Note

On the orbits of the product of two permutations

A. Bergey and R. Cori
Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, Unité associée CNRS 1304, 351 cours de la Libération, F-33405 Talence Cedex, France
Communicated by M. Nivat
Received December 1992
Revised December 1993

Abstract

Bergey, A. and R. Cori, On the orbits of the product of two permutations, Theoretical Computer Science 131 (1994) 449-461.

We consider the following problem: given three partitions A, B, C of a finite set Ω, do there exist two permutations α and β such that A, B, C are induced by α, β and $\alpha \beta$ respectively? This problem is NP-complete. However it turns out that it can be solved by a polynomial time algorithm when some relations between the number of classes of A, B, C hold.

1. Introduction and notation

A permutation α of a set Ω induces a partition A of Ω defined by the orbits of α.
We are interested in the existence of permutations α, β on a finite set Ω such that α, β and $\gamma=\beta \cdot \alpha$ induce three given partitions A, B and C on Ω.

If we only take into account the length of the orbits of α, β and γ, while ignoring their elements, this problem is a classical one in symmetric group algebra theory [11]. Brenner and Lyndon [3] examined this problem in detail when γ is transitive (i.e. a circular permutation). Similar problems were studied by Bertram in [1], who characterized the integer l for which any even permutation could be represented as the product of two cycles of length l. Boccara gave a generalization to products of two cycles of different length [2].

Correspondence to: A. Bergey, Laboratoire Bordelais de Recherche en Informatique, Université de Bordeaux, Unité associée CNRS 1304, 351 cours de la Libération, F- 33405 Talence Cedex, France.

Here we consider the partitions defined by the orbits of α, β and γ rather than merely the types of these partitions. This is a more selective problem. This question was considered in the planar case [12].

A nondirected graph G embedded in an orientable surface can be represented by a couple (α, β) of permutations (where β is an involution without fixed point); the faces are defined by the orbits of the product $\beta \alpha$.

In this framework, it is possible, when all classes of B have two elements, to state our problem in terms of graph theory: Given a set E of edges, let $2 E$ be the set obtained by duplicating each element of E and let A and C be two partitions of $2 E$. Does there exist a graph $G=(V, E)$ and an embedding of G in an orientable manifold such that each class of A consists of the edges incident with a given vertex and each class of C consists of the edges bording a given face? Note that, since the number of verticcs, edges and faces is given by A, B and C the genus of the embedding can be obtained by Euler formula.

When the classes of B have an arbitrary number of elements, a similar translation can be obtained for our problem (see below).

In the following we prove that PPP is NP-complete if no additional hypothesis are made for A, B and C. However a polynomial time algorithm solves the problem if $\|A\|+\|B\|+\|C\|=|\Omega|+2$ (planar case) and if $\|C\|=1$ ($\alpha \beta$-transitive case).
In Section 2 we study the general problem, and in Section 3 its computational complexity. Then we specialize to the planar case and that in which $\alpha \beta$ is transitive.

The notation we use is the following:
Ω is a finite set of elements called darts. $|\Omega|$ is the cardinality of Ω.
$[n\rceil$ is the set of integers from 1 to $n.] n, m]$ represents the set of integers from $n+1$ to m; if $m \leqslant n$, this set is empty.
α, β, γ are permutations of $\Omega . z(\alpha)$ is the number of cycles of $\alpha . \beta \cdot \alpha$ or $\beta \alpha$ is the composition of the permutation α and β. Products are written from right to left: $\beta \alpha(x)=(\beta \alpha)(x)=\beta(\alpha(x))$.
A, B, C and D are partitions of Ω. part (α) is the partition of Ω induced by the orbits of $\alpha . a$ is a block or class of $A,\|A\|$ is the number of classes in A. Two partitions A and B of Ω induce a hypergraph G whose vertices and hyperedges are classes a_{i} and b_{j} respectively. A vertex a_{i} is incident to the hyperedge b_{j} if $a_{i} \cap b_{j} \neq \emptyset$.

In this notation our problem PPP is as follows: Given three partitions A, B and C of a set Ω, are there permutations α and β such that $\operatorname{part}(\alpha)=A, \operatorname{part}(\beta)=B$ and $\operatorname{part}(\beta \alpha)=C$? Note that the answer is the same if the roles of A, B and C are exchanged because $\operatorname{part}(\alpha)=\operatorname{part}\left(\alpha^{-1}\right)$ and $\beta \alpha=\gamma \Rightarrow \alpha=\gamma \beta^{-1} . P P P_{2}$ is a $P P P$-problem where C is a bipartition (i.e. it consists of two blocks c_{1} and c_{2}).

2. General facts

Considerations of the parities of α, β and $\beta \alpha$ leads to: $P P P$ has a solution only if $|\Omega| \equiv\|A\|+\|B\|+\|C\| \bmod 2$.

Fig. 1. Modifying α and β.

Proof. α, β and γ have the same parities as $|\Omega|-\|A\|,|\Omega|-\|B\|$ and $|\Omega|-\|C\|$ respectively. Moreover $\gamma=\beta \alpha$ has the same parity as $2|\Omega|-\|A\|-\|B\|$ because it is the product of α by β. Thus $(|\Omega|-\|C\|) \bmod 2 \equiv(\|A\|+\|B\|) \bmod 2$ or equivalently $|\Omega| \bmod 2 \equiv(\|A\|+\|B\|+\|C\|) \bmod 2$.

