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Abstract

Bergey, A. and R. Cori, On the orbits of the product of two permutations, Theoretical Computer
Science 131 (1994) 449-461.

We consider the following problem: given three partitions 4, B, C of a finite set 2, do there exist two
permutations o and S such that A4, B, C are induced by o, 8 and aff respectively? This problem is
NP-complete. However it turns out that it can be solved by a polynomial time algorithm when some
relations between the number of classes of 4, B, C hold.

1. Introduction and notation

A permutation « of a set Q induces a partition 4 of Q defined by the orbits of «.

We are interested in the existence of permutations o, § on a finite set  such that a, §
and y=f-a induce three given partitions 4, B and C on Q.

If we only take into account the length of the orbits of «, § and y, while ignoring
their elements, this problem is a classical one in symmetric group algebra theory [11].
Brenner and Lyndon [3] examined this problem in detail when y is transitive (i.e.
a circular permutation). Similar problems were studied by Bertram in [1], who
characterized the integer / for which any even permutation could be represented as the
product of two cycles of length I Boccara gave a generalization to products of two
cycles of different length [2].
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Here we consider the partitions defined by the orbits of «,  and y rather than
merely the types of these partitions. This is a more selective problem. This question
was considered in the planar case [12].

A nondirected graph G embedded in an orientable surface can be represented by
a couple (o, ) of permutations (where f is an involution without fixed point); the faces
are defined by the orbits of the product .

In this framework, it is possible, when all classes of B have two elements, to state our
problem in terms of graph theory: Given a set E of edges, let 2E be the set obtained by
duplicating each element of E and let A and C be two partitions of 2E. Does there exist
a graph G=(V, E) and an embedding of G in an orientable manifold such that each class
of A consists of the edges incident with a given vertex and each class of C consists of the
edges bording a given face? Note that, since the number of vertices, edges and faces is
given by A4, B and C the genus of the embedding can be obtained by Euler formula.

When the classes of B have an arbitrary number of elements, a similar translation
can be obtained for our problem (see below).

In the following we prove that PPP is NP-complete if no additional hypothesis are
made for A, B and C. However a polynomial time algorithm solves the problem if
Al +1B] +ICll=]2|+2 (planar case) and if || C|| =1 («f-transitive case).

In Section 2 we study the general problem, and in Section 3 its computational
complexity. Then we specialize to the planar case and that in which «f is transitive.

The notation we use is the following;

Q is a finite set of elements called darts. |Q] is the cardinality of Q.

[n] is the set of integers from 1 to n. Jn, m] represents the set of integers from n+ 1 to
m; if m<n, this set is empty.

o, ff,7 are permutations of Q. z(x) is the number of cycles of a. f-a or fu is the
composition of the permutation « and f. Products are written from right to left:
Bu(x)=(fr) (x) = B(x(x).

A, B, C and D are partitions of Q. part(«) is the partition of Q induced by the orbits
of a. ais a block or class of 4, || 4| is the number of classes in A. Two partitions 4 and
B of @ induce a hypergraph G whose vertices and hyperedges are classes a; and b;
respectively. A vertex a; is incident to the hyperedge b; if a;nb;#0.

In this notation our problem PPP is as follows: Given three partitions A, B and C of
a set Q, are there permutations « and S such that part(e)=A, part(f)=B and
part(fo)=C? Note that the answer is the same if the roles of A, B and C are exchanged
because part(x)=part(x~!)and fa=y=-a=yp"'. PPP,is a PPP-problem where C is
a bipartition (i.e. it consists of two blocks c¢; and ¢,).

2. General facts

Considerations of the parities of «, f and fu« leads to:

PPP has a solution only if |Q2|=| 4+ | B| + | C| mod2.
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Fig. 1. Modifying « and §.

