Theoretical Computer Science 131 (1994) 449–461 Elsevier

Note

On the orbits of the product of two permutations

A. Bergey and R. Cori

Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, Unité associée CNRS 1304, 351 cours de la Libération, F-33405 Talence Cedex, France

Communicated by M. Nivat Received December 1992 Revised December 1993

Abstract

Bergey, A. and R. Cori, On the orbits of the product of two permutations, Theoretical Computer Science 131 (1994) 449-461.

We consider the following problem: given three partitions A, B, C of a finite set Ω , do there exist two permutations α and β such that A, B, C are induced by α, β and $\alpha\beta$ respectively? This problem is NP-complete. However it turns out that it can be solved by a polynomial time algorithm when some relations between the number of classes of A, B, C hold.

1. Introduction and notation

A permutation α of a set Ω induces a partition A of Ω defined by the orbits of α . We are interested in the existence of permutations α, β on a finite set Ω such that α, β and $\gamma = \beta \cdot \alpha$ induce three given partitions A, B and C on Ω .

If we only take into account the length of the orbits of α , β and γ , while ignoring their elements, this problem is a classical one in symmetric group algebra theory [11]. Brenner and Lyndon [3] examined this problem in detail when γ is transitive (i.e. a circular permutation). Similar problems were studied by Bertram in [1], who characterized the integer *l* for which any even permutation could be represented as the product of two cycles of length *l*. Boccara gave a generalization to products of two cycles of different length [2].

Correspondence to: A. Bergey, Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, Unité associée CNRS 1304, 351 cours de la Libération, F-33405 Talence Cedex, France.

0304-3975/94/\$07.00 © 1994—Elsevier Science B.V. All rights reserved SSDI 0304-3975(94)00024-D

Here we consider the partitions defined by the orbits of α , β and γ rather than merely the types of these partitions. This is a more selective problem. This question was considered in the planar case [12].

A nondirected graph G embedded in an orientable surface can be represented by a couple (α, β) of permutations (where β is an involution without fixed point); the *faces* are defined by the orbits of the product $\beta\alpha$.

In this framework, it is possible, when all classes of B have two elements, to state our problem in terms of graph theory: Given a set E of edges, let 2E be the set obtained by duplicating each element of E and let A and C be two partitions of 2E. Does there exist a graph G = (V, E) and an embedding of G in an orientable manifold such that each class of A consists of the edges incident with a given vertex and each class of C consists of the edges bording a given face? Note that, since the number of vertices, edges and faces is given by A, B and C the genus of the embedding can be obtained by Euler formula.

When the classes of B have an arbitrary number of elements, a similar translation can be obtained for our problem (see below).

In the following we prove that *PPP* is NP-complete if no additional hypothesis are made for *A*, *B* and *C*. However a polynomial time algorithm solves the problem if $||A|| + ||B|| + ||C|| = |\Omega| + 2$ (planar case) and if ||C|| = 1 ($\alpha\beta$ -transitive case).

In Section 2 we study the general problem, and in Section 3 its computational complexity. Then we specialize to the planar case and that in which $\alpha\beta$ is transitive. The notation we use is the following:

 Ω is a finite set of elements called *darts*. $|\Omega|$ is the cardinality of Ω .

[n] is the set of integers from 1 to n.]n, m] represents the set of integers from n + 1 to m; if $m \le n$, this set is empty.

 α, β, γ are permutations of Ω . $z(\alpha)$ is the number of cycles of α . $\beta \cdot \alpha$ or $\beta \alpha$ is the composition of the permutation α and β . Products are written from right to left: $\beta \alpha(x) = (\beta \alpha)(x) = \beta(\alpha(x))$.

A, B, C and D are partitions of Ω . part(α) is the partition of Ω induced by the orbits of α . a is a block or class of A, ||A|| is the number of classes in A. Two partitions A and B of Ω induce a hypergraph G whose vertices and hyperedges are classes a_i and b_j respectively. A vertex a_i is incident to the hyperedge b_j if $a_i \cap b_j \neq \emptyset$.

In this notation our problem *PPP* is as follows: Given three partitions *A*, *B* and *C* of a set Ω , are there permutations α and β such that $part(\alpha) = A$, $part(\beta) = B$ and $part(\beta\alpha) = C$? Note that the answer is the same if the roles of *A*, *B* and *C* are exchanged because $part(\alpha) = part(\alpha^{-1})$ and $\beta\alpha = \gamma \Rightarrow \alpha = \gamma\beta^{-1}$. *PPP*₂ is a *PPP*-problem where *C* is a bipartition (i.e. it consists of two blocks c_1 and c_2).

2. General facts

Considerations of the parities of α , β and $\beta \alpha$ leads to:

PPP has a solution only if $|\Omega| \equiv ||A|| + ||B|| + ||C|| \mod 2$.