Let G be the hypergraph induced by the partitions A and B of a problem P. If P has a solution, then the partition $C=\operatorname{part}(\beta \alpha)$ defines the faces of the combinatorial hypermap (Ω, α, β). The genus $g=1 / 2(|\Omega|-(\|A\|+\|B\|+\|C\|-2)$) of such an hypermap is proved to be a positive integer in [10]. It defines the genus of the surface in which G is embedded. Thus if P has a solution there is an embedding of G on a surface of genus g, and if G is connected then P has a solution only if $|\Omega| \geqslant\|A\|+\|B\|+\|C\|-2$. If we have all the embeddings of G with genus g, then we can solve P checking the faces of every embedding of G.

In order to solve P we could imagine an incremental method. Let P be a problem for which we got a solution (α, β) and let P^{\prime} the problem we are trying to solve. When there is some relationship between P and P^{\prime} we have a solution for P^{\prime}. This is the content of the following lemmas.

Lemma 2.1. Given the PPP-problem $P=(\Omega, A, B, C)$ and blocks $a \in A, b \in B$ and $c \in C$ satisfying the mild condition that anhคc $\neq \emptyset$, we can create a new PPP-problem $P^{\prime}=\left(\Omega^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}\right)$ where Ω^{\prime} is Ω with the addition of two new elements; and A^{\prime}, B^{\prime} and C^{\prime} are partitions of Ω^{\prime} formed from A, B and C by adding the two new elements to the blocks a, b and c respectively. If P has a solution (α, β), then P^{\prime} has a solution ($\alpha^{\prime}, \beta^{\prime}$).

Proof. Without loss of generality, $\Omega=[n]$ and $\Omega^{\prime}=[n+2]$. Let $x \in a \cap b \cap c$. We define α^{\prime} by $\alpha^{\prime}(x)=n+1, \alpha^{\prime}(n+1)=n+2, \alpha^{\prime}(n+2)=\alpha(x), \alpha^{\prime}(y)=\alpha(y)$ if $y \neq x$; and we define β^{\prime} by $\beta^{\prime}\left(\beta^{-1}(x)\right)=n+1, \beta^{\prime}(n+1)=n+2, \beta^{\prime}(n+2)=x$ and $\beta^{\prime}(y)=\beta(y)$ if $y+\beta^{-1}(x)$ (see Fig. 1).

Thus $A^{\prime}=\operatorname{part}(\alpha)$ and $B^{\prime}=\operatorname{part}\left(\beta^{\prime}\right)$. The values of $\beta \alpha(y)$ induced by changing from (α, β) into $\left(\alpha^{\prime}, \beta^{\prime}\right)$ are modified only for $y=x$ and $y=\alpha^{-1} \beta^{-1}(x)$.

If $\alpha^{-1} \beta^{-1}(x)=x(\beta \alpha(x)$ is the only element in $c)$, then $\beta^{\prime} \alpha^{\prime}(x)=\beta^{\prime}(n+1)=n+2$, $\beta^{\prime} \alpha^{\prime}(n+2)=\beta^{\prime}(x)=n+1, \beta^{\prime} \alpha^{\prime}(n+1)=\beta^{\prime}(n+2)=x$; so we inserted $n+1$ and $n+2$ in the $\beta \alpha$-orbit of x.

If $\quad \alpha^{-1} \beta^{-1}(x) \neq x \quad\left(\alpha(x) \neq \beta^{-1}(x)\right)$, then $\quad \beta^{\prime} \alpha^{\prime}\left(\alpha^{-1} \beta^{-1}(x)\right)=\beta^{\prime} \beta^{-1}(x)=n+1$, $\beta^{\prime} \alpha^{\prime}(n+1)=\beta^{\prime}(n+2)=x, \quad \beta^{\prime} \alpha^{\prime}(x)=\beta^{\prime}(n+1)=n+2, \beta^{\prime} \alpha^{\prime}(n+2)=\beta^{\prime}(\alpha(x))=\beta \alpha(x)$ because $\alpha(x) \neq \beta^{-1}(x)$; here as well we inserted $n+1$ and $n+2$ on both sides of x in its $\beta \alpha$-orbit.

Thus, $C^{\prime}=\operatorname{part}\left(\gamma^{\prime}\right)$.
Note: The converse is false. For instance, problem P defined by $\Omega=\lceil 5\rceil$, $A=\{\{1,2,3\},\{4,5\}\}, B=\{\{1,2\},\{3,4,5\}\}$ and $C=\{\Omega\}$ does not have a solution but $\left(\alpha^{\prime}:(1,6,2,3,7)(4,5), \beta^{\prime}:(1,2)(3,5,7,4,6)\right)$ is a solution to problem P^{\prime} defined by $\Omega^{\prime}=[7], A^{\prime}=\operatorname{part}\left(\alpha^{\prime}\right), B^{\prime}=\operatorname{part}\left(\beta^{\prime}\right)$ and $C^{\prime}=\left\{\Omega^{\prime}\right\}$.

Lemma 2.2. Let $P=(\Omega, A, B, C)$ be a $P P P$-problem such that A contains distinct blocks a_{1} and a_{2}, B and C contains blocks b and c, respectively, such that $a_{1} \cap b \cap c \neq \emptyset$ and $a_{2} \cap c \neq \emptyset$. Let $P^{\prime}=\left(\Omega^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}\right)$ where Ω^{\prime} has two new elements, both of which are added to b and c and each one is added to a_{1} and a_{2} (with A, B and C otherwise unchanged). If there is a solution (α, β) of P, then problem P^{\prime} has a solution ($\alpha^{\prime}, \beta^{\prime}$).