Proof. «, f and v have the same parities as |Q|—||A|, |Q|—|I|B|| and [Q|—|C]|
respectively. Moreover y= fa has the same parity as 2|Q|—|| A | — || B|| because it is
the product of « by §. Thus (|Q|— | C||)mod 2=(||A| + || B]|) mod 2 or equivalently
|QImod2=(||All+ | B+ Cl)mod2. O

Let G be the hypergraph induced by the partitions 4 and B of a problem P. If P has
a solution, then the partition C=part(fa) defines the faces of the combinatorial
hypermap (2, «, ). The genus g=1/2(1Q2|—(|| A + || Bl + | C|| —2)) of such an hyper-
map is proved to be a positive integer in [10]. It defines the genus of the surface
in which G is embedded. Thus if P has a solution there is an embedding of G on
a surface of genus ¢, and if G is connected then P has a solution only if
|Q|Z | Al + | Bl + || C|| —2. If we have all the embeddings of G with genus g, then we
can solve P checking the faces of every embedding of G.

In order to solve P we could imagine an incremental method. Let P be a problem
for which we got a solution (%, §) and let P’ the problem we are trying to solve. When
there is some relationship between P and P’ we have a solution for P’. This is the
content of the following lemmas.

Lemma 2.1. Given the PPP-problem P=(Q, A, B, C) and blocks acA, beB and ceC
satisfying the mild condition that anbrc#0, we can create a new PPP-problem
P'=(Q', A", B',C") where Q' is Q with the addition of two new elements; and A, B’ and
C' are partitions of Q' formed from A, B and C by adding the two new elements to the
blocks a, b and c respectively. If P has a solution (o, ), then P’ has a solution (&', ’).

Proof. Without loss of generality, @=[n] and Q'=[n+2]. Let xeanbnc. We define
a'bya'(x)=n+1,a'(n+1)=n+2,a' (n+2)=a(x), a'(y)=a(y)if y # x; and we define ’
by B(B71x)=n+1, B'(n+1)=n+2, f'(n+2)=x and B'(y)=B(y) if y#p *(x)
(see Fig. 1).

Thus A’ = part(e) and B’ = part(f’). The values of fu(y) induced by changing from
(o, B) into (o', B’) are modified only for y=x and y=ua"' 57 (x).

If a7 !B~ (x)=x (Ba(x) is the only element in c), then f'a’'(x)=p'(n+1)=n+2,
Ba'(n+2)=p'(x)=n+1, p'a'(n+1)=p'(n+2)=x; so we inserted n+1 and n+2 in
the Bo-orbit of x.
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If a7 ' X)#x  (wx)#B71(x), then Ba'(a™!BTHN=FB" ()=n+1,
pa'(n+)=p'(n+2)=x, o' (x)=F'(n+1)=n+2, f'a'(n+2)=p"(a(x))=pPo(x) be-
cause o(x)# B~ (x); here as well we inserted n+1 and n+2 on both sides of x in its
Ba-orbit.

Thus, C’'=part(y’). O

Note: The converse is false. For instance, problem P defined by Q=[5],
A={{1,2,3},{4,5}}, B={{1,2}, {3,4,5}} and C={Q} does not have a solution but
(@ (1,6,2,3,7)(4,5), ': (1,2)(3,5,7,4,6)) is a solution to problem P’ defined by
Q'=[7], A =part(e'), B'=part(f’) and C'={Q’}.

Lemma 2.2. Let P=(2, A, B, C) be a PPP-problem such that A contains distinct blocks
a, and a,, B and C contains blocks b and c, respectively, such that a,nbnc#9 and
aync#Q. Let P'=(Q',A",B',C’) where Q" has two new elements, both of which are
added to b and ¢ and each one is added to ay and a, (with A, B and C otherwise
unchanged). If there is a solution (x, B) of P, then problem P’ has a solution (o', B’).
If B contains distinct blocks by and b,, A and C contains blocks a and c such that
anbinc#0 and byne#0, and Q=[n]. Let P"=(Q", A", B",C") where Q" has two new
elements both of which are added to a and ¢ and each one is added to b, and b, (with A, B
and C otherwise unchanged). If there is a solution (x, ) of P, then there is a solution

(@",B") of P".

Proof. As we can exchange the role of partitions A, B and C, we shall only prove the
first part of lemma.

We suppose 2=[n] and Q'=[n+2]. Let xea;nbnc and yea,nc. Then o' is
defined as follows: o'(x)=n+1,a'(n+ )=a(x),a’(y)=n+2, o«'(n+2)=a(y) and
«'(z)=w(z) if z¢{x,y}. B’ is defined as follows: B'(B~'(x))=n+1, f'(n+1)=n+2,
B'(n+2)=x, and B'(z)=B(z) if z# B~ *(x). We have A" =part(a’) and B’ = part(f’) as
desired. Now it suffices to show C’=part(f'a’).

Note that a~!f71(x)5#x since x and y are in the same orbit of fa. Moreover, if
u¢{x,y,a"'f71(x)}, we have B'a’(u)= fo(u).

There are two cases to be considered.

Case a: If a7 (x)=y, then B'a'(a 1~ (x))=F'a'(N)=B'(n+2)=x; B'a'(x)=
Bn+D)=n+2; fa'(n+2)=pa(y)=FF"'(x)=n+1 po'(n+1)=p"a(x)=Po(x)
because fo(x)#x.

In the p’a’-orbit of x and y, the sequence y—x— fa(x) has become y—x—
n+2—-n+1-fo(x).

Case b: If a7 '~ 1 (x)#y, then B’ (™ 1B ' (x)=F'B !(x)=n+1; Ba'(n+1)=
Bra(x)=Polx); B’ (x)=p'(n+1)=n+2; B'a'(n+2)=B'a(y)= P (y); B (¥)= ' (n+2)=x.

Now we have a !B '(x)—n+1-fa(x) and y—-x—n+2-pa(y) instead of
o™ B (x)—x— Pa(x) and y— fo(y).

In both cases, n+ 1 and n+ 2 are inserted in the fa-orbit of x and y (see Fig. 2). Thus
C'=part(f’a’). [
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Fig. 2. Addition of two elements in a fo orbit.
3. Computational complexity of problem PPP

It is obvious that PPPeNP: a guess («, §) can be checked in polynomial time and
space. The PPP,-problem is shown to be NP-complete by reduction of the classical
problem of existence of a hamiltonian circuit in directed graphs (DHC). This problem
can be stated as follows: given a directed graph G, is there a simple directed circuit in
G which passes through all the vertices?

3.1. Construction of the PPP,-problem associated with a given DHC-problem

A directed graph G is definite by a quadruple (V, E, out, in) where V is the set of
vertices, E is the set of edges; and out and in are functions that associate with each
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vertex the set of edges leaving and entering it. Let s be a vertex of a graph, and let
deg(s)=|out(s)| be the number of edges leaving s. The edge e is linking vertex s; to
vertex s; if and only if ecout(s;) and esin(s;).

Let G(V, E, out, in) be a graph with n vertices V'={sy,s,,...,5,} and m edges. To
each vertex s define di(s)=deg(s)—1 if deg(s)=1, and dl(s)=0 if deg(s)=0. di(s)
represents the number of choices at s when building a hamiltonian circuit. For
example, if dl(s)=1, there is a single choice between two possible edges to explore
from s.

Let d=Y7_,dl(s;), s;€V. Usually d=|E|—|V| except if there is a vertex s of
G without any outgoing edges, in which case there are no hamiltonian circuits.

Let D={d,,d>,...,d,} be a partition of [d] into n blocks given by d,=[dl(s,)],
di=1%ih dl(s;), Y= 1 dl(s;)] if i # 1. In this way, we have dl(s;) darts in a set d; for each
vertex s;.

Now we can associate with a DHC-problem H a corresponding PPP,-problem
P=(Q,A,B,C)

Q=VUEuU[d], A={a,,a,,...,a,} where a;={s;}vout(s;}ud;, B={by,b,,...,b,}
where b;={s;}uin(s;)ud;, C={cy,c,} where ¢c; =V and c,=EuU[d].

Note that if the original graph G has n vertices and m edges, the size of the new
problem is of O(n, m).

Lemma 3.1. If the PPP-problem P associated with a DHC-problem H has a solution,
then H has a solution.

Proof. Clearly, fa maps vertices to vertices, all of them being in the orbit ¢,of fa. Let
s; and s; be vertices such that fu(s;) =s;. Then a(s;}eout(s;) because the other possibil-
ity (a(s;)ed;) is incompatible with B(a(s;))=s; (s;¢B(d;)). Thus «(s;) is an edge from
vertex s; to vertex s;. Then (a(s;), afa(s,),a(Bo)*(s1),...,a(Be)" " 1(sy)) gives the
sequence of edges of a hamiltonian circuit in G. [

Lemma 3.2. If a DHC-problem H has a solution, then the associated PPP-problem
P has a solution.

Proof. We shall proceed by successive additions of darts in order to build a solution
(x, B). Starting with a solution (a° 8°) of a problem P° we add edges two
at a time (using the lemmas of Section 2) to have a solution of problem P%= P after
d steps.

Let CH be the set of edges of some hamiltonian circuit in G. We consider
the problem P°=(Q° A% B° C° where Q°=VUCH, A°={a%,a},...},
B°={b?,bY,...}, C°={c?,cY} with ¢{=V, and ¢I=CH, while a?={s;,¢;;} and
bY ={s;,e;;} for all e;;eCH.

The remainder of the proof of this lemma is based on the following three proposi-
tions whose proofs are immediate.
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Proposition 3.3. Define two permutations o°, 8 of Q° by o°(s;)=e;; and o°(e;;)=s;,
BO(s;)=ey; and B°(ex;)=s;. Then (2°, B°) is a solution of problem P°. Moreover a? < a;,
b?<b; and c?cc; for all i.

For every vertex s;,dl(s;) edges and dl(s;) elements of d; not in Q° remain to be
added. With each edge e;;¢ CH we associate a dart u;;ed;. We shall add both ¢;; and
u;. Problem P?*! is defined in terms of problem P?: Q7*'=QPU{e;, u;};
al*'=abtufey,uy;}, alt =ab if j#i; bPT =bl0{uy ), bET =bP0{e; ), bYT =bL if
ke{i,j}; cf™=c, 8" T =chu{e; u;)

Proposition 3.4. If P? has a solution, then P**' has a solution.

This is immediate using Lemma 2.2.

Proposition 3.5. The property a¥*'ca;, b?*'cbh;, c?*'<¢; (of Proposition 3.3), is
invariant under the addition of {e;;, u;;}.

Thus we have (a°, f°) a solution of problem P°, then a sequence of (o, f°), solutions
of a sequence of problems P'. After d additions we get (o%, %), a solution of problem
P?=P, derived problem from H. This proves Lemma 3.2. [

Theorem 3.6. PPP, is NP-complete.

Proof. Lemmas 3.1 and 3.2 show that PPP, is equivalent to DHC. []

4. Solving the problem when ||C| =1

A pair of partitions (4, B) defines a bipartite graph G 4, it has the blocks of 4 and
B as vertices, and an edge between acA, beB if anb#0.

A block x of a partition 4, B or C of a problem P will be called a vertex, hyperedge
or face of P respectively. A face c is said to be incident to a block x of 4 or Bif xnc#0.

If P (with || C]| =1) has a solution, fa has one orbit. This translates in the fact that
the graph G, 5 can be embedded with one face in a surface of maximum genus. Xuong
gives in [14] a criterion for the existence of such an embedding. Moreover, a poly-
nomial time algorithm using this criterion was recently published [6].

Let P=(Q, 4, B,C) be a PPP-problem with Q=[n] and C={Q}.

Let decn be the function decn(S)={s+n: seS} on sets of integers.

Let P'=(Q’, A’, B’,C’) the PPP-problem defined by Q'=[2n], A’=Au{decn(b).
beB}, B'={{l,n+1}, {2,n+2}, {3,n+3},...,{n,2n}}, and C'={Q'}.
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Lemma 4.1. P accepts a solution if and only if P' has a solution.

Proof. (Only if) Let (o, ) be a solution of P. We define «'(x)=a(x) if x<n,
o'(x)=p(x—n)+n otherwise. Note that B'(x)=n+x if x<n and B'(x)=x—n if
x>n. Let us compute the orbits of f'a’. If x<n,p'a'(x)=p (x(x))=0(x)+n,

"o’ (ou(x) + 1) = B’ ( Pa(x) +n) = Ba(x), therefore (B'a’)?(x)= Ba(x). We have a §’a’-orbit
which contains [#] and such that the eclement following an x <n is greater than n. This
orbit passes through [2#n], thus («’, §’) is a solution of P’.

(If) Let (2, ') be a solution of P’. Since f’ is necessarily given by B'(x)=n+x if
x<nand f'(x)=x—n if x>n, the f'a’-orbit alternately meets an element of [n] and
an element of Jn,2n]. For x <n we set: a(x)=f'a’'(x)—n and f(x)=p'a'(x+n). Thus
Bo(x)=B(B a'(x)—n)=(B'a')*(x). So we have in the af-orbit one element out of two
which were in the a'f’-orbit. These elements are less or equal to n. Thus (e, §) is
a solution of P. [

Theorem 4.2, If |C|| =1 then we can solve P while using polynomial time and space.

Proof. Lemma 4.1 says in this situation that every hypergraph is equivalent to
a bipartite graph and vice versa. So we can find a solution using Furst, Gross and
McGeoch’s algorithm [6] for maximum genus embedding of G/ ., the bipartite
graph associated with P’. P has a solution if and only if there is such an embedding
with one face of G4 5. Thus we can answer in polynomial time (and space) when

ICl=1. 0O

We saw in Theorem 3.6 that the PPP-problem is NP-complete, in particular when
|| C |l =2. But embedding a graph in a maximum genus surface (even with two faces) is
polynomial. There is no contradiction, since we impose elements of faces in our
problem; if || C | =1, both are equivalent, because darts are necessarily all in the same
face.

A theorem of Xuong says that if the graph G has an embedding of maximum genus,
then G'=Gu{u,v} (where u and v are new edges satisfying some technical property)
has also an embedding of maximum genus. Using Lemma 4.1, adding two new
adjacent edges in a bipartite graph is like adding two darts in the associated
hypermap. Lemmas 2.1 and 2.2 (which allow us to add two darts to a problem P) are
weaker than Xuong’s theorem; but Xuong’s theorem does not take into account the
membership of edges to blocks C; as we do. As above, this is not important.

5. The planar case

The problem P=(4, B, C) is said to be planar if |A| + || Bl +{ C||=|2}{+2. In the
following we consider a planar problem P.
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A circuit on a class ¢ is an order (x, x5, ..., x;) on the k darts of ¢ such for all i there
is a dart x;} such x; and x; are in the same block of 4 and x; and x;, ; (where x,, ; is to
be interpreted as x;) are in the same class of B.

A necessary condition for P to have a solution is that we can find a circuit for every
block c. If all classes of B have two darts (G is a graph) and when moreover the
problem P is planar, this condition becomes sufficient [12]. Let us recall the proof
Machi gave. A permutation I7 such part(IT)= C is defined by circuits on blocks of C.
Let B be the involution defined by partition B. I1f defines a permutation whose cycles
are included in the blocks of A. Let (B(]), ki, ...) be a cycle of IT where leQ. Thus
I1B(l)=0(l)=k, and the definition of a circuit implies that k; and [ are in the same
block a; of A. So we have z(ITf)=|Al. As G is connected we also have
Z(B)+z(II)+z(IIB)<n+2. Thus n+2=|A|+|B|+|Cl|l<z(IB)+z(B)+z(II)<
n+2. Hence (118, f) is a solution of P.

This is false when there is no condition on B. We can easily check that the problem
defined by:

A4={{1,2,3,4}, {5,6,7}, {8,9,10} },
B={{1,6,9}, {3,7}, {2,8}, {4,5,10} },
C={{6,10}, {4,7}, {1,8}, {2,9}, {3,5}},

has no solution while we can find a circuit on elements for each cycle of C.

Theorem 5.1. If P is planar and each class of B contains two elements then we can solve
P in polynomial time and space.

Proof. First we note that the permutation f is determined by partition B. By the
remark above, we only have to find a circuit on darts for each class c; to find a solution
to P.

Let G be the directed graph such that each vertex s; of G is associated with a block g;
of A and such that there is an edge e from s; to s; if and only if there is a dart xeq; and
B(x)ea;. Thus, each edge e€G is associated with a dart x of P.

Now let G; be the graph G restricted to the edges associated with darts of ¢;. We
have a circuit on darts of ¢; if and only if the graph G; is eulerian. We can build graphs
G and G; in polynomial time and space (there are at most n/2 graphs G;).

For each G;, we count the edges leaving and entering each vertex s in G;, check that
deg(s)=|in(s)| for all 5, and that G, is connected. Obviously this is done in polynomial
time and space. []

Recall that a graph is 3-connected if it is connected and it remains connected after
any deletion of two vertices.

Lemma 5.2. If P is planar and the graph G, g is 3-connected, then there is a linear
algorithm which solves P.



458 A. Bergey, R. Cori

Proof (sketch). A theorem of Whitney [8] states that there are only two ways (one
inverse of the other) to embed a 3-connected graph in the plane. If such an embedding
exists and if its faces induce partition C, problem P has a solution.

In this case, we only need to find the embedding of G, p in the plane using the
algorithm of Hopcroft and Tarjan [9] (which is of O(V)) and then to check that the
faces satisfy C = part(Bx). Thus we can answer in O(|Q]). [

To prove the next lemma we use the decomposition tree J of a graph G used in [5]
in order to test planarity dynamically. This tree can be built in O(nlog(n)) and reflects
the decomposition of G into its 3-connected components. Let us recall this technique.

With each node v of F there is associated a subgraph G, of G and a graph p,, the
skeleton of v. u, is a planar st-graph, that is a planar acyclic directed graph with exactly
one source s and exactly one sink t. Each son of v is associated with an edge of u,.
There are four types of nodes in .

— If G, is a single edge from s to t: v is a Q-node (without sons) whose skeleton g,
is G,.

— If G, is 1-connected with cut-vertices (hyperedges) sq,S;,...,8_ from s to t: v is
a S-node whose skeleton p, is a chain of k edges from s to ¢. v has k sons i whose
associated hypergraphs G; are 2-connected.

— If s and ¢ is a separation pair of G, with split components G,,G,, ..., Gy: then v is
a P-node whose skeleton consists of k parallel edges from s to t. v has k sons i (whose
associated hypergraphs are split components G;).

— If none of the above cases applies: let the X maximal split pairs (s;,¢;) with split
components G;; v is an R-node whose skeleton is obtained from G, by replacing
each subgraph G; with an edge e¢;. v has k sons i which are not Q-node with
associated hypergraphs G;. For any node of 7, s and ¢t must lie on the same face, so
we can consider skeleton u of an R-node as a 3-connected graph, adding an edge
from s to .

Lemma 5.3. If P is planar and the graph G , p defined by A and B is 2-connected then we
can solve P in polynomial time and space.

Proof (sketch). In order to obtain 7, and to check G, for planarity, we use the
algorithm presented in [5].

First we shall associate a PPP-problem P, to each node v of 7. Let P=(£2, A, B,C)
and Q' = Q; we define P'=(Q’, A’, B’, C’) the subproblem of P where A;={beQ'n A4},
Bi={beQ'nB;} and C;={beQ'nC;}. G,, P, and ¢, refer to a current node v. P, is an
extra subproblem associated to v if v is a R-node. G;(;, P;(;y and ¢;(;, refer to a son i ( j)
of v. P is associated with the root of 7.

— If v is a S-node we define the subproblems P;=(Q;, A;, B;, C;) of P, where €, is the
set of darts of G;. A face ¢; # () of P; which is not equal to the corresponding face ¢, of

P, is called external.
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~ If vis a P-node, let the intermediate subproblems P; be defined as above. If i is not

a Q0-node, then we get the corresponding subproblem P; by merging all the faces of

P;that are incident to s and ¢ or that are not equal to the corresponding face c,; this

new merged face is called external.

— If v is an R-node with k sons we define the subproblems P; in the same way as for

a P-node.

We define an extra subproblem P,=(Q,, 4,, B,,C,) where Q, is the set of darts of
Q-nodes; a, and by, are A, and B, restricted to the darts of Q,; ¢, is C, restricted to Q,
where we merge the faces ¢, that are incident to one and the same split pair (s;, t;) or
whose darts of the corresponding face ¢, are in a subproblem P; and in another
subproblem P;. Thus we get at most k new external faces of P,.

Let (4,,B,) be the representation of the skeleton y, obtained from (A4,,B,) by
adding: a dart b; to the classes associated with a separation pair (s;, ;) when s; and ¢;
are one vertex and one hyperedge; a dart b; and b, to vertices (hyperedges) s; and ¢;
respectively, while creating a new hyperedge (vertex) {b,,b,} if s; and ¢; are both
vertices or hyperedges. We do this aiso for the source s, and the sink ¢, of the
hypergraph G,. Each additional dart (or couple of darts) is associated with one virtual
edge of the skeleton y,. In this way the graph G, defined by (A4,, B,) is a subgraph of the
skeleton g,.

Now we have decomposed the original problem P into subproblems. The following
propositions (whose proofs are technical but straightforward) will be helpful in the
sequel.

Proposition 54. If v is a S-node then P, has a solution if:

(1) each subproblem P; has a solution;,

(2) for all i there is exactly one external face of P;, and this face is incident to
cut-vertices (hyperedges) (s;-1,$:);

(3) there is exactly one face c, of P, whose darts are in the external faces c; of
problems P;.

Proposition 5.5. If v is P-node with k sons, then P, has a solution if:

(1) each subproblem P; has a solution;

(2) for all i which is not a Q-node, the external face c; results in the merging of exactly
two faces of the intermediate subproblem P;

(3) there are at most k faces of P whose darts are in different faces c; of problems P;.

Proposition 5.6. If v is an R-node with k sons, then P, has a solution if’

(1) the extra subproblem P, and each subproblem P; have a solution;

(2) for all i which is not a Q-node, the external face c; results in the merging of at most
two faces of the intermediate subproblem P;

(3) there are exactly two faces of P, incident to a split pair (s;,t;} which gives one
external face in P; and one merged face in P,.
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merging vertices

Fig. 3. Merging hyperedges and vertices of subgraphs G; of a S-node while merging external faces of P;.

Now we scan the tree 7 from leaves to root. We solve P, of a node v when we have
a solution for all P; of sons i of v. We obtain («,, #,) merging vertices and hyperedges as
in Fig. 3. A solution of P, only depends on a solution of P; (and also on a solution of P,
if v is an R-node). In this way we obtain a solution of P, the original problem
associated to the root of 7.

All the subproblems P, associated to Q-nodes which are leaves of J obviously have
a solution,
— For a S-node v we solve P, by merging vertices and hyperedges (of the k subproblems
P;) associated to cut-vertices (hyperedges) sq, $1, .. -, ¢ of G, and by merging external
faces ¢; into the corresponding face c,. If this is not a solution of P, then stop.
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— For a P-node v we shall merge vertices and hyperedges associated to a split pair (s, ¢)
of a subproblem P; and a subproblem P; if their external faces share darts with the
same face ¢, (as we did for a S-node). We do this until we have merged all the
subpSroblems P,. If this is not a solution of P, then stop.

~ For a R-node v, first we try to solve the extra subproblem P, of v, (finding a planar
embedding of the 3-connected skeleton g, and then removing darts associated with
virtuals edges gives a guess to P,). Then we merge the vertices and the hyperedges
(as for a S-node) associated with split pair (s;, t;) of a subproblem P; and of extra
subproblem P, of node v. If this is not a solution of P, then stop.

The tree 7 is built in polynomial time and space. We can easily label each node

v with his subproblem or extra subproblem v in linear time and space. Each condition

(1), (2) and (3) of Propositions 5.4, 5.5 and 5.6 can be checked in polynomial time.

Subproblems for a Q-node are obvious. For a node of another type, merging the

subproblems P; and checking if it is a solution takes polynomial time and space. []

Theorem 5.7. If P is planar then there is a polynomial algorithm which solves P.

Proof (sketch). Let G, g the graph defined by (4, B) with k 2-connected components.
We can obtain the cut-vertices (hyperedges) s; of G in linear time and space [13]. We
define k subproblems P; and subgraphs G; in the same way as we defined P; and G; for
a S-node. Now we solve k subproblems P; (where G; is biconnected), merge them into
the problem P as in the proof of the previous theorem. []
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