Fig. 1. Modifying α and β .

Proof. α, β and γ have the same parities as $|\Omega| - ||A||$, $|\Omega| - ||B||$ and $|\Omega| - ||C||$ respectively. Moreover $\gamma = \beta \alpha$ has the same parity as $2|\Omega| - ||A|| - ||B||$ because it is the product of α by β . Thus $(|\Omega| - ||C||) \mod 2 \equiv (||A|| + ||B||) \mod 2$ or equivalently $|\Omega| \mod 2 \equiv (||A|| + ||B|| + ||C||) \mod 2$. \Box

Let G be the hypergraph induced by the partitions A and B of a problem P. If P has a solution, then the partition $C = part(\beta \alpha)$ defines the faces of the combinatorial hypermap (Ω, α, β) . The genus $g = 1/2(|\Omega| - (||A|| + ||B|| + ||C|| - 2))$ of such an hypermap is proved to be a positive integer in [10]. It defines the genus of the surface in which G is embedded. Thus if P has a solution there is an embedding of G on a surface of genus g, and if G is connected then P has a solution only if $|\Omega| \ge ||A|| + ||B|| + ||C|| - 2$. If we have all the embeddings of G with genus g, then we can solve P checking the faces of every embedding of G.

In order to solve P we could imagine an incremental method. Let P be a problem for which we got a solution (α, β) and let P' the problem we are trying to solve. When there is some relationship between P and P' we have a solution for P'. This is the content of the following lemmas.

Lemma 2.1. Given the PPP-problem $P = (\Omega, A, B, C)$ and blocks $a \in A$, $b \in B$ and $c \in C$ satisfying the mild condition that $a \cap b \cap c \neq \emptyset$, we can create a new PPP-problem $P' = (\Omega', A', B', C')$ where Ω' is Ω with the addition of two new elements; and A', B' and C' are partitions of Ω' formed from A, B and C by adding the two new elements to the blocks a, b and c respectively. If P has a solution (α, β) , then P' has a solution (α', β') .

Proof. Without loss of generality, $\Omega = [n]$ and $\Omega' = [n+2]$. Let $x \in a \cap b \cap c$. We define α' by $\alpha'(x) = n+1$, $\alpha'(n+1) = n+2$, $\alpha'(n+2) = \alpha(x)$, $\alpha'(y) = \alpha(y)$ if $y \neq x$; and we define β' by $\beta'(\beta^{-1}(x)) = n+1$, $\beta'(n+1) = n+2$, $\beta'(n+2) = x$ and $\beta'(y) = \beta(y)$ if $y \neq \beta^{-1}(x)$ (see Fig. 1).

Thus $A' = part(\alpha)$ and $B' = part(\beta')$. The values of $\beta\alpha(y)$ induced by changing from (α, β) into (α', β') are modified only for y = x and $y = \alpha^{-1}\beta^{-1}(x)$.

If $\alpha^{-1}\beta^{-1}(x) = x$ ($\beta\alpha(x)$ is the only element in c), then $\beta'\alpha'(x) = \beta'(n+1) = n+2$, $\beta'\alpha'(n+2) = \beta'(x) = n+1$, $\beta'\alpha'(n+1) = \beta'(n+2) = x$; so we inserted n+1 and n+2 in the $\beta\alpha$ -orbit of x. If $\alpha^{-1}\beta^{-1}(x) \neq x$ $(\alpha(x) \neq \beta^{-1}(x))$, then $\beta'\alpha'(\alpha^{-1}\beta^{-1}(x)) = \beta'\beta^{-1}(x) = n+1$, $\beta'\alpha'(n+1) = \beta'(n+2) = x$, $\beta'\alpha'(x) = \beta'(n+1) = n+2$, $\beta'\alpha'(n+2) = \beta'(\alpha(x)) = \beta\alpha(x)$ because $\alpha(x) \neq \beta^{-1}(x)$; here as well we inserted n+1 and n+2 on both sides of x in its $\beta\alpha$ -orbit.

Thus, $C' = part(\gamma')$.

Note: The converse is false. For instance, problem P defined by $\Omega = [5]$, $A = \{\{1, 2, 3\}, \{4, 5\}\}, B = \{\{1, 2\}, \{3, 4, 5\}\}$ and $C = \{\Omega\}$ does not have a solution but $(\alpha': (1, 6, 2, 3, 7)(4, 5), \beta': (1, 2)(3, 5, 7, 4, 6))$ is a solution to problem P' defined by $\Omega' = [7], A' = part(\alpha'), B' = part(\beta')$ and $C' = \{\Omega'\}$.

