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We show that diagonal subalgebras and generalized Veronese subrings of a
bigraded Koszul algebra are Koszul. We give upper bounds for the regularity of
side-diagonal and relative Veronese modules and apply the results to symmetric
algebras and Rees rings. � 2001 Academic Press

INTRODUCTION

In this article we study standard bigraded algebras. Let K denote a field
� �and let R � S�J, where S � K x , . . . , x , y , . . . , y is a polynomial ring1 n 1 m

Ž . Ž . Ž . Ž .with standard bigrading deg x � 1, 0 and deg y � 0, 1 and J � S is ai j
bihomogeneous ideal. For such an algebra we consider two kinds of

Ž . Ž .subalgebras. Let a, b � 0 be two integers with a, b � 0, 0 . Then the
Ž .a, b -diagonal subalgebra is the positively graded subring

R � R ,�� Ž i a , i b.
i�0

Ž .where R denotes the i, j th bigraded component of R. Moreover, forŽ i, j.
Ž . Ž .two integers a, b � 0 such that a, b � 0, 0 , a generalized bigraded

Veronese subring of R is defined by

R � R .˜ �� Ž i a , jb.
i , j�0

Recall that a positively graded K-algebra A is called Koszul if the residue
class field K , considered as a trivial A-module, has linear A-free resolu-
tion. During the past 30 years Koszul algebras have been studied in various

� �contexts. A good survey is given by Froberg in 9 .¨
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In the past years, diagonal subalgebras have been studied intensively
because they naturally appear in Rees algebras and symmetric algebras. In
� �7 Conca et al. discuss many algebraic properties. In particular, they prove
that for an arbitrary bigraded algebra R the diagonals R are Koszul�

provided that one chooses a and b large enough. In that article they ask
� �two questions, one of which is positively answered by Aramova et al. in 2 ,

who showed that the defining ideal of R has a quadratic Grobner basis¨�

for a, b � 0. It is a well-known fact that this is a stronger property than
Koszulness. The main result of this article is the positive answer to the

� �second question posed in 7 : Suppose that R is a Koszul algebra. Are all
diagonal subalgebras R Koszul? Moreover, we prove that all generalized�

Veronese subrings R inherit the Koszul property. The algebras R˜ ˜� �

� �appear in 15 , where Romer studies the homological properties of bi-¨
graded algebras.

ŽNote that the Castelnouvo�Mumford regularity see Section 1 for the
.definition measures the complexity of the minimal free resolution of a

finitely generated R-module. Provided that R is a Koszul algebra, all
Ž � �.finitely generated modules have finite regularity over R see 3 .

For a finitely generated bigraded R-module and two integers c, d � 0
we define a side-diagonal module M Žc, d . as the R -module with graded� �

Ž Žc, d ..components M � M . One similarly defines a bigraded� i Ž i a	c, i b	d .

relative Veronese module M Žc, d .. Provided that R is Koszul, we get upper
�̃

bounds for the regularity of these modules.
Ž .In particular, if the initial degree of M see Section 1 for the definition

equals 0 and if we choose c, d such that RŽc, d ., respectively RŽc, d ., are� �̃

generated in degree 0, then reg M Žc, d . 
 1 and reg M Žc, d . 
 2 for all �,R � R ˜˜ �� �˜respectively �, with a, b � reg M. For the proof we use techniques similarR
� �to those of Aramova et al. in 1 , where they give upper bounds for rates of

modules over arbitrary Veronese algebras. Note that our results also hold
with similar proofs if one considers multigraded K-algebras and the
corresponding multigraded subalgebras.
This paper is structured in the following way. In the first section we

recall definitions and introduce notation.
In Section 2 we prove the main result and get the upper bounds for the

regularities mentioned above.
In the third section we discuss some applications of the main result. Let

A be a positively graded K-algebra and M a finitely generated A-module.
Ž .Provided that the symmetric algebra S M is Koszul, we show that all

symmetric powers of M have linear resolutions. In the specific case that
M � � is the graded maximal ideal of A, we have a necessary condition

Ž .for S � to be Koszul, that is, when the defining ideal of A has a 2-linear
resolution. Under the weaker assumption that A is Koszul, we obtain that
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all symmetric powers of � have a linear A-resolution. Let I � A be an
Ž .homogeneous ideal generated in one degree. If the Rees ring R I is

Koszul, then all powers of I have linear A-resolutions.
Moreover, we recover some well-known results about graded Koszul

� �algebras which Backelin and Froberg first proved in 5 , saying that the¨
Koszul property is preserved for tensor products over K , Segre products,
and Veronese subrings.
In the last section we interpret the main result for semigroup rings. The

Koszul property for these rings corresponds to the Cohen�Macaulay
Ž � � � �.property of certain divisor posets see 12 and 14 . Therefore, we obtain

that Cohen�Macaulayness for these divisor posets is preserved under
taking diagonals and generalized Veronese subrings.
The author is grateful to Professor Herzog for several inspiring discus-

sions on the subject of this article.

