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The methylotrophic yeast Pichia pastoris is a widely used

recombinant expression host. P. pastoris combines the

advantages of ease of use, relatively rapid expression times

and low cost with eukaryotic co-translational and post-

translational processing systems and lipid composition. The

suitability of P. pastoris for high density controlled culture in

bioreactors means large amounts of protein can be obtained

from small culture volumes. This review details the key features

of P. pastoris, which have made it a particularly useful system

for the production of membrane proteins, including receptors,

channels and transporters, for structural studies. In addition,

this review provides an overview of all the constructs and cell

strains used to produce membrane proteins, which have

yielded high resolution structures.
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Introduction
The number of membrane protein structures has signif-

icantly increased in recent years, due in part at least, to

the development of a range of novel methodologies to

stabilise membrane proteins in solution [1]. However

our understanding of eukaryotic membrane proteins in

particular remains somewhat limited. One of the key

issues associated with eukaryotic membrane proteins is

the difficulty in expressing the significant amounts of

material required for structural biology. Eukaryotic

membrane proteins have specific co-translational and

post-translational processing and membrane lipid

requirements meaning that bacterial expression systems

are often unsuitable. The higher eukaryotic insect cell

based systems have an excellent track record for struc-

tural studies of GPCRs [2] although are much

more expensive and time-consuming than the bacterial

systems.
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A good middle-ground is achieved with the yeast expres-

sion systems which combine the advantages of ease of

manipulation and low cost of production with eukaryotic

protein processing. The two major yeast expression sys-

tems are Saccharomyces cerevisiae and Pichia pastoris. The

bakers yeast, S. cerevisiae, has a good track record with

respect to heterologous production of membrane protein

for structural studies (http//blanco.biomol.uci.edu/

mpstruc/). Some recent examples include the PiPT high

affinity phosphate transporter from the fungus, Pirifor-
mospora indica [3] expressed with N and C-terminal

FLAG and His tags, and the NRT1.1 nitrate transporter

from the model plant Arabidopsis thaliana [4] expressed as

a fusion protein with a C-terminal GFP-His8 tag [5].

However markedly better success has been achieved with

membrane proteins heterologously produced in P. pastoris
(http//blanco.biomol.uci.edu/mpstruc, Table 1 with exam-

ple structures in Figure 2). The aim of this review is to

provide a brief overview to the key features of the P. pastoris
expression system, with particular emphasis on the success-

ful examples of eukaryotic membrane proteins produced for

structural studies, using this system. It is hoped that this will

provide a useful starting point for researchers embarking on

membrane protein expression studies.

General features of the P. pastoris expression
system
P. pastoris is a methylotrophic yeast, able to utilise meth-

anol as the sole carbon source. There are a comparatively

limited number of vectors for P. pastoris expression but

the most widely used incorporate the very strong, induc-

ible AOX1 promoter. This promoter controls expression of

genes central to the metabolism of methanol, AOX1 and

AOX2. The AOX1 promoter is repressed in the presence of

glucose or glycerol but strongly upregulated in the pres-

ence of methanol, making it a relatively tightly controlled

expression system. However, recent research has identi-

fied protein expression occurring during the pre-induc-

tion phase in cultures grown in bioreactors but not in

shaker flasks indicating that the promoter is leaky under

certain conditions [6].

The P. pastoris vectors usually integrate into the host cell

genome to produce a stably expressing clone. It is not

possible to control the number of copies which integrate

and so the optimal clone must be experimentally deter-

mined. Copy number can be easily estimated through

colony screening in the presence of increasing concentra-

tions of antibiotic [7�] although other methods including

real time PCR are also available [8]. However, higher
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10 New constructs and expressions of proteins

Table 1

Membrane protein structures obtained from protein expressed in P. pastoris.

Protein Source organism Expression

vector

Expression

strain

Genetic modificationsa Extra sequences PDB

Accession

Code and

reference

Membrane associated and membrane bound enzymes

Monoamine oxidase B Homo sapiens pPIC3.5K GS115/KM71 No tag 1GOS, [32]

1OJA, [33]

Monoamine oxidase A Homo sapiens pPIC9K KM71 No tag 2BXR, [34]

Leukotriene LTC4

synthase

Homo sapiens pPICZ KM71H N-terminal 6His tag 2UUH, [51]

4JCZ, 4JRZ,

4J7T, 4J7Y,

[52]

G-protein coupled receptors

Adenosine A2A

receptor

Homo sapiens pPIC9K SMD1163 Codon optimised,

C-terminal truncation,

mutated to remove N-

linked glycosylation site

Alpha factor signal

sequence,

N-terminal FLAG tag,

C-terminal 10His

3VG9, [21]

Histamine H1

receptor

Homo sapiens pPIC9K SMD1163 Codon optimised,

mutated to remove

N-linked glycosylation

sites, N-terminal

truncation, insertion of

sequence encoding T4

lysozyme into the third

intracellular loop

C-terminal GFP-8His 3RZE, [17��]

Ion channels

Two-pore domain

potassium

channel K2P1.1

Homo sapiens pPICZ SMD1163 N and C terminal

truncation, mutated to

removed N-linked

glycosylation site and

prevent non-specific

disulphide bridge

formation

PreScission

cleavage site, C-

terminal GFP-His8

3UKM, [28]

Two-pore domain

potassium

channel K2P4.1

Homo sapiens pPICZ SMD1163 Codon optimised,

mutated to remove

N-linked glycosylation

sites, C-terminal

truncation

PreScission

cleavage site,

C-terminal GFP-His8

3UM7, [16]

4I9W, [38]

Kv1.2 voltage gated

potassium channel

Rattus norvegicus pPICZ SMD1163 Mutated to remove

glycosylation sites

N-terminal 8His tag

followed by TEV

cleavage site

2A79, [53]

Kv1.2 voltage gated

potassium channel

Rattus norvegicus 3LUT, [54]

Kir2.2 inward rectifier

potassium channel

Gallus gallus pPICZ SMD1163 N and C-terminally

truncated

C-terminal

PreScission

protease cleavage

site followed by GFP

and a 1D4 antibody

recognition site

3JYC, [55]

3SPI, [56]

Kv1.2/Kv2.1 voltage

gated potassium

channel chimera

Rattus norvegicus pPICZ SMD1163b Mutated to remove

N-linked glycosylation

sites and reduce

formation of non-

specific disulphide

bonds

N-terminal 10His tag

followed by a

Thrombin protease

cleavage site

2R9R, [25]

3LNM, [57]

GIRK2 (Kir 3.2)

G-protein gated

potassium channel

Mus musculus pPICZ SMD1163 N and C-terminally

truncated

C-terminal

PreScission

protease cleavage

site followed by GFP

and a 10His tag

3SYO, [22]

4KFM, [58]
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Table 1 (Continued )

Protein Source organism Expression

vector

Expression

strain

Genetic modificationsa Extra sequences PDB

Accession

Code and

reference

Orai Calcium release

activated

channel (CRAC)

Drosophila

melanogaster

pPICZ SMD1163 N and C terminally

truncated. Mutated to

facilitate crystallisation

and reduce formation of

non-specific disulphide

bonds

C-terminal

antitubulin antibody

affinity tag

4HKR, [23]

Aquaporins

AQP2 Aquaporin Homo sapiens pPICZ GS115

aqy-1D

Codon optimised

C-terminally truncated

N-terminal 8 His

tag followed by a

TEV protease

cleavage site

4NEF, [15]

AQP4 Aquaporin Homo sapiens pPICZ X-33 N-terminal 8His

tag followed by a

FLAG tag and a 3C

protease cleavage

site

3GD8, [59]

AQP5 Aquaporin Homo sapiens pPICZ X-33 No tags 3D9S, [36]

SoPIP2;1 aquaporin Spinacia oleracea pPICZ X-33 C-terminal c-myc tag

followed by a 6His

tag

1Z98, 2B5F,

[35]

SoPIP2;1 aquaporin Spinacia oleracea pPICZ X-33 N-terminal 6His tag

followed by a

Thrombin protease

cleavage site except

for double mutant

3CN5

3CLL, 3CN5,

3CN6, [60]

Transporters

P-glycoprotein Mus musculus pHIL-D2 GS115 Mutated to remove

N-linked

glycosylation sites

C-terminal 6 His tag 3G5U, [42];

4MIM, [61]

(structure

refined from

original data)

P-glycoprotein Mus musculus pLIC KM71H Mutated to remove

N-linked glycosylation

sites and codon

optimised

C-terminal 6 His tag 4K5B, 4K5C,

4K5D, [19]

P-glycoprotein Caenorhabditis

elegans

pPICZ SMD1163 C-terminal

PreScission

protease cleavage

site followed by GFP

and a 10 His tag

4F4C, [27]

CmABCB1

(P-glycoprotein

homologue)

Cyanidioschyzon

merolae

pPICZ SMD1163 C-terminal TEV

protease

cleavage + 10 His

tag

(GSENLYFQGRSH10) 3WME, [62]

a Only modifications made to facilitate expression, purification and/or crystallisation are included here, not mutations made to explore protein

function.
b SB Long (unpublished data).
copy number does not necessarily correlate with higher

target protein expression so it is not usually sufficient to

identify clones based on copy number alone, ideally func-

tional protein expression levels must also be assessed [9].

One important feature of the P. pastoris system is that it is

highly suitable for large scale growth and culture using

bioreactors [10��]. Bioreactors give the user precise control

over culture parameters including pH, aeration, feed rate

and temperature as well as allowing real-time monitoring of
www.sciencedirect.com 
changes in OD600 and dissolved oxygen [11]. This allows

tightly regulated growth of the culture and means that

ultra-high cell densities (>100 g/L dry cell weight;

>500 OD600 units/mL) can be achieved [10��]. Medium

density cultures (�100 OD600 units/mL) are more usual for

membrane proteins since this both reduces proteolysis [12]

and cellular stress [13] associated with high density cul-

tures. This feature combined with comparatively inexpen-

sive growth medium makes P. pastoris a highly efficient

and cost-effective expression system.
Current Opinion in Structural Biology 2015, 32:9–17
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Figure 1
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Schematic illustrating the key steps in expression of an integral membrane protein in the methylotrophic yeast, P. pastoris. E. coli is typically used

for construct generation and amplification (a). Following confirmation of the correct sequence (b), the expression vector containing the gene of

interest together with appropriate tags and protease cleavage sites is transformed into electrocompetent P. pastoris cells (c). The DNA is

linearised before transformation and so integrates into the host vector. In our laboratory all our research involved the SMD1163 protease deficient

strain. Depending on the expression vector and cell line combination used initial selection of the colonies can be done using antibiotics (e.g.

zeocin) or (d) auxotrophy of the strains. Colonies initially selected using cell auxotrophy can then be further selected based on vector copy

number using increasing concentrations of the antibiotic G418 or zeocin (e). Although this indicates copy number it is not necessarily indicative of

the expression level of the target protein. Small scale expression trials can be carried out in 10–50 mL culture volume (f). Expression levels of the

target protein can be assessed using (g) functional analysis, Western blot analysis or direct fluorescence measurements where GFP is used as a

tag. Once the best expressing clone is identified this can be used for large scale expression either in shaker flasks or bioreactors (h).
A key consideration is that high levels of the methanol

used as an inducer are cytotoxic [14] which can reduce

culture viability and protein production. We use a sensor

to monitor levels of unmetabolised methanol in the

bioreactor [11] to reduce the potential risk of cytotoxic

effects and help to optimise protein expression levels.

Figure 1 summarises the steps involved in generating and

screening P. pastoris clones (see figure legend for details).
Current Opinion in Structural Biology 2015, 32:9–17 
Genetic modifications
There are several examples of membrane proteins suc-

cessfully produced in P. pastoris where the gene has been

modified to improve expression levels or facilitate crystal-

lisation (Table 1). Genes of interest are often codon

optimised for expression in P. pastoris [15,16,17��]. It is

not clear in all cases what difference this makes to protein

production as a comparison with the non-codon optimised

gene is not always reported. However, a recent detailed
www.sciencedirect.com



Pichia pastoris and membrane protein expression Byrne 13
study on P-glycoprotein (PgP) from mouse revealed that

expression from a gene codon optimised for P. pastoris
yielded substantially more protein than expression from

the wildtype gene [18��]. Intriguingly, size exclusion anal-

ysis also revealed that the PgP expressed from the wildtype

gene codon was more aggregated than that expressed from

the codon optimised gene. These findings indicate that a

more stable protein is expressed from the codon optimised
Figure 2

(a) (b)
Channels

Receptor Enzymes 
(e) (f) (g

Examples of integral membrane protein structures obtained using protein ex

(Accession code: 4HKR). The protein is a homohexamer (individual monome

membrane. A bound Ba2+ ion is indicated in the red sphere. (b) GIRK2, G-p

homotetramer (individual monomers in blue and pink) and is shown looking

pore domain K+ channel K2P4.1 (Accession code: 3UM7). The protein is a d

the membrane. Associated K+ ions are indicated in red spheres. (d) Aquapo

(individual monomers in blue and pink) and is shown from the intracellular s

(Accession code: 3RZE). The protein is a monomer with the receptor shown

shown in the red spheres. (f) Monomamine oxidase B (Accession code: 1G

protein is normally located on the cytosolic side of the outer mitochondrial 

image. The bound flavin adenine dinucleotide is shown in yellow stick mode

Leukotriene synthase (Accession code: 2UUH). The protein is a trimer (indiv

located in the nuclear outer membrane and the protein is shown with the cy

code: 4F4C). The protein molecule is a single polypeptide chain comprised 

the glycosylation group shown in yellow stick model. The protein is shown 
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gene. This construct has been subsequently used to obtain

high resolution structures of the PgP [19].

The GPCRs are typically truncated at the C-terminus.

This has been shown to increase both expression and

stability of the A2AR produced in P. pastoris [20] although

removal of this long flexible domain is also important for

crystallisation [21]. It is likely that for some GPCRs this
(c)

Transporter

(d)

) (h)

Current Opinion in Structural Biology

pressed in P. pastoris. (a) Orai Calcium release activated channel,

rs in blue and pink) and is shown from the extracellular side of the

rotein gated K+ channel (Accession code: 3SYO). The protein is a

 through the membrane. K+ ions are shown as red spheres. (c) Two

imer (individual monomers in blue and pink) and is shown parallel to

rin AQP2 (Accession code: 4NEF). The protein is a homotetramer

ide of the membrane. (e) Histamine H1–T4 lysozyme fusion protein

 in pink and the T4 lysozyme in blue. The bound ligand, doxepin, is

OS). The protein is a dimer (monomers shown in blue and pink). The

membrane and is shown with the cytosolic domains at the top of the

l and the inhibitor, pargyline, is shown in the red spheres. (g)

idual monomers in blue, pink and green). This protein is normally

tosolic domains at the top of the image. (h) P-glycoprotein (Accession

of two homologous domains (domains shown in blue and pink) with

looking through the membrane.
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14 New constructs and expressions of proteins
also removes potential palmitoylation sites. The ion

channels, for example, the G-protein activated K+ chan-

nel [22] and the Orai Calcium release activated channel

[23], are also often truncated at both the N and C-termini

removing extended flexible regions to produce a compact

domain more suitable for crystallisation (see also Table 1

and Figure 2a,b). Identification of potential flexible

regions, which may hinder crystallisation can be carried

out using disorder prediction software such as RONN

[24].

Minor modifications include removal of N-linked glyco-

sylation sites through mutagenesis [16,17��,25]. Removal

of these bulky, flexible groups is thought to be advanta-

geous for crystallisation. Yeast are able to glycosylate but

only perform some steps in common with higher eukar-

yotes, adding the core (Man)8-(GlcNAc)2 groups but not

the higher order decorations found in mammals. P. pas-
toris can hyper-glycosylate although to a lesser extent

than S. cerevisiae. A study by Yurugi-Kobayashi et al. [26]

expressed 25 non-glycosylated GPCRs in P. pastoris. The

data demonstrated that in many cases loss of glycosylation

resulted in reduced functional expression compared to

glycosylated receptor indicating that the effects of such

modifications need to be assessed for each individual

protein [26]. It was possible to obtain a high resolution

structure of a glycosylated form of P-glycoprotein (PgP)

[27] produced in P. pastoris demonstrating that at least in

some cases the presence of the sugar groups does not

inhibit the formation of well diffracting crystals

(Figure 2h).

Another reported modification mutates Cys residues to

prevent non-specific disulphide bridge formation which

could lead to loss of protein through aggregation [23,28].

Importantly, P. pastoris seems to be able to cope with

more radical genetic modifications including the expres-

sion of a Histamine H1 receptor–T4 lysozyme (H1R–
T4L) fusion protein [17��]. Here the gene encoding

the T4L replaced the region of the H1R encoding the

third intracellular loop [29] (Figure 2e). This has the

overall effect of stabilising the receptor and also adding

an extended soluble domain, key in forming crystal con-

tacts essential for crystal growth. Interestingly, the initial

screening of the expression construct for the H1R–T4L

fusion protein was performed in S. cerevisiae [30]. The

final construct, which also incorporated a C-terminal TEV

cleavage site followed by GFP and a 10His tag, was

cloned directly from the S. cerevisiae vector into the

P. pastoris vector. The preferential use of S. cerevisiae
for screening is likely due to the ease of generating

constructs by homologous recombination [31] but clearly

P. pastoris was superior for large scale production pur-

poses. The ease of cloning from the S. cerevisiae vector to

the P. pastoris vector makes this two-step approach at-

tractive for a range of target proteins.
Current Opinion in Structural Biology 2015, 32:9–17 
Tagging the construct
Untagged membrane proteins have been successfully

isolated from P. pastoris culture [32–36] based on the

properties of the individual proteins (Figure 2f shows the

structure of one of these proteins, monoamine oxidase B).

However it is more usual to produce tagged versions of

the protein to facilitate both detection and isolation of the

target molecule. Expression in P. pastoris is compatible

with a range of different tags. The vast majority of

proteins have been expressed as His tagged constructs

(Table 1) to allow affinity chromatography. However

FLAG tags have also been used both for analysis of

the protein [37] and as a means of isolation [20]. A number

of protein constructs additionally incorporate GFP for

rapid assessment of optimal expression and solubilisation

conditions [28,38]. A range of different cleavage sites

have also been employed to successfully remove tags

before crystallisation trials (see Table 1 for details).

Some of the P. pastoris expression vectors used for heter-

ologous membrane protein expression incorporate the S.
cerevisiae alpha-mating factor sequence signal upstream of

the gene of interest facilitating correct protein targeting.

This has been shown to increase expression of the mouse

5-HT5A serotonin receptor [39] and the human m-opioid

receptor [40]. However presence of the alpha-mating

factor sequence signal dramatically reduced expression

of the Histamine H1 receptor [29]. Thus, screening is

essential to assess the effects of the addition of the signal

sequence. The alpha mating factor should be cleaved

following expression by the endogenous Kex2 protease.

However we have found that if recombinant expression

levels are very high then the Kex2 is unable to effectively

cleave the signal sequence from all the produced protein

leading to a heterogeneous population (Singh et al., un-

published data). Careful construct design incorporating a

proteolytic cleavage site upstream of the gene of interest

allowed us to deal with this issue [20]. Recent research has

produced a novel P. pastoris strain with increased Kex2
copy number which increases production of a secreted

protein [41]. Such a strain may also be suitable for

membrane protein production.

Expression strains
Compared to S. cerevisiae and E. coli, there are relatively

few expression strains available for P. pastoris. All the

strains that have been used for production of membrane

proteins share the methanol utilisation (Mut) pheno-

type. Most commonly P. pastoris cell strains produce

both the AOX1 and AOX2 proteins resulting in a wild-

type Mut+ methanol utilisation phenotype. However

the KM71 MutS strains contain only the less efficient

AOX2 protein and exhibit slow growth on methanol.

The wildtype X-33 strain, together with vectors allowing

antibiotic selection using Zeocin, was successfully used

to express the SoPIP2;1 aquaporin from spinach [35]. A

number of membrane proteins have been expressed in
www.sciencedirect.com
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the GS115 (his4) and KM71 strains which lack the gene

encoding the histidinol dehydrogenase [32,42]. The

presence of this gene in the expression vector provides

a convenient means of screening for positive clones.

The SMD1163 strain (his4, pep4, prb1) lacks both Pro-

teinase A ( pep4) and Proteinase B ( prb1) activity. Pro-

teinase A activates endogenous P. pastoris proteases

including Proteinase B. However even in the absence

of Proteinase A, Proteinase B retains some activity. The

SMD1163 strain yielded increased expression of the 5-

HT5A serotonin receptor, a G-protein coupled receptor

(GPCR) compared to the GS115 strain [39]. This strain

is the most successful for the production of membrane

proteins for structural studies (Table 1) having been

utilised for the expression of GPCRs [17��,21], ion

channels [16,22] and a transporter [27]. However, de-

spite the successes achieved using SMD1163 cells for

membrane protein production, it is important to note

that this strain is no longer commercially available. The

related SMD1168 strain (his4, ura3, pep4) lacks only

Proteinase A activity and is commercially available

but there are no examples of this strain being used to

successfully produce membrane proteins for structural

studies so it is difficult to assess its suitability.