Lemma 2.2. Let $P = (\Omega, A, B, C)$ be a PPP-problem such that A contains distinct blocks a_1 and a_2 , B and C contains blocks b and c, respectively, such that $a_1 \cap b \cap c \neq \emptyset$ and $a_2 \cap c \neq \emptyset$. Let $P' = (\Omega', A', B', C')$ where Ω' has two new elements, both of which are added to b and c and each one is added to a_1 and a_2 (with A, B and C otherwise unchanged). If there is a solution (α, β) of P, then problem P' has a solution (α', β') .

If B contains distinct blocks b_1 and b_2 , A and C contains blocks a and c such that $a \cap b_1 \cap c \neq \emptyset$ and $b_2 \cap c \neq \emptyset$, and $\Omega = [n]$. Let $P'' = (\Omega'', A'', B'', C'')$ where Ω'' has two new elements both of which are added to a and c and each one is added to b_1 and b_2 (with A, B and C otherwise unchanged). If there is a solution (α, β) of P, then there is a solution (α'', β'') of P''.

Proof. As we can exchange the role of partitions A, B and C, we shall only prove the first part of lemma.

We suppose $\Omega = [n]$ and $\Omega' = [n+2]$. Let $x \in a_1 \cap b \cap c$ and $y \in a_2 \cap c$. Then α' is defined as follows: $\alpha'(x) = n+1, \alpha'(n+1) = \alpha(x), \alpha'(y) = n+2, \alpha'(n+2) = \alpha(y)$ and $\alpha'(z) = \alpha(z)$ if $z \notin \{x, y\}$. β' is defined as follows: $\beta'(\beta^{-1}(x)) = n+1, \beta'(n+1) = n+2, \beta'(n+2) = x$, and $\beta'(z) = \beta(z)$ if $z \neq \beta^{-1}(x)$. We have $A' = part(\alpha')$ and $B' = part(\beta')$ as desired. Now it suffices to show $C' = part(\beta'\alpha')$.

Note that $\alpha^{-1}\beta^{-1}(x) \neq x$ since x and y are in the same orbit of $\beta\alpha$. Moreover, if $u \notin \{x, y, \alpha^{-1}\beta^{-1}(x)\}$, we have $\beta'\alpha'(u) = \beta\alpha(u)$.

There are two cases to be considered.

Case a: If $\alpha^{-1}\beta^{-1}(x) = y$, then $\beta'\alpha'(\alpha^{-1}\beta^{-1}(x)) = \beta'\alpha'(y) = \beta'(n+2) = x$; $\beta'\alpha'(x) = \beta'(n+1) = n+2$; $\beta'\alpha'(n+2) = \beta'\alpha(y) = \beta'\beta^{-1}(x) = n+1$; $\beta'\alpha'(n+1) = \beta'\alpha(x) = \beta\alpha(x)$ because $\beta\alpha(x) \neq x$.

In the $\beta'\alpha'$ -orbit of x and y, the sequence $y \rightarrow x \rightarrow \beta\alpha(x)$ has become $y \rightarrow x \rightarrow n+2 \rightarrow n+1 \rightarrow \beta\alpha(x)$.

Case b: If $\alpha^{-1}\beta^{-1}(x) \neq y$, then $\beta'\alpha'(\alpha^{-1}\beta^{-1}(x)) = \beta'\beta^{-1}(x) = n+1$; $\beta'\alpha'(n+1) = \beta'\alpha(x) = \beta\alpha(x)$; $\beta'\alpha'(x) = \beta'(n+1) = n+2$; $\beta'\alpha'(n+2) = \beta'\alpha(y) = \beta\alpha(y)$; $\beta'\alpha'(y) = \beta'(n+2) = x$. Now we have $\alpha^{-1}\beta^{-1}(x) \to n+1 \to \beta\alpha(x)$ and $y \to x \to n+2 \to \beta\alpha(y)$ instead of $\alpha^{-1}\beta^{-1}(x) \to x \to \beta\alpha(x)$ and $y \to \beta\alpha(y)$.

In both cases, n+1 and n+2 are inserted in the $\beta\alpha$ -orbit of x and y (see Fig. 2). Thus $C' = part(\beta'\alpha')$.

Fig. 2. Addition of two elements in a $\beta \alpha$ orbit.

3. Computational complexity of problem PPP

It is obvious that $PPP \in NP$: a guess (α, β) can be checked in polynomial time and space. The PPP_2 -problem is shown to be NP-complete by reduction of the classical problem of existence of a hamiltonian circuit in directed graphs (*DHC*). This problem can be stated as follows: given a directed graph G, is there a simple directed circuit in G which passes through all the vertices?

3.1. Construction of the PPP2-problem associated with a given DHC-problem

A directed graph G is definite by a quadruple (V, E, out, in) where V is the set of vertices, E is the set of edges; and out and in are functions that associate with each

vertex the set of edges leaving and entering it. Let s be a vertex of a graph, and let deg(s) = |out(s)| be the number of edges leaving s. The edge e is linking vertex s_i to vertex s_i if and only if $e \in out(s_i)$ and $e \in in(s_i)$.