1. NOTATION

Throughout this paper R always denotes a bigraded K-algebra of the
form R � S�J, where J is a bihomogeneous ideal of S. We recall that for

Ž . Ž . Ž .two integers a, b � 0 with a, b � 0, 0 the a, b -diagonal is the set
�Ž . 4 2 � �� � sa, sb : s � � of � . As defined in 7 , the diagonal subalgebra R�

of R is generated by the residue classes of all monomials which have
Ž .degree a, b in S. Therefore, R is standard graded. Let a, b � 0 be two�

˜Ž . Ž . �Ž . 4 � �integers with a, b � 0, 0 and � � sa, tb : s, t � � . According to 15
we define the bigraded generalized Veronese subring R as the subalgebra�̃

Ž .of R with bigraded components R � R . The algebra R is˜ ˜� Ž i, j. Ž i a, jb. �

generated by the residue classes of all monomials which have degree
Ž . Ž .a, 0 or 0, b in S. Thus, R is a standard bigraded algebra. Note that�̃

Ž . Ž .R � R for a, b � 1, 1 . In the case that n � 0 or m � 0, the algebra R�̃

is simply standard graded and the subrings R , resp. R , are the well-˜� �

Ž .known Veronese subrings of R. Observe also that the 1, 1 -diagonal of R�̃

equals R .�

Let M be a finitely generated, bigraded R-module. For two integers
c, d � 0 we define M Žc, d . to be the finitely generated, �-graded R -mod-� �

Ž Žc, d .. Ž . Ž .ule with components M � M . For c, d � 0, 0 we simply� i Ž i a	c, i b	d .
Ž0, 0. Žc, d . Ž .use M instead of M . We call M the c, d -side-diagonal module of� � �

M. Similarly, we write M Žc, d . for the bigraded R -module with compo-�̃�̃
Ž Žc, d .. Ž .nents M � M and call it the relati�e c, d -VeroneseŽ i, j. Ž i a	c, jb	d .�̃

module of M. If n � 0 or m � 0, then these modules coincide with the
� �relative Veronese modules defined in 1 . We need two index sets,

II a, b � c, d � �2 : c � a or d � b� 4Ž . Ž .
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and

� 2c, d � � : c � a and d � b if a, b � 1,� 4Ž .
2
˜ c, 0 � � : c � a if a � 1 and b � 0,II a, b � � 4Ž .Ž .
2� 0, d � � : d � b if a � 0 and b � 1.� 4Ž .

˜Ž . Ž .Note that the index set II a, b is infinite while II a, b is a finite set. For
Ž . Ž . Žc, d .c, d � II a, b the module R is generated in degree 0 and, for�

Žc, d . Žc�, d�.Ž .arbitrary c, d � 0, it is R � R �l with some integer l � 0 and� �

Ž . Ž . Žc, d .some c�, d� � II a, b . An analogous fact holds for the modules R .
�̃

We have the decomposition

R � RŽc , d . .� �
Ž . Ž .c , d �II a, b

Analogously, if a, b � 1, then R is the finite direct sum of the RŽc, d . with
�̃˜Ž . Ž .c, d � II a, b .

Žc, d . Ž Žc, d ..The map M � M resp., M � M defines an exact functor from� �̃
the category of bigraded finitely generated R-modules to the category of

Ž .�-graded finitely generated R -modules resp., bigraded R -modules . In˜� �

particular, consider a bigraded free resolution

F : ��� � F � ��� � F � F � M � 0,
� i 1 0

where every free module F decomposes into a finite direct F �i i
Ž .bi, Ž p, q . Ž .� R �p,�q . Here, R �p,�q denotes the bigraded R-modulep, q

Ž .with components R �p,�q � R . Then we get an exact com-Ž i, j. Ž i�q, j�q.
plex of R -modules�

Ž . Ž . Ž . Ž .c , d c , d c , d c , d Žc , d .F : ��� � F � ��� � F � F � M � 0Ž . Ž . Ž . Ž .
� i 1 0 �� � � �

Ž .Žc, d . Ž Ž ..Žc, d ..bi, Ž p, q .with F � � R �p,�q . Analogous statements arei � �p, q

true for the functor �
Žc, d .. It is important for the main result to write every�̃

Ž ..Žc, d .module R �p,�q as a shifted side-diagonal module of the form�
Žc�, d�. Ž . Ž . � �R for some c�, d� � II a, b . For a real number � we use � for the�

smallest integer z such that z � � . We observe the following.

Ž . Ž .Remark 1.1. Let � be the a, b -diagonal. For z � � let � z �
� 4 Ž . Ž .0, . . . , a � 1 be the integer such that � z � z mod a and � z �
� 4 Ž .0, . . . , b � 1 with � z � z mod b.

Ž . Ž . Ž . Ž .a i Let a � 0, b � 0, and c, d � II a, b . Then

0, if q � d ,Ž .c , dR �p,�q �Ž . � Ž� Žc�p. , d�q.½ R �l , if q 
 d ,Ž .�

p � c� � �4where l �max 0, .a
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Ž . Ž . Ž .ii Let a � 0, b � 0, and c, d � II a, b . Then

0, if p � c,Ž .c , dR �p,�q �Ž . � Žc�p , � Žd�q..½ R �l , if p 
 c,Ž .�

q � d� � �4where l �max 0, .b

Ž . Ž . Ž .iii Let a, b � 1 and c, d � II a, b . Then

Ž .c , d Ž l a	c�p , lb	d�q.R �p,�q � R �l ,Ž . Ž .� �

p � c q � d� � � � �4where l �max 0, , .a b

˜Ž . Ž . Ž . Ž .b i Let a � 0, b � 0, and c, 0 � II a, b . Then

0, if q � 0,Ž .c , 0R �p,�q �Ž . �̃ Ž� Žc�p. , 0.½ R �k , 0 , if q � 0,Ž .
�̃

p � c� � �4where k �max 0, .a

˜Ž . Ž . Ž .ii Let a � 0, b � 0, and 0, d � II a, b . Then

0, if p � 0,Ž .0, dR �p,�q �Ž . �̃ Ž0 , � Žd�q..½ R 0,�l , if p � 0,Ž .
�̃

q � d� � �4where l �max 0, .b

˜Ž . Ž . Ž .iii Let a, b � 1 and c, d � II a, b . Then

Ž .c , d Ž� Žc�p. , � Žd�q..R �p,�q � R �k ,�l ,Ž . Ž .�̃ �̃

p � c q � d� � �4 � � �4where k �max 0, and l �max 0,a b

We recall some well-known definitions. For a bigraded, finitely gener-
RŽ .ated R-module M, each Tor M, K -group is naturally bigraded and thei

bigraded Poincare series is given by´

P R s, t , z � dim Tor R M , K s jt k z i.Ž . Ž . Ž .j , kÝM K i
i , j , k

Let A be a positively graded K-algebra and N a finitely generated, graded
A-module. We set

t N � sup j: Tor A N , K � 0 ,Ž . Ž .� 4js s

Ž . AŽ .with t N � �� if Tor N, K � 0. Recall that the Castelnuovo�s s
Mumford regularity is defined as

reg N � sup t N � i : i � 0 .� 4Ž .A i
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Ž .The initial degree indeg N of N is the minimum of the i such that
N � 0. Note that M is said to have an i-linear resolution if reg M �i A

Ž .indeg M � i. By definition, A is Koszul if and only if reg K � 0. EveryA
bigraded K-algebra R is also naturally �-graded with ith component
R � � R . Similarly, every bigraded R-module M can be consid-i Ž j, k .j	k�i
ered as �-graded. We say that M has a bigraded a-linear resolution if

RŽ .Tor M, K � 0 for all i � 0 and all j 	 k � i 	 a.i Ž j, k .

2. MAIN RESULT

In this section we prove the main result of this article.

THEOREM 2.1. If R is a Koszul algebra, then e�ery diagonal subalgebra R�

and e�ery generalized Veronese subring R is a Koszul algebra.�̃

Ž .For the proof we need several lemmata. Let � � x , . . . , x � R,x 1 n
Ž .resp. � � y , . . . , y � R, be the ideal generated by the residue classesy 1 m

of the x , resp. the y .i j

LEMMA 2.2. If R is Koszul, then the ideals � and � ha�e bigradedx y
1-linear R-resolutions.

Proof. By symmetry, it is enough to show that � has a bigraded lineary
resolution. The residue class field K has a 0-linear minimal free R-resolu-

Ž .tion F because R is Koszul. Let � be the 1, 0 -diagonal. By applying the
�

Ž . Ž .functor � we get the exact complex F � K � 0. By Remark 1.1 b the˜ ˜� � �

Ž . Ž .ith module F is a direct sum of copies of R shifted by �i, 0 . Thus˜ ˜i � �

R is a standard bigraded Koszul algebra.�̃

Let p: R � R be the projection map and i: R � R the inclusion.˜ ˜� �

Note that both maps p and i are bigraded homomorphisms. Since p is a
ring epimorphism and since p� i � id , the map i is a bigraded algebraR�̃� �retract. We may apply a result from 10 to the bigraded situation. This

R R R�̃yields that P � P P , where R � R�� is considered as a bigraded˜K R K � y�̃

R-module. Since R and R are Koszul, the equality of bigraded Poincaré�̃

series implies that � has a bigraded 1-linear R-resolution. This concludesy
the proof.

PROPOSITION 2.3. Let c, d � 0 be two integers. If � and � ha�ex y
bigraded linear resolutions, then:

Ž . Žc, d .a The sidediagonal module R has a linear R -resolution.� �

Ž . Žc, d .b The relati�e Veronese module R has a bigraded linear R -reso-�̃�̃
lution.

� �For the proof of the proposition we need a fact which is stated in 7 .
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LEMMA 2.4. Let A be a standard graded K-algebra, M a finitely generated
A-module, and

��� � N � N � ��� � N � N � M � 0r r�1 1 0

an exact complex of finitely generated graded A-modules. Then:

Ž . Ž .a Let h � � and let a � � such that t N 
 a 	 r 	 s for alls r
Ž .0
 r 
 h and 0
 s 
 h � r. Then t M 
 a 	 h.h

Ž . � 4b reg M 
 sup reg N � i: i � � .A A i

Ž . Ž .Proof of Proposition 2.3. Since the proofs of a and b are similar, we
Ž .only consider Part a . Moreover, it is enough to show that all modules

Žc,d . Ž . Ž .R with c, d � II a, b have linear resolutions. Let G be the bigraded� �

minimal free R-resolution of � . Since � has a bigraded 1-linear resolu-x x
tion, every free module G is of the formr

� r , Ž p , q .G � R �p,�q ,Ž .�r
p	q�r	1

p�1

Ž .with nonnegative integers � . Observe that for c � 1 and c, d �r , Ž p, q.
Ž . Ž .Žc, d . Žc, d . Žc, d .II a, b we have � � R . Applying the functor � , we obtain anx � �

Ž .Žc, d . Žc, d .acyclic complex G � R � 0, where
� � �

�Ž . r , Ž p , q .c , d Žc , d .p , q p , qG � R �l .Ž . Ž .Ž .�r � p , q�
p	q�r	1

p�1

Ž .By Remark 1.1 a , all occurring shifts l are at most r. Similarly, let Hp, q �

Ž . Ž .be the minimal free resolution of � . Then for d � 1 and c, d � II a, by
Ž .Žc, d . Žc, d . Ž .Žc, d .we observe that � � R and that the shifts in H arey � � r �

bounded by r.
Ž Žc, d ..To conclude the proof we show by induction that t R 
 h for allh �

Ž . Ž .h � � and c, d � II a, b . First we use induction on h. The modules
Žc, d . Ž Žc, d ..R are generated in degree 0, thus t R � 0. Let now h � 1. We� 0 �

Ž . Ž .apply induction on c 	 d where c, d � II a, b . For c 	 d � 0 it follows
Ž .that c � 0 and d � 0 and therefore trivially that t R 
 h. Let nowh �

c 	 d � 0. Then c � 1 or d � 1.
Ž .We discuss the case c � 1 first. In order to apply Lemma 2.4 a to the

Ž .Žc, d . Žc, d . ŽŽ .Žc, d ..exact complex G � R � 0 we show that t G 
 r 	 s for
� � � s r �

Ž .Žc, d .all 0
 r 
 h and 0
 s 
 h � r. Observe that G is a direct sum of0 �

Ž Žc�1, d .. Ž . Ž .n copies of R . Since c � 1, d � II a, b , the induction hypothesis�

ŽŽ .Žc, d ..on c 	 d implies that t G 
 s for all 0
 s 
 h. For 1
 r 
 hs 0 �

and 0
 s 
 h � r, we have

Ž .c , d Žc , d .p , q p , qt G 
 t R 	 r 
 s 	 r ,Ž . �ž /s r s �� ž /p	q�i	1
p�1
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where the first inequality holds because l 
 r for all occurring p, q, andp, q
the second inequality holds by induction on h. Now Lemma 2.4 implies

Ž Žc, d ..that t R 
 h.h �

If c � 0 and d � 1 the argument above similarly applies to the complex
Žc, d . Žc, d .Ž .H � R � 0.

� � �

As a direct consequence of Lemma 2.2 and Lemma 2.3 we obtain

COROLLARY 2.5. Let c, d � 0 be two integers. If R is Koszul, then all
side-diagonal modules RŽc, d . ha�e linear R -resolutions and all relati�e� �

Veronese modules RŽc, d . ha�e bigraded linear R -resolutions.�̃�̃

We use this corollary to get upper bounds for the regularity of side-diag-
onal and relative Veronese modules.

THEOREM 2.6. Let R be Koszul and M be a finitely generated, bigraded
Ž .R-module with r � reg M and indeg M � 0.R

Ž . Ž . Ž .a Let c, d � II a, b . Then

r � c�max 0, , if b � 0 and a � 0,� 4� �a

r � dŽc , d . 
max 0, , if a � 0 and b � 0,� 4reg M 
 bR ��

r � c r � d�max 0, , , if a, b � 1.� 4� �a b

˜Ž . Ž . Ž .b Let c, d � II a, b . Then

r�max 0, , if b � 0 and a � 0,� 4� �a

rŽc , d . 
max 0, , if a � 0 and b � 0,� 4� �reg M 
 bR ˜˜ ��

r � c d�min r , � 	 1 , if 1
 a 
 b.� 4a b

r� � �4In particular, if 1
 a 
 b, then reg M 
min r, 	 1 .R a�̃

Proof. Let F be the minimal free R-resolution of M. Since reg M � r
� R

Ž . � i, Ž p, q .we have F � � R �p,�q for some nonnegative integersi i
 p	q
 i	r
Ž .� . For the proof of Part a we restrict to the case a, b � 1. The otheri, Ž p, q.

Ž .cases follow similarly. By Remark 1.1 a and Corollary 2.5 we observe that
Ž .c , d i 	 r � c i 	 r � dreg F 
max 0, ,Ž . � 4R i a b��

r � c r � d
max 0, , 	 i .� 4� �a b

Ž . Ž .Now the claim follows from Lemma 2.4 b . For part b we also restrict to
Ž .the case a � 1 and b � 1. Use Remark 1.1 b and Corollary 2.5 to observe

that
Ž .c , d p � c q � dreg F 
max max 0, 	max 0, : i
 p	 q
 i	 r .� 4Ž . � 4� �� 4˜R i a b��̃
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The claim follows from a case-by-case computation using 1
 a 
 b and
Ž .Lemma 2.4 b . Then the upper bound for reg M follows from the factR�̃ Žc, d .that M decomposes into the finite sum M � � M .˜ ˜Žc, d .� IŽa, b. �

As a direct consequence of Theorem 2.6 the modules M and M have˜� �

small regularities for a, b � 0. More concretely, we have

COROLLARY 2.7. Let M be a finitely generated, bigraded R-module.

Ž . � 4 � 4a If max a, b � reg M, then reg M 
min 1, reg M .R R � R�

Ž . � 4b Let a, b � 1. If min a, b � reg M, then reg M 
˜R R ��̃

� 4 � 4min 2, reg M and reg M 
min 2, reg M .R R R�̃

The main result follows immediately from the results above.

Proof of Theorem 2.1. Note that a graded K-algebra A is Koszul if and
only if reg K � 0. Since K � K and K � K , the claim follows from˜A � �

Theorem 2.6.

Note that the converse of Theorem 2.1 is false. Take, for example, the
� � Ž 2 .algebra R � K x , y � x y . Since the defining ideal of R is generated1 1 1 1

in degree 3, R is not Koszul. But every diagonal R is Koszul because R� �

� �is isomorphic to a polynomial ring K t , to K , or to the Koszul algebra
� � Ž 2 .K t � t .

3. APPLICATIONS

In this section we present some applications which arise naturally in the
study of symmetric algebras and Rees algebras. In the following A will

� �always denote a positively graded algebra; i.e., A � K x , . . . , x �Q where1 n
Ž . � �deg x � 1 and Q � K x , . . . , x is a homogeneous ideal. Let � � A bei 1 n

the graded maximal ideal.
We first consider symmetric algebras. Let M be a graded A-module

Ž .with homogeneous generators f , . . . , f , and let a be1 m i j i�1, . . . , t, j�1, . . . , m
Ž .the corresponding relation matrix. The symmetric algebra S M �

jŽ . Ž . � �� S M of M has a presentation of the form S M � A y , . . . , y �J,1 mj� 0
Ž . mwhere J � g , . . . , g and g � Ý a y for i � 1, . . . , t. If f , . . . , f1 t i j�1 i j j 1 m

Ž .have the same degree, then S M is standard bigraded by assigning the
Ž .degree 1, 0 to the residue class of x for i � 1, . . . , n and by settingi

Ž . Ž . jŽ .deg y � 0, 1 . Note that S M is a graded A-module. As an applicationi
of the main result we obtain

Ž .COROLLARY 3.1. If S M is Koszul, then A is Koszul and the module
jŽ .S M has a linear resolution for all j � 0.
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Ž . Ž . jŽ .Proof. Let � be the 1, 0 -diagonal. Then S M � A and S M ��

Ž .Ž0, j. jŽ .S M . Thus A is Koszul and, by Corollary 2.5, the module S M has a�

linear A-resolution.

As one might expect, it seems to be a strong condition that the
Ž .symmetric algebra S M is Koszul. In a more specific case, however, when

M � � is the graded maximal ideal of a Koszul algebra, we have a
sufficient condition.

� �THEOREM 3.2. Let A � K x , . . . , x �Q and K be an infinite field with1 n
Ž . � �char K � 2. If Q has a 2-linear resolution o�er K x , . . . , x , then the1 n

Ž .defining ideal of S � has a quadratic Grobner basis with respect to a re�erse¨
Ž .lexicographic term order. In particular, S � is Koszul.

It is well-known that the existence of a quadratic Grobner basis for the¨
defining ideal of an algebra implies the Koszul property. For details on

� �Grobner bases and generic initial ideals refer to 8 .¨
� �LEMMA 3.3. Let Q � K x , . . . , x be an homogeneous ideal, K infinite,1 n

Ž . Ž .and char K � 2. Moreo�er, let Gin Q denote the generic initial ideal with
respect to the re�erse lexicographic term order induced by x � ��� � x . If Q1 n

Ž .has a 2-linear resolution, then Gin Q is quadratic and satisfies the following
condition:

� If x x �Gin Q and i 
 j, then x x �Gin Q for all k � j.Ž . Ž . Ž .i j i k

Ž . Ž .Proof. We use some results about Gin Q . It is known that Gin Q is a
Ž . Ž . Ž � �.Borel-fixed ideal and that regGin Q � reg Q � 2 see 8, 20.21 . Thus

Ž . Ž . Ž .Gin Q is quadratic. Since char K � 2 we obtain that Gin Q is stable2
Ž � �. Ž .see 8, 15.23b and therefore satisfies the condition � .

� � � �We need some notation taken from 11 . Let S � K x , . . . , x , y , . . . , y1 n 1 n
be the standard bigraded polynomial ring and

f � a x x ��� xÝ i i ��� i i i i1 2 d 1 2 d
1
i 
i 
 ��� 
i 
n1 2 d

Ž .a form of degree d, 0 . We set

f Žk . � a x x ��� x y ��� yÝ i i ��� i i i i i i1 2 d 1 2 d�k d�k	1 d
1
i 
i 
 ��� 
i 
n1 2 d

Žk . Ž .for k � 0, . . . , d. Note that f is bihomogeneous and of degree d � k, k .
� 4Moreover, let � � x y � x y for i � j and L � � : i � j . We need thei j i j j i i j

following lemma.

LEMMA 3.4. Let � denote the re�erse lexicographic term order on S
induced by x � x � ��� � x � y � ��� � y and 	 : S � S be the homo-1 2 n 1 n
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Ž . Ž .morