASIAN Conference, Lecture Notes in Computer Science, vol. 2896, Springer Verlag, 2003,
pp. 54–71.

[32] U. Nestmann, R. Fuzzati, M. Merro, Modeling consensus in process calculus, in: Proceedings of the Inter-
national Conference on Concurrency Theory (CONCUR), Lecture Notes in Computer Science, vol. 2761,
Springer Verlag, 2003, pp. 393–407.

	Introduction
	An algebra of actors
	Discussion

	Failures and failure detectors
	Actor failures
	Failure detectors

	Modeling crash failures and failure detectors
	Crash failures in the actor algebra
	Detecting failures in the actor algebra
	Modeling an unreliable failure detector

	A case study: an agent architecture for anonymous interaction
	Knowledge level description
	Architectural level description

	Analysis of requirements
	Knowledge-level programming requirements
	Open system requirement

	Related work
	Conclusions
	References