Let G(V, E, out, in) be a graph with *n* vertices $V = \{s_1, s_2, ..., s_n\}$ and *m* edges. To each vertex *s* define dl(s) = deg(s) - 1 if $deg(s) \ge 1$, and dl(s) = 0 if deg(s) = 0. dl(s) represents the number of choices at *s* when building a hamiltonian circuit. For example, if dl(s) = 1, there is a single choice between two possible edges to explore from *s*.

Let $d = \sum_{i=1}^{n} dl(s_i)$, $s_i \in V$. Usually d = |E| - |V| except if there is a vertex s of G without any outgoing edges, in which case there are no hamiltonian circuits.

Let $D = \{d_1, d_2, ..., d_n\}$ be a partition of [d] into *n* blocks given by $d_1 = [dl(s_1)]$, $d_i =]\sum_{j=1}^{i-1} dl(s_j), \sum_{j=1}^{i} dl(s_j)]$ if $i \neq 1$. In this way, we have $dl(s_i)$ darts in a set d_i for each vertex s_i .

Now we can associate with a DHC-problem H a corresponding PPP_2 -problem $P = (\Omega, A, B, C)$:

 $\Omega = V \cup E \cup [d], A = \{a_1, a_2, \dots, a_n\} \text{ where } a_i = \{s_i\} \cup out(s_i) \cup d_i, B = \{b_1, b_2, \dots, b_n\}$ where $b_i = \{s_i\} \cup in(s_i) \cup d_i, C = \{c_1, c_2\}$ where $c_1 = V$ and $c_2 = E \cup [d]$.

Note that if the original graph G has n vertices and m edges, the size of the new problem is of O(n, m).

Lemma 3.1. If the PPP-problem P associated with a DHC-problem H has a solution, then H has a solution.

Proof. Clearly, $\beta \alpha$ maps vertices to vertices, all of them being in the orbit c_1 of $\beta \alpha$. Let s_i and s_j be vertices such that $\beta \alpha(s_i) = s_j$. Then $\alpha(s_i) \in out(s_i)$ because the other possibility $(\alpha(s_i) \in d_i)$ is incompatible with $\beta(\alpha(s_i)) = s_j$ $(s_j \notin \beta(d_i))$. Thus $\alpha(s_i)$ is an edge from vertex s_i to vertex s_j . Then $(\alpha(s_1), \alpha\beta\alpha(s_1), \alpha(\beta\alpha)^2(s_1), \ldots, \alpha(\beta\alpha)^{n-1}(s_1))$ gives the sequence of edges of a hamiltonian circuit in G. \Box

Lemma 3.2. If a DHC-problem H has a solution, then the associated PPP-problem P has a solution.

Proof. We shall proceed by successive additions of darts in order to build a solution (α, β) . Starting with a solution (α^0, β^0) of a problem P^0 ; we add edges two at a time (using the lemmas of Section 2) to have a solution of problem $P^d = P$ after d steps.

Let *CH* be the set of edges of some hamiltonian circuit in *G*. We consider the problem $P^0 = (\Omega^0, A^0, B^0, C^0)$ where $\Omega^0 = V \cup CH$, $A^0 = \{a_1^0, a_2^0, ...\}$, $B^0 = \{b_1^0, b_2^0, ...\}$, $C^0 = \{c_1^0, c_2^0\}$ with $c_1^0 = V$, and $c_2^0 = CH$, while $a_i^0 = \{s_i, e_{ij}\}$ and $b_j^0 = \{s_j, e_{ij}\}$ for all $e_{ij} \in CH$.

The remainder of the proof of this lemma is based on the following three propositions whose proofs are immediate. **Proposition 3.3.** Define two permutations α^0 , β^0 of Ω^0 by $\alpha^0(s_i) = e_{ij}$ and $\alpha^0(e_{ij}) = s_i$, $\beta^0(s_i) = e_{ki}$ and $\beta^0(e_{ki}) = s_i$. Then (α^0, β^0) is a solution of problem P^0 . Moreover $a_i^0 \subseteq a_i$, $b_i^0 \subseteq b_i$ and $c_i^0 \subseteq c_i$ for all *i*.

For every vertex s_i , $dl(s_i)$ edges and $dl(s_i)$ elements of d_i not in Ω^0 remain to be added. With each edge $e_{ij} \notin CH$ we associate a dart $u_{ij} \notin d_i$. We shall add both e_{ij} and u_{ij} . Problem P^{p+1} is defined in terms of problem P^p : $\Omega^{p+1} = \Omega^p \cup \{e_{ij}, u_{ij}\}$; $a_i^{p+1} = a_i^p \cup \{e_{ij}, u_{ij}\}, a_j^{p+1} = a_j^p$ if $j \neq i$; $b_i^{p+1} = b_i^p \cup \{u_{ij}\}, b_j^{p+1} = b_j^p \cup \{e_{ij}\}, b_k^{p+1} = b_k^p$ if $k \notin \{i, j\}; c_1^{p+1} = c_1^p, c_2^{p+1} = c_2^p \cup \{e_{ij}, u_{ij}\}.$

Proposition 3.4. If P^p has a solution, then P^{p+1} has a solution.

This is immediate using Lemma 2.2.

Proposition 3.5. The property $a_i^{p+1} \subseteq a_i$, $b_i^{p+1} \subseteq b_i$, $c_i^{p+1} \subseteq c_i$ (of Proposition 3.3), is invariant under the addition of $\{e_{ij}, u_{ij}\}$.

Thus we have (α^0, β^0) a solution of problem P^0 , then a sequence of (α^i, β^i) , solutions of a sequence of problems P^i . After *d* additions we get (α^d, β^d) , a solution of problem $P^d = P$, derived problem from *H*. This proves Lemma 3.2.

Theorem 3.6. *PPP*₂ is NP-complete.

Proof. Lemmas 3.1 and 3.2 show that PPP_2 is equivalent to DHC.

4. Solving the problem when ||C|| = 1

A pair of partitions (A, B) defines a *bipartite graph* $G_{A,B}$, it has the blocks of A and B as vertices, and an edge between $a \in A$, $b \in B$ if $a \cap b \neq \emptyset$.

A block x of a partition A, B or C of a problem P will be called a vertex, hyperedge or face of P respectively. A face c is said to be incident to a block x of A or B if $x \cap c \neq \emptyset$.

If P (with || C || = 1) has a solution, $\beta \alpha$ has one orbit. This translates in the fact that the graph $G_{A,B}$ can be embedded with one face in a surface of maximum genus. Xuong gives in [14] a criterion for the existence of such an embedding. Moreover, a polynomial time algorithm using this criterion was recently published [6].

Let $P = (\Omega, A, B, C)$ be a *PPP*-problem with $\Omega = [n]$ and $C = \{\Omega\}$.

Let decn be the function $decn(S) = \{s+n: s \in S\}$ on sets of integers.

Let $P' = (\Omega', A', B', C')$ the *PPP*-problem defined by $\Omega' = [2n], A' = A \cup \{decn(b): b \in B\}, B' = \{\{1, n+1\}, \{2, n+2\}, \{3, n+3\}, ..., \{n, 2n\}\}, and C' = \{\Omega'\}.$

Lemma 4.1. P accepts a solution if and only if P' has a solution.

Proof. (Only if) Let (α, β) be a solution of *P*. We define $\alpha'(x) = \alpha(x)$ if $x \le n$, $\alpha'(x) = \beta(x-n) + n$ otherwise. Note that $\beta'(x) = n + x$ if $x \le n$ and $\beta'(x) = x - n$ if x > n. Let us compute the orbits of $\beta'\alpha'$. If $x \le n, \beta'\alpha'(x) = \beta'(\alpha(x)) = \alpha(x) + n$, $\beta'\alpha'(\alpha(x) + n) = \beta'(\beta\alpha(x) + n) = \beta\alpha(x)$, therefore $(\beta'\alpha')^2(x) = \beta\alpha(x)$. We have a $\beta'\alpha'$ -orbit which contains [n] and such that the element following an $x \le n$ is greater than *n*. This orbit passes through [2n], thus (α', β') is a solution of *P'*.

(If) Let (α', β') be a solution of P'. Since β' is necessarily given by $\beta'(x) = n + x$ if $x \le n$ and $\beta'(x) = x - n$ if x > n, the $\beta'\alpha'$ -orbit alternately meets an element of [n] and an element of [n, 2n]. For $x \le n$ we set: $\alpha(x) = \beta'\alpha'(x) - n$ and $\beta(x) = \beta'\alpha'(x+n)$. Thus $\beta\alpha(x) = \beta(\beta'\alpha'(x) - n) = (\beta'\alpha')^2(x)$. So we have in the $\alpha\beta$ -orbit one element out of two which were in the $\alpha'\beta'$ -orbit. These elements are less or equal to n. Thus (α, β) is a solution of P. \Box

Theorem 4.2. If ||C|| = 1 then we can solve P while using polynomial time and space.

Proof. Lemma 4.1 says in this situation that every hypergraph is equivalent to a bipartite graph and vice versa. So we can find a solution using Furst, Gross and McGeoch's algorithm [6] for maximum genus embedding of $G'_{A',B'}$, the bipartite graph associated with P'. P has a solution if and only if there is such an embedding with one face of $G'_{A',B'}$. Thus we can answer in polynomial time (and space) when ||C|| = 1. \Box

We saw in Theorem 3.6 that the *PPP*-problem is NP-complete, in particular when ||C|| = 2. But embedding a graph in a maximum genus surface (even with two faces) is polynomial. There is no contradiction, since we impose elements of faces in our problem; if ||C|| = 1, both are equivalent, because darts are necessarily all in the same face.

A theorem of Xuong says that if the graph G has an embedding of maximum genus, then $G' = G \cup \{u, v\}$ (where u and v are new edges satisfying some technical property) has also an embedding of maximum genus. Using Lemma 4.1, adding two new adjacent edges in a bipartite graph is like adding two darts in the associated hypermap. Lemmas 2.1 and 2.2 (which allow us to add two darts to a problem P) are weaker than Xuong's theorem; but Xuong's theorem does not take into account the membership of edges to blocks C_i as we do. As above, this is not important.

5. The planar case

The problem P = (A, B, C) is said to be planar if $||A|| + ||B|| + ||C|| = |\Omega| + 2$. In the following we consider a planar problem P.

A circuit on a class c is an order $(x_1, x_2, ..., x_k)$ on the k darts of c such for all i there is a dart x'_i such x_i and x'_i are in the same block of A and x'_i and x_{i+1} (where x_{k+1} is to be interpreted as x_1) are in the same class of B.

A necessary condition for P to have a solution is that we can find a circuit for every block c. If all classes of B have two darts (G is a graph) and when moreover the problem P is planar, this condition becomes sufficient [12]. Let us recall the proof Machí gave. A permutation Π such $part(\Pi) = C$ is defined by circuits on blocks of C. Let β be the involution defined by partition B. $\Pi\beta$ defines a permutation whose cycles are included in the blocks of A. Let $(\beta(l), k_l, ...)$ be a cycle of Π where $l \in \Omega$. Thus $\Pi\beta(l) = \sigma(l) = k_l$ and the definition of a circuit implies that k_l and l are in the same block a_l of A. So we have $z(\Pi\beta) \ge ||A||$. As G is connected we also have $z(\beta) + z(\Pi) + z(\Pi\beta) \le n+2$. Thus $n+2 = ||A|| + ||B|| + ||C|| \le z(\Pi\beta) + z(\beta) + z(\Pi) \le n+2$. Hence $(\Pi\beta, \beta)$ is a solution of P.

This is false when there is no condition on B. We can easily check that the problem defined by:

$$A = \{\{1, 2, 3, 4\}, \{5, 6, 7\}, \{8, 9, 10\}\},\$$

$$B = \{\{1, 6, 9\}, \{3, 7\}, \{2, 8\}, \{4, 5, 10\}\},\$$

$$C = \{\{6, 10\}, \{4, 7\}, \{1, 8\}, \{2, 9\}, \{3, 5\}\}\}$$

has no solution while we can find a circuit on elements for each cycle of C.

Theorem 5.1. If P is planar and each class of B contains two elements then we can solve P in polynomial time and space.

Proof. First we note that the permutation β is determined by partition *B*. By the remark above, we only have to find a circuit on darts for each class c_i to find a solution to *P*.

Let G be the directed graph such that each vertex s_i of G is associated with a block a_i of A and such that there is an edge e from s_i to s_j if and only if there is a dart $x \in a_i$ and $\beta(x) \in a_j$. Thus, each edge $e \in G$ is associated with a dart x of P.

Now let G_i be the graph G restricted to the edges associated with darts of c_i . We have a circuit on darts of c_i if and only if the graph G_i is eulerian. We can build graphs G and G_i in polynomial time and space (there are at most n/2 graphs G_i).

For each G_i , we count the edges leaving and entering each vertex s in G_i , check that deg(s) = |in(s)| for all s, and that G_i is connected. Obviously this is done in polynomial time and space. \Box

Recall that a graph is 3-connected if it is connected and it remains connected after any deletion of two vertices.

Lemma 5.2. If P is planar and the graph $G_{A,B}$ is 3-connected, then there is a linear algorithm which solves P.

Proof (*sketch*). A theorem of Whitney [8] states that there are only two ways (one inverse of the other) to embed a 3-connected graph in the plane. If such an embedding exists and if its faces induce partition C, problem P has a solution.

In this case, we only need to find the embedding of $G_{A,B}$ in the plane using the algorithm of Hopcroft and Tarjan [9] (which is of O(V)) and then to check that the faces satisfy $C = part(\beta \alpha)$. Thus we can answer in $O(|\Omega|)$.

To prove the next lemma we use the decomposition tree \mathcal{T} of a graph G used in [5] in order to test planarity dynamically. This tree can be built in $O(n \log(n))$ and reflects the decomposition of G into its 3-connected components. Let us recall this technique.

With each node v of \mathcal{T} there is associated a subgraph G_v of G and a graph μ_v , the *skeleton* of v. μ_v is a *planar st-graph*, that is a planar acyclic directed graph with exactly one source s and exactly one sink t. Each son of v is associated with an edge of μ_v . There are four types of nodes in \mathcal{T} .

- If G_v is a single edge from s to t: v is a Q-node (without sons) whose skeleton μ_v is G_v .
- If G_v is 1-connected with cut-vertices (hyperedges) $s_1, s_2, ..., s_{k-1}$ from s to t: v is a S-node whose skeleton μ_v is a chain of k edges from s to t. v has k sons i whose associated hypergraphs G_i are 2-connected.
- If s and t is a separation pair of G_v with split components $G_1, G_2, ..., G_k$: then v is a P-node whose skeleton consists of k parallel edges from s to t. v has k sons i (whose associated hypergraphs are split components G_i).
- If none of the above cases applies: let the k maximal split pairs (s_i, t_i) with split components G_i ; v is an R-node whose skeleton is obtained from G_v by replacing each subgraph G_i with an edge e_i . v has k sons i which are not Q-node with associated hypergraphs G_i . For any node of \mathcal{T} , s and t must lie on the same face, so we can consider skeleton μ of an R-node as a 3-connected graph, adding an edge from s to t.

Lemma 5.3. If P is planar and the graph $G_{A,B}$ defined by A and B is 2-connected then we can solve P in polynomial time and space.

Proof (*sketch*). In order to obtain \mathcal{T} , and to check $G_{A,B}$ for planarity, we use the algorithm presented in [5].

First we shall associate a *PPP*-problem P_v to each node v of \mathcal{T} . Let $P = (\Omega, A, B, C)$ and $\Omega' \subset \Omega$; we define $P' = (\Omega', A', B', C')$ the subproblem of P where $A'_i = \{b \in \Omega' \cap A_i\}$, $B'_i = \{b \in \Omega' \cap B_i\}$ and $C'_i = \{b \in \Omega' \cap C_i\}$. G_v , P_v and c_v refer to a current node v. P_r is an extra subproblem associated to v if v is a R-node. $G_{i(j)}$, $P_{i(j)}$ and $c_{i(j)}$ refer to a son i(j)of v. P is associated with the root of \mathcal{T} .

- If v is a S-node we define the subproblems $P_i = (\Omega_i, A_i, B_i, C_i)$ of P_v where Ω_i is the set of darts of G_i . A face $c_i \neq \emptyset$ of P_i which is not equal to the corresponding face c_v of P_v is called *external*.

- If v is a P-node, let the intermediate subproblems P'_i be defined as above. If i is not a Q-node, then we get the corresponding subproblem P_i by merging all the faces of P'_i that are incident to s and t or that are not equal to the corresponding face c_v ; this new merged face is called *external*.
- If v is an R-node with k sons we define the subproblems P_i in the same way as for a P-node.

We define an extra subproblem $P_r = (\Omega_r, A_r, B_r, C_r)$ where Ω_r is the set of darts of Q-nodes; a_k and b_k are A_v and B_v restricted to the darts of Ω_r ; c_k is C_v restricted to Ω_r where we merge the faces c_v that are incident to one and the same split pair (s_i, t_i) or whose darts of the corresponding face c_v are in a subproblem P_i and in another subproblem P_j . Thus we get at most k new external faces of P_r .

Let (A_{μ}, B_{μ}) be the representation of the skeleton μ_r obtained from (A_r, B_r) by adding: a dart b_i to the classes associated with a separation pair (s_i, t_i) when s_i and t_i are one vertex and one hyperedge; a dart b_s and b_t to vertices (hyperedges) s_i and t_i respectively, while creating a new hyperedge (vertex) $\{b_s, b_t\}$ if s_i and t_i are both vertices or hyperedges. We do this also for the source s_v and the sink t_v of the hypergraph G_v . Each additional dart (or couple of darts) is associated with one virtual edge of the skeleton μ_r . In this way the graph G_r defined by (A_r, B_r) is a subgraph of the skeleton μ_r .

Now we have decomposed the original problem P into subproblems. The following propositions (whose proofs are technical but straightforward) will be helpful in the sequel.

Proposition 5.4. If v is a S-node then P_v has a solution if:

(1) each subproblem P_i has a solution;

(2) for all *i* there is exactly one external face of P_i , and this face is incident to cut-vertices (hyperedges) (s_{i-1}, s_i) ;

(3) there is exactly one face c_v of P_v whose darts are in the external faces c_i of problems P_i .

Proposition 5.5. If v is P-node with k sons, then P_v has a solution if:

(1) each subproblem P_i has a solution;

(2) for all *i* which is not a Q-node, the external face c_i results in the merging of exactly two faces of the intermediate subproblem P'_i ;

(3) there are at most k faces of P whose darts are in different faces c_i of problems P_i .

Proposition 5.6. If v is an R-node with k sons, then P_v has a solution if:

(1) the extra subproblem P_r and each subproblem P_i have a solution;

(2) for all *i* which is not a Q-node, the external face c_i results in the merging of at most two faces of the intermediate subproblem P'_i ;

(3) there are exactly two faces of P_v incident to a split pair (s_i, t_i) which gives one external face in P_i and one merged face in P_r .

Fig. 3. Merging hyperedges and vertices of subgraphs G_i of a S-node while merging external faces of P_i .

Now we scan the tree \mathscr{T} from leaves to root. We solve P_v of a node v when we have a solution for all P_i of sons i of v. We obtain (α_p, β_p) merging vertices and hyperedges as in Fig. 3. A solution of P_v only depends on a solution of P_i (and also on a solution of P_r if v is an *R*-node). In this way we obtain a solution of P, the original problem associated to the root of \mathscr{T} .

All the subproblems P_v associated to Q-nodes which are leaves of \mathcal{T} obviously have a solution.

- For a S-node v we solve P_v by merging vertices and hyperedges (of the k subproblems P_i) associated to cut-vertices (hyperedges) s_0, s_1, \ldots, s_k of G_v , and by merging external faces c_i into the corresponding face c_v . If this is not a solution of P_v then stop.

- For a *P*-node v we shall merge vertices and hyperedges associated to a split pair (s, t) of a subproblem P_i and a subproblem P_j if their external faces share darts with the same face c_v (as we did for a S-node). We do this until we have merged all the subp5roblems P_k . If this is not a solution of P_v then stop.
- For a *R*-node *v*, first we try to solve the extra subproblem P_r of *v*, (finding a planar embedding of the 3-connected skeleton μ_r and then removing darts associated with virtuals edges gives a guess to P_r). Then we merge the vertices and the hyperedges (as for a *S*-node) associated with split pair (s_i, t_i) of a subproblem P_i and of extra subproblem P_r of node *v*. If this is not a solution of P_v then stop.

The tree \mathscr{T} is built in polynomial time and space. We can easily label each node v with his subproblem or extra subproblem v in linear time and space. Each condition (1), (2) and (3) of Propositions 5.4, 5.5 and 5.6 can be checked in polynomial time. Subproblems for a Q-node are obvious. For a node of another type, merging the subproblems P_i and checking if it is a solution takes polynomial time and space. \Box

Theorem 5.7. If P is planar then there is a polynomial algorithm which solves P.

Proof (*sketch*). Let $G_{A,B}$ the graph defined by (A, B) with k 2-connected components. We can obtain the cut-vertices (hyperedges) s_i of G in linear time and space [13]. We define k subproblems P_i and subgraphs G_i in the same way as we defined P_i and G_i for a S-node. Now we solve k subproblems P_i (where G_i is biconnected), merge them into the problem P as in the proof of the previous theorem. \Box

References

- E. Bertram, Even permutations as a product of two conjugates cycles J. Combin. Theory Ser. A 12 (1972) 368-380.
- [2] G. Boccara, Nombre de représentations d'une permutation comme produit de deux cycles de longueurs données, Discrete Math. 29 (1980) 105-134.
- [3] J.L. Brenner and R.C. Lyndon, The orbits of the product of two permutations, European J. Combin. 4 (1983) 279-293.
- [4] R. Cori and A. Machí, Maps and hypermaps I, II, III, a survey: Exposition. Math. 10 (1992) 403-467.
- [5] G. Di Battista and R. Tamassia, Incremental planarity testing, Proc. 30th IEEE Symp. on Foundations of Computer Science (1989) 436-441.
- [6] M.L. Furst, J.L. Gross and L.A. McGeoch, Finding a maximum genus of a graph imbedding, J. ACM 35 (1988) 523-534.
- [7] M.R. Garey and D.S. Johnson, Computer and Intractability, A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
- [8] J.L. Gross and T.W. Tucker, Topological Graph Theory (Wiley/Interscience, New York, 1990).
- [9] J. Hopcroft and R. Tarjan, Efficient planarity testing, J. ACM 21 (1974) 549-568.
- [10] A Jacques, Sur le genre d'une paire de substitutions, C.R. Acad. Sci. Paris A 267 (1968) 625-627.
- [11] I.G. McDonald, Symmetric Functions and Hall Polynomials (Clarendon Press, Oxford, 1979).
- [12] A. Machí, Maps associated with given partitions, Actes de la fête des mots, Rouen (1982).
- [13] R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146-160.
- [14] N.H. Xuong, How to determine the maximum genus of a graph. J. Combin. Theory Ser. B 26 (1979) 217-225.