If B contains distinct blocks b_{1} and b_{2}, A and C contains blocks a and c such that $a \cap b_{1} \cap c \neq \emptyset$ and $b_{2} \cap c \neq \emptyset$, and $\Omega=[n]$. Let $P^{\prime \prime}=\left(\Omega^{\prime \prime}, A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}\right)$ where $\Omega^{\prime \prime}$ has two new elements both of which are added to a and c and each one is added to b_{1} and b_{2} (with A, B and C otherwise unchanged). If there is a solution (α, β) of P, then there is a solution $\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right)$ of $P^{\prime \prime}$.

Proof. As we can exchange the role of partitions A, B and C, we shall only prove the first part of lemma.

We suppose $\Omega=[n]$ and $\Omega^{\prime}=[n+2]$. Let $x \in a_{1} \cap b \cap c$ and $y \in a_{2} \cap c$. Then α^{\prime} is defined as follows: $\alpha^{\prime}(x)=n+1, \alpha^{\prime}(n+1)=\alpha(x), \alpha^{\prime}(y)=n+2, \alpha^{\prime}(n+2)=\alpha(y)$ and $\alpha^{\prime}(z)=\alpha(z)$ if $z \notin\{x, y\} . \beta^{\prime}$ is defined as follows: $\beta^{\prime}\left(\beta^{-1}(x)\right)=n+1, \beta^{\prime}(n+1)=n+2$, $\beta^{\prime}(n+2)=x$, and $\beta^{\prime}(z)=\beta(z)$ if $z \neq \beta^{-1}(x)$. We have $A^{\prime}=\operatorname{part}\left(\alpha^{\prime}\right)$ and $B^{\prime}=\operatorname{part}\left(\beta^{\prime}\right)$ as desired. Now it suffices to show $C^{\prime}=\operatorname{part}\left(\beta^{\prime} \alpha^{\prime}\right)$.

Note that $\alpha^{-1} \beta^{-1}(x) \neq x$ since x and y are in the same orbit of $\beta \alpha$. Moreover, if $u \notin\left\{x, y, \alpha^{-1} \beta^{-1}(x)\right\}$, we have $\beta^{\prime} \alpha^{\prime}(u)=\beta \alpha(u)$.

There are two cases to be considered.
Case a: If $\alpha^{-1} \beta^{-1}(x)=y$, then $\beta^{\prime} \alpha^{\prime}\left(\alpha^{-1} \beta^{-1}(x)\right)=\beta^{\prime} \alpha^{\prime}(y)=\beta^{\prime}(n+2)=x ; \beta^{\prime} \alpha^{\prime}(x)=$ $\beta^{\prime}(n+1)=n+2 ; \quad \beta^{\prime} \alpha^{\prime}(n+2)=\beta^{\prime} \alpha(y)=\beta^{\prime} \beta^{-1}(x)=n+1 ; \quad \beta^{\prime} \alpha^{\prime}(n+1)=\beta^{\prime} \alpha(x)=\beta \alpha(x)$ because $\beta \alpha(x) \neq x$.

In the $\beta^{\prime} \alpha^{\prime}$-orbit of x and y, the sequence $y \rightarrow x \rightarrow \beta \alpha(x)$ has become $y \rightarrow x \rightarrow$ $n+2 \rightarrow n+1 \rightarrow \beta \alpha(x)$.

Case b: If $\alpha^{-1} \beta^{-1}(x) \neq y$, then $\beta^{\prime} \alpha^{\prime}\left(\alpha^{-1} \beta^{-1}(x)\right)=\beta^{\prime} \beta^{-1}(x)=n+1 ; \beta^{\prime} \alpha^{\prime}(n+1)=$ $\beta^{\prime} \alpha(x)=\beta \alpha(x) ; \beta^{\prime} \alpha^{\prime}(x)=\beta^{\prime}(n+1)=n+2 ; \beta^{\prime} \alpha^{\prime}(n+2)=\beta^{\prime} \alpha(y)=\beta \alpha(y) ; \beta^{\prime} \alpha^{\prime}(y)=\beta^{\prime}(n+2)=x$.

Now we have $\alpha^{-1} \beta^{-1}(x) \rightarrow n+1 \rightarrow \beta \alpha(x)$ and $y \rightarrow x \rightarrow n+2 \rightarrow \beta \alpha(y)$ instead of $\alpha^{-1} \beta^{-1}(x) \rightarrow x \rightarrow \beta \alpha(x)$ and $y \rightarrow \beta \alpha(y)$.

In both cases, $n+1$ and $n+2$ are inserted in the $\beta \alpha$-orbit of x and y (see Fig. 2). Thus $C^{\prime}=\operatorname{part}\left(\beta^{\prime} \alpha^{\prime}\right)$.

Fig. 2. Addition of two elements in a $\beta \alpha$ orbit.

3. Computational complexity of problem PPP

It is obvious that $P P P \in N P$: a guess (α, β) can be checked in polynomial time and space. The $P P P_{2}$-problem is shown to be NP-complete by reduction of the classical problem of existence of a hamiltonian circuit in directed graphs ($D H C$). This problem can be stated as follows: given a directed graph G, is there a simple directed circuit in G which passes through all the vertices?

3.1. Construction of the PPP_{2}-problem associated with a given DHC -problem

A directed graph G is definite by a quadruple (V, E, out, in) where V is the set of vertices, E is the set of edges; and out and in are functions that associate with each
vertex the set of edges leaving and entering it. Let s be a vertex of a graph, and let $\operatorname{deg}(s)=\mid$ out $(s) \mid$ be the number of edges leaving s. The edge e is linking vertex s_{i} to vertex s_{j} if and only if $e \in \operatorname{out}\left(s_{i}\right)$ and $e \in \operatorname{in}\left(s_{j}\right)$.

Let $G(V, E$, out, in $)$ be a graph with n vertices $V=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ and m edges. To each vertex s define $d l(s)=\operatorname{deg}(s)-1$ if $\operatorname{deg}(s) \geqslant 1$, and $d l(s)=0$ if $\operatorname{deg}(s)=0 . d l(s)$ represents the number of choices at s when building a hamiltonian circuit. For example, if $d l(s)=1$, there is a single choice between two possible edges to explore from s.

Let $d=\sum_{i=1}^{n} d l\left(s_{i}\right), s_{i} \in V$. Usually $d=|E|-|V|$ except if there is a vertex s of G without any outgoing edges, in which case there are no hamiltonian circuits.

Let $D=\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$ be a partition of $[d]$ into n blocks given by $d_{1}=\left[d l\left(s_{1}\right)\right]$, $\left.\left.d_{i}=\right] \sum_{j=1}^{i=1} d l\left(s_{j}\right), \sum_{j=1}^{i} d l\left(s_{j}\right)\right]$ if $i \neq 1$. In this way, we have $d l\left(s_{i}\right)$ darts in a set d_{i} for each vertex s_{i}.

Now we can associate with a $D H C$-problem H a corresponding $P P P_{2}$-problem $P=(\Omega, A, B, C)$:
$\Omega=V \cup E \cup[d], A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ where $a_{i}=\left\{s_{i}\right\} \cup o u t\left(s_{i}\right) \cup d_{i}, B=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ where $b_{i}=\left\{s_{i}\right\} \cup \operatorname{in}\left(s_{i}\right) \cup d_{i}, C=\left\{c_{1}, c_{2}\right\}$ where $c_{1}=V$ and $c_{2}=E \cup[d]$.

Note that if the original graph G has n vertices and m edges, the size of the new problem is of $\mathrm{O}(n, m)$.

Lemma 3.1. If the PPP-problem P associated with a DHC-problem H has a solution, then H has a solution.

Proof. Clearly, $\beta \alpha$ maps vertices to vertices, all of them being in the orbit c_{1} of $\beta \alpha$. Let s_{i} and s_{j} be vertices such that $\beta \alpha\left(s_{i}\right)=s_{j}$. Then $\alpha\left(s_{i}\right) \in \operatorname{out}\left(s_{i}\right)$ because the other possibility $\left(\alpha\left(s_{i}\right) \in d_{i}\right)$ is incompatible with $\beta\left(\alpha\left(s_{i}\right)\right)=s_{j}\left(s_{j} \notin \beta\left(d_{i}\right)\right)$. Thus $\alpha\left(s_{i}\right)$ is an edge from vertex s_{i} to vertex s_{j}. Then $\left(\alpha\left(s_{1}\right), \alpha \beta \alpha\left(s_{1}\right), \alpha(\beta \alpha)^{2}\left(s_{1}\right), \ldots, \alpha(\beta \alpha)^{n-1}\left(s_{1}\right)\right)$ gives the sequence of edges of a hamiltonian circuit in G.

Lemma 3.2. If a DHC-problem H has a solution, then the associated PPP-problem P has a solution.

Proof. We shall proceed by successive additions of darts in order to build a solution (α, β). Starting with a solution (α^{0}, β^{0}) of a problem P^{0}; we add edges two at a time (using the lemmas of Section 2) to have a solution of problem $P^{d}=P$ after d steps.

Let $C H$ be the set of edges of some hamiltonian circuit in G. We consider the problem $P^{0}=\left(\Omega^{0}, A^{0}, B^{0}, C^{0}\right) \quad$ where $\quad \Omega^{0}=V \cup C H, \quad A^{0}=\left\{a_{1}^{0}, a_{2}^{0}, \ldots\right\}$, $B^{0}=\left\{b_{1}^{0}, b_{2}^{0}, \ldots\right\}, C^{0}=\left\{c_{1}^{0}, c_{2}^{0}\right\}$ with $c_{1}^{0}=V$, and $c_{2}^{0}=C H$, while $a_{i}^{0}=\left\{s_{i}, e_{i j}\right\}$ and $b_{j}^{0}=\left\{s_{j}, e_{i j}\right\}$ for all $e_{i j} \in C H$.

The remainder of the proof of this lemma is based on the following three propositions whose proofs are immediate.

Proposition 3.3. Define two permutations α^{0}, β^{0} of Ω^{0} by $\alpha^{0}\left(s_{i}\right)=e_{i j}$ and $\alpha^{0}\left(e_{i j}\right)=s_{i}$, $\beta^{0}\left(s_{i}\right)=e_{k i}$ and $\beta^{0}\left(e_{k i}\right)=s_{i}$. Then $\left(\alpha^{0}, \beta^{0}\right)$ is a solution of problem P^{0}. Moreover $a_{i}^{0} \subseteq a_{i}$, $b_{i}^{0} \subseteq b_{i}$ and $c_{i}^{0} \subseteq c_{i}$ for all i.