A bespoke P. pastoris strain deficient in the native Aqua-

porin 1 was developed for structural studies on the yeast

aquaporin [43��] and subsequently used for the production

of the human AQP2 aquaporin [15] (Figure 2d). Further,

more recent developments have resulted in a strain pro-

ducing cholesterol [44��], and the rational identification of

the transcription factor, Hac1, co-expression of which may

facilitate membrane protein expression [45]. Although

neither approach has been utilised for protein production

for structural studies as yet, the addition of these to the

toolbox may widen the applicability of P. pastoris as an

expression host for challenging membrane proteins.

Optimisation of culture conditions
Optimisation  of membrane protein expression is possi-

ble through alteration of P. pastoris media components

and culture conditions. A range of different tempera-

tures (27–308C) have been used for initial culture

growth with a drop in temperature to 20–27 8C during

induction. However many manuscripts report no tem-

perature reduction for induction. The induction time is

also a key variable. An analysis of three different induc-

tion times 20, 40 or 60 hours indicated that 60 hours was

optimal for the production of human CHRM2, a GPCR,

in shaker flasks [26]. However optimal functional ex-

pression of the A2AR in a bioreactor was achieved after

only 18 hours [11]. Induction times of 16–60 hours have

been reported for a range of membrane proteins

[15,16,42] and although details are often not provided

it is inferred that these times were identified by opti-

misation trials as being the most suitable for the indi-

vidual target protein.
www.sciencedirect.com 
Various additions to the media have been reported to

increase expression of GPCRs such as DMSO and Histi-

dine [7�,46��], although these have not been widely used.

Comparison with other systems for the
expression of membrane proteins
There have been a few studies specifically assessing a

range of different systems for the production of membrane

proteins for structural studies. Lundstrom et al. carried out a

study on over 100 GPCRs and showed that P. pastoris
successfully expressed as many individual receptors as a

Semliki Forest Virus mammalian cell system and produced

almost twice as many receptors as Escherichia coli [46��].
Radioligand binding analysis also revealed that for several

of the receptors higher functional expression was achieved

in P. pastoris compared to the mammalian cell system

[46��]. Comparison of muscarinic acetylcholine receptor

M2 expression in P. pastoris and Spodoptera frugipera insect

cells revealed similar levels of specific activity and binding

affinity but the higher cell densities achieved in P. pastoris
meant that the overall yield in this system was twice that in

the insect cells [47]. The most successful host for the

recombinant production of eukaryotic membrane proteins

for structural studies is currently the insect cell system [48],

however P. pastoris is not far behind.

What expression levels can be achieved?
Expression of both the human Aquaporin 1 (hAQP1) [49�]
and the human adenosine A2A receptor (A2AR) in biore-

actor culture [11] produced more than twice the expres-

sion level achieved in the equivalent shaker flask culture.

In the case of the hAQP1 not only was there more protein

produced in the bioreactor but much more of it was

correctly localised to the membrane [49�]. Western blot

analysis of the A2AR indicated that there was substantially

more receptor produced in the shaker flask than sug-

gested by functional analysis by radioligand binding assay

whilst the Western blot and binding assay results corre-

lated better for the bioreactor culture [11]. These results

show that the bioreactors produce not just higher amounts

of membrane protein but higher quality membrane pro-

tein. Isolation of the hAQP1 gave the remarkable yield of

90 mg/L. Yields of 13 mg/100 g cells are reported for the

codon optimised version of PgP expressed in a bioreactor

[18��]. P. pastoris is a highly attractive system for produc-

tion of eukaryotic membrane proteins but successful

expression remains target protein dependent [50].

Conclusion
The low cost and high yields together with the eukaryotic

processing machinery mean P. pastoris is a viable alterna-

tive to insect and mammalian cell systems for the large

scale production of many integral membrane proteins for

structural studies. Whilst there remain no clear rules for

the successful expression of membrane proteins in P.
pastoris, the examples detailed here do provide a useful

set of guidelines for researchers. It is also anticipated that
Current Opinion in Structural Biology 2015, 32:9–17
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a more expanded set of expression vectors and cell strains

will greatly facilitate the production of more challenging

membrane proteins in the future.
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