For every vertex $s_{i}, d l\left(s_{i}\right)$ edges and $d l\left(s_{i}\right)$ elements of d_{i} not in Ω^{0} remain to be added. With each edge $e_{i j} \notin C H$ we associate a dart $u_{i j} \in d_{i}$. We shall add both $e_{i j}$ and $u_{i j}$. Problem P^{p+1} is defined in terms of problem $P^{p}: \Omega^{p+1}=\Omega^{p} \cup\left\{e_{i j}, u_{i j}\right\}$; $a_{i}^{p+1}=a_{i}^{p} \cup\left\{e_{i j}, u_{i j}\right\}, a_{j}^{p+1}=a_{j}^{p}$ if $j \neq i ; b_{i}^{p+1}=b_{i}^{p} \cup\left\{u_{i j}\right\}, b_{j}^{p+1}=b_{j}^{p} \cup\left\{e_{i j}\right\}, b_{k}^{p+1}=b_{k}^{p}$ if $k \notin\{i, j\} ; c_{1}^{p+1}=c_{1}^{p}, c_{2}^{p+1}=c_{2}^{p} \cup\left\{e_{i j}, u_{i j}\right\}$.

Proposition 3.4. If P^{p} has a solution, then P^{p+1} has a solution.
This is immediate using Lemma 2.2.
Proposition 3.5. The property $a_{i}^{p+1} \subseteq a_{i}, b_{i}^{p+1} \subseteq b_{i}, c_{i}^{p+1} \subseteq c_{i}$ (of Proposition 3.3), is invariant under the addition of $\left\{e_{i j}, u_{i j}\right\}$.

Thus we have $\left(\alpha^{0}, \beta^{0}\right)$ a solution of problem P^{0}, then a sequence of $\left(\alpha^{i}, \beta^{i}\right)$, solutions of a sequence of problems P^{i}. After d additions we get $\left(\alpha^{d}, \beta^{d}\right)$, a solution of problem $P^{d}=P$, derived problem from H. This proves Lemma 3.2.

Theorem 3.6. $P P P_{2}$ is NP-complete.

Proof. Lemmas 3.1 and 3.2 show that $P \Gamma P_{2}$ is equivalent to $D H C$.

4. Solving the problem when $\|C\|=1$

A pair of partitions (A, B) defines a bipartite graph $G_{A, B}$, it has the blocks of A and B as vertices, and an edge between $a \in A, b \in B$ if $a \cap b \neq \emptyset$.

A block x of a partition A, B or C of a problem P will be called a vertex, hyperedge or face of P respectively. A face c is said to be incident to a block x of A or B if $x \cap c \neq \emptyset$.

If P (with $\|C\|=1$) has a solution, $\beta \alpha$ has one orbit. This translates in the fact that the graph $G_{A, B}$ can be embedded with one face in a surface of maximum genus. Xuong gives in [14] a criterion for the existence of such an embedding. Moreover, a polynomial time algorithm using this criterion was recently published [6].

Let $P=(\Omega, A, B, C)$ be a $P P P$-problem with $\Omega=[n]$ and $C=\{\Omega\}$.
Let decn be the function $\operatorname{decn}(S)=\{s+n: s \in S\}$ on sets of integers.
Let $P^{\prime}=\left(\Omega^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}\right)$ the $P P P$-problem defined by $\Omega^{\prime}=[2 n], A^{\prime}=A \cup\{\operatorname{dec} n(b)$: $b \in B\}, B^{\prime}=\{\{1, n+1\},\{2, n+2\},\{3, n+3\}, \ldots,\{n, 2 n\}\}$, and $C^{\prime}=\left\{\Omega^{\prime}\right\}$.

Lemma 4.1. P accepts a solution if and only if P^{\prime} has a solution.
Proof. (Only if) Let (α, β) be a solution of P. We define $\alpha^{\prime}(x)=\alpha(x)$ if $x \leqslant n$, $\alpha^{\prime}(x)=\beta(x-n)+n$ otherwise. Note that $\beta^{\prime}(x)=n+x$ if $x \leqslant n$ and $\beta^{\prime}(x)=x-n$ if $x>n$. Let us compute the orbits of $\beta^{\prime} \alpha^{\prime}$. If $x \leqslant n, \beta^{\prime} \alpha^{\prime}(x)=\beta^{\prime}(\alpha(x))=\alpha(x)+n$, $\beta^{\prime} \alpha^{\prime}(\alpha(x)+n)=\beta^{\prime}(\beta \alpha(x)+n)=\beta \alpha(x)$, therefore $\left(\beta^{\prime} \alpha^{\prime}\right)^{2}(x)=\beta \alpha(x)$. We have a $\beta^{\prime} \alpha^{\prime}$-orbit which contains [n] and such that the element following an $x \leqslant n$ is greater than n. This orbit passes through [2n], thus ($\alpha^{\prime}, \beta^{\prime}$) is a solution of P^{\prime}.
(If) Let ($\alpha^{\prime}, \beta^{\prime}$) be a solution of P^{\prime}. Since β^{\prime} is necessarily given by $\beta^{\prime}(x)=n+x$ if $x \leqslant n$ and $\beta^{\prime}(x)=x-n$ if $x>n$, the $\beta^{\prime} \alpha^{\prime}$-orbit alternately meets an element of $[n]$ and an element of $] n, 2 n]$. For $x \leqslant n$ we set: $\alpha(x)=\beta^{\prime} \alpha^{\prime}(x)-n$ and $\beta(x)=\beta^{\prime} \alpha^{\prime}(x+n)$. Thus $\beta \alpha(x)=\beta\left(\beta^{\prime} \alpha^{\prime}(x)-n\right)=\left(\beta^{\prime} \alpha^{\prime}\right)^{2}(x)$. So we have in the $\alpha \beta$-orbit one element out of two which were in the $\alpha^{\prime} \beta^{\prime}$-orbit. These elements are less or equal to n. Thus (α, β) is a solution of P.

Theorem 4.2. If $\|C\|=1$ then we can solve P while using polynomial time and space.

Proof. Lemma 4.1 says in this situation that every hypergraph is equivalent to a bipartite graph and vice versa. So we can find a solution using Furst, Gross and McGeoch's algorithm [6] for maximum genus embedding of $G_{A}^{\prime} ; B^{\prime}$, the bipartite graph associated with P^{\prime}. P has a solution if and only if there is such an embedding with one face of $G_{A^{\prime}, B^{\prime}}^{\prime}$. Thus we can answer in polynomial time (and space) when $\|C\|=1$.

We saw in Theorem 3.6 that the PPP-problem is NP-complete, in particular when $\|C\|=2$. But embedding a graph in a maximum genus surface (even with two faces) is polynomial. There is no contradiction, since we impose elements of faces in our problem; if $\|C\|=1$, both are equivalent, because darts are necessarily all in the same face.

A theorem of Xuong says that if the graph G has an embedding of maximum genus, then $G^{\prime}=G \cup\{u, v\}$ (where u and v are new edges satisfying some technical property) has also an embedding of maximum genus. Using Lemma 4.1, adding two new adjacent edges in a bipartite graph is like adding two darts in the associated hypermap. Lemmas 2.1 and 2.2 (which allow us to add two darts to a problem P) are weaker than Xuong's theorem; but Xuong's theorem does not take into account the membership of edges to blocks C_{i} as we do. As above, this is not important.

5. The planar case

The problem $P=(A, B, C)$ is said to be planar if $\|A\|+\|B\|+\|C\|=|\Omega|+2$. In the following we consider a planar problem P.

A circuit on a class c is an order $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ on the k darts of c such for all i there is a dart x_{i}^{\prime} such x_{i} and x_{i}^{\prime} are in the same block of A and x_{i}^{\prime} and x_{i+1} (where x_{k+1} is to be interpreted as x_{1}) are in the same class of B.

A necessary condition for P to have a solution is that we can find a circuit for every block c. If all classes of B have two darts (G is a graph) and when moreover the problem P is planar, this condition becomes sufficient [12]. Let us recall the proof Machí gave. A permutation Π such $\operatorname{part}(\Pi)=C$ is defined by circuits on blocks of C. Let β be the involution defined by partition $B . \Pi \beta$ defines a permutation whose cycles are included in the blocks of A. Let $\left(\beta(l), k_{l}, \ldots\right)$ be a cycle of Π where $l \in \Omega$. Thus $\Pi \beta(l)=\sigma(l)=k_{l}$ and the definition of a circuit implies that k_{l} and l are in the same block a_{l} of A. So we have $z(\Pi \beta) \geqslant\|A\|$. As G is connected we also have $z(\beta)+z(\Pi)+z(\Pi \beta) \leqslant n+2$. Thus $n+2=\|A\|+\|B\|+\|C\| \leqslant z(\Pi \beta)+z(\beta)+z(\Pi) \leqslant$ $n+2$. Hence $(\Pi \beta, \beta)$ is a solution of P.

This is false when there is no condition on B. We can easily check that the problem defined by:

$$
\begin{aligned}
& A=\{\{1,2,3,4\},\{5,6,7\},\{8,9,10\}\}, \\
& B=\{\{1,6,9\},\{3,7\},\{2,8\},\{4,5,10\}\}, \\
& C=\{\{6,10\},\{4,7\},\{1,8\},\{2,9\},\{3,5\}\},
\end{aligned}
$$

has no solution while we can find a circuit on elements for each cycle of C.
Theorem 5.1. If P is planar and each class of B contains two elements then we can solve P in polynomial time and space.

Proof. First we note that the permutation β is determined by partition B. By the remark above, we only have to find a circuit on darts for each class c_{i} to find a solution to P.

Let G be the directed graph such that each vertex s_{i} of G is associated with a block a_{i} of A and such that there is an edge e from s_{i} to s_{j} if and only if there is a dart $x \in a_{i}$ and $\beta(x) \in a_{j}$. Thus, each edge $e \in G$ is associated with a dart x of P.

Now let G_{i} be the graph G restricted to the edges associated with darts of c_{i}. We have a circuit on darts of c_{i} if and only if the graph G_{i} is eulerian. We can build graphs G and G_{i} in polynomial time and space (there are at most $n / 2$ graphs G_{i}).

For each G_{i}, we count the edges leaving and entering each vertex s in G_{i}, check that $\operatorname{deg}(s)=|\operatorname{in}(s)|$ for all s, and that G_{i} is connected. Obviously this is done in polynomial time and space.

Recall that a graph is 3-connected if it is connected and it remains connected after any deletion of two vertices.

Lemma 5.2. If P is planar and the graph $G_{A, B}$ is 3-connected, then there is a linear algorithm which solves P.

Proof (sketch). A theorem of Whitney [8] states that there are only two ways (one inverse of the other) to embed a 3 -connected graph in the plane. If such an embedding exists and if its faces induce partition C, problem P has a solution.

In this case, we only need to find the embedding of $G_{A, B}$ in the plane using the algorithm of Hopcroft and Tarjan [9] (which is of $O(V)$) and then to check that the faces satisfy $C=\operatorname{part}(\beta \alpha)$. Thus we can answer in $\mathrm{O}(|\Omega|)$.

To prove the next lemma we use the decomposition tree \mathscr{T} of a graph G used in [5] in order to test planarity dynamically. This tree can be built in $\mathrm{O}(n \log (n))$ and reflects the decomposition of G into its 3 -connected components. Let us recall this technique.

With each node v of \mathscr{T} there is associated a subgraph G_{v} of G and a graph μ_{v}, the skeleton of $v . \mu_{v}$ is a planar st-graph, that is a planar acyclic directed graph with exactly one source s and exactly one $\operatorname{sink} t$. Each son of v is associated with an edge of μ_{v}. There are four types of nodes in \mathscr{T}.

- If G_{v} is a single edge from s to $t: v$ is a Q-node (without sons) whose skeleton μ_{v} is G_{v}.
- If G_{v} is 1 -connected with cut-vertices (hyperedges) $s_{1}, s_{2}, \ldots, s_{k-1}$ from s to $t: v$ is a S-node whose skeleton μ_{v} is a chain of k edges from s to $t . v$ has k sons i whose associated hypergraphs G_{i} are 2 -connected.
- If s and t is a separation pair of G_{v} with split components $G_{1}, G_{2}, \ldots, G_{k}$: then v is a P-node whose skeleton consists of k parallel edges from s to $t . v$ has k sons i (whose associated hypergraphs are split components G_{i}).
- If none of the above cases applies: let the k maximal split pairs (s_{i}, t_{i}) with split components $G_{i} ; v$ is an R-node whose skeleton is obtained from G_{v} by replacing each subgraph G_{i} with an edge $e_{i} . v$ has k sons i which are not Q-node with associated hypergraphs G_{i}. For any node of \mathscr{T}, s and t must lie on the same face, so we can consider skeleton μ of an R-node as a 3-connected graph, adding an edge from s to t.

Lemma 5.3. If P is planar and the graph $G_{A, B}$ defined by A and B is 2 -connected then we can solve P in polynomial time and space.

Proof (sketch). In order to obtain \mathscr{T}, and to check $G_{A, B}$ for planarity, we use the algorithm presented in [5].

First we shall associate a $P P P$-problem P_{v} to each node v of \mathscr{T}. Let $P=(\Omega, A, B, C)$ and $\Omega^{\prime} \subset \Omega$; we define $P^{\prime}=\left(\Omega^{\prime}, A^{\prime}, B^{\prime}, C^{\prime}\right)$ the subproblem of P where $A_{i}^{\prime}=\left\{b \in \Omega^{\prime} \cap A_{i}\right\}$, $B_{i}^{\prime}=\left\{b \in \Omega^{\prime} \cap B_{i}\right\}$ and $C_{i}^{\prime}=\left\{b \in \Omega^{\prime} \cap C_{i}\right\} . G_{v}, P_{v}$ and c_{v} refer to a current node $v . P_{r}$ is an extra subproblem associated to v if v is a R-node. $G_{i(j)}, P_{i(j)}$ and $c_{i(j)}$ refer to a son $i(j)$ of $v . \mathrm{P}$ is associated with the root of \mathscr{T}.

- If v is a S-node we define the subproblems $P_{i}=\left(\Omega_{i}, A_{i}, B_{i}, C_{i}\right)$ of P_{v} where Ω_{i} is the set of darts of G_{i}. A face $c_{i} \neq \emptyset$ of P_{i} which is not equal to the corresponding face c_{v} of P_{v} is called external.
- If v is a P-node, let the intermediate subproblems P_{i}^{\prime} be defined as above. If i is not a Q-node, then we get the corresponding subproblem P_{i} by merging all the faces of P_{i}^{\prime} that are incident to s and t or that are not equal to the corresponding face c_{v}; this new merged face is called external.
- If v is an R-node with k sons we define the subproblems P_{i} in the same way as for a P-node.
We define an extra subproblem $P_{r}=\left(\Omega_{r}, A_{r}, B_{r}, C_{r}\right)$ where Ω_{r} is the set of darts of Q-nodes; a_{k} and b_{k} are A_{v} and B_{v} restricted to the darts of $\Omega_{r} ; c_{k}$ is C_{v} restricted to Ω_{r} where we merge the faces c_{v} that are incident to one and the same split pair (s_{i}, t_{i}) or whose darts of the corresponding face c_{v} are in a subproblem P_{i} and in another subproblem P_{j}. Thus we get at most k new external faces of P_{r}.

Let $\left(A_{\mu}, B_{\mu}\right)$ be the representation of the skeleton μ_{r} oblained from (A_{r}, B_{r}) by adding: a dart b_{i} to the classes associated with a separation pair $\left(s_{i}, t_{i}\right)$ when s_{i} and t_{i} are one vertex and one hyperedge; a dart b_{s} and b_{t} to vertices (hyperedges) s_{i} and t_{i} respectively, while creating a new hyperedge (vertex) $\left\{b_{s}, b_{t}\right\}$ if s_{i} and t_{i} are both vertices or hyperedges. We do this also for the source s_{v} and the $\operatorname{sink} t_{v}$ of the hypergraph G_{v}. Each additional dart (or couple of darts) is associated with one virtual edge of the skeleton μ_{r}. In this way the graph G_{r} defined by $\left(A_{r}, B_{r}\right)$ is a subgraph of the skeleton μ_{r}.

Now we have decomposed the original problem P into subproblems. The following propositions (whose proofs are technical but straightforward) will be helpful in the sequel.

Proposition 5.4. If v is a S-node then P_{v} has a solution if:
(1) each subproblem P_{i} has a solution;
(2) for all i there is exactly one external face of P_{i}, and this face is incident to cut-vertices (hyperedges) $\left(s_{i-1}, s_{i}\right)$;
(3) there is exactly one face c_{v} of P_{v} whose darts are in the external faces c_{i} of problems P_{i}.

Proposition 5.5. If v is P-node with k sons, then P_{v} has a solution if:
(1) each subproblem P_{i} has a solution;
(2) for all i which is not a Q-node, the external face c_{i} results in the merging of exactly two faces of the intermediate subproblem P_{i}^{\prime};
(3) there are at most k faces of P whose darts are in different faces c_{i} of problems P_{i}.

Proposition 5.6. If v is an R-node with k sons, then P_{v} has a solution if:
(1) the extra subproblem P_{r} and each subproblem P_{i} have a solution;
(2) for all i which is not a Q-node, the external face c_{i} results in the merging of at most two faces of the intermediate subproblem P_{i}^{\prime};
(3) there are exactly two faces of P_{v} incident to a split pair $\left(s_{i}, t_{i}\right)$ which gives one external face in P_{i} and one merged face in P_{r}.

Fig. 3. Merging hyperedges and vertices of subgraphs G_{i} of a S-node while merging external faces of P_{i}.
Now we scan the tree \mathscr{T} from leaves to root. We solve P_{v} of a node v when we have a solution for all P_{i} of sons i of v. We obtain $\left(\alpha_{p}, \beta_{p}\right)$ merging vertices and hyperedges as in Fig. 3. A solution of P_{v} only depends on a solution of P_{i} (and also on a solution of P_{r} if v is an R-node). In this way we obtain a solution of P, the original problem associated to the root of \mathscr{T}.

All the subproblems P_{v} associated to Q-nodes which are leaves of \mathscr{T} obviously have a solution.

- For a S-node v we solve P_{v} by merging vertices and hyperedges (of the k subproblems P_{i}) associated to cut-vertices (hyperedges) $s_{0}, s_{1}, \ldots, s_{k}$ of G_{v}, and by merging external faces c_{i} into the corresponding face c_{v}. If this is not a solution of P_{v} then stop.
- For a P-node v we shall merge vertices and hyperedges associated to a split pair (s, t) of a subproblem P_{i} and a subproblem P_{j} if their external faces share darts with the same face c_{v} (as we did for a S-node). We do this until we have merged all the subp5roblems P_{k}. If this is not a solution of P_{v} then stop.
- For a R-node v, first we try to solve the extra subproblem P_{r} of v, (finding a planar embedding of the 3-connected skeleton μ_{r} and then removing darts associated with virtuals edges gives a guess to P_{r}). Then we merge the vertices and the hyperedges (as for a S-node) associated with split pair (s_{i}, t_{i}) of a subproblem P_{i} and of extra subproblem P_{r} of node v. If this is not a solution of P_{v} then stop.
The tree \mathscr{T} is built in polynomial time and space. We can easily label each node v with his subproblem or extra subproblem v in linear time and space. Each condition (1), (2) and (3) of Propositions 5.4, 5.5 and 5.6 can be checked in polynomial time. Subproblems for a Q-node are obvious. For a node of another type, merging the subproblems P_{i} and checking if it is a solution takes polynomial time and space.

Theorem 5.7. If P is planar then there is a polynomial algorithm which solves P.
Proof (sketch). Let $G_{A, B}$ the graph defined by (A, B) with $k 2$-connected components. We can obtain the cut-vertices (hyperedges) s_{i} of G in linear time and space [13]. We define k subproblems P_{i} and subgraphs G_{i} in the same way as we defined P_{i} and G_{i} for a S-node. Now we solve k subproblems P_{i} (where G_{i} is biconnected), merge them into the problem P as in the proof of the previous theorem.

References

[1] E. Bertram, Even permutations as a product of two conjugates cycles J. Combin. Theory Ser. A $\mathbf{1 2}$ (1972) 368-380.
[2] G. Boccara, Nombre de représentations d'une permutation comme produit de deux cycles de longueurs données, Discrete Math. 29 (1980) 105-134.
[3] J.L. Brenner and R.C. Lyndon, The orbits of the product of two permutations, European J. Combin. 4 (1983) 279-293.
[4] R. Cori and A. Machí, Maps and hypermaps I, II, III, a survey: Exposition. Math. 10 (1992) 403-467.
[5] G. Di Battista and R. Tamassia, Incremental planarity testing, Proc. 30th IEEE Symp. on Foundations of Computer Science (1989) 436-441.
[6] M.L. Furst, J.L. Gross and L.A. McGeoch, Finding a maximum genus of a graph imbedding, J. ACM 35 (1988) 523-534.
[7] M.R. Garey and D.S. Johnson, Computer and Intractability, A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
[8] J.L. Gross and T.W. Tucker, Topological Graph Theory (Wiley/Interscience, New York, 1990).
[9] J. Hopcroft and R. Tarjan, Efficient planarity testing, J. ACM 21 (1974) 549-568.
[10] A Jacques, Sur le genre d'une paire de substitutions, C.R. Acad. Sci. Paris A 267 (1968) 625-627.
[11] I.G. McDonald, Symmetric Functions and Hall Polynomials (Clarendon Press, Oxford, 1979).
[12] A. Machí, Maps associated with given partitions, Actes de la fête des mots, Rouen (1982).
$[137$ R. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput. 1 (1972) 146-160.
[14] N.H. Xuong, How to determine the maximum genus of a graph. J. Combin. Theory Ser. B 26 (1979) 217-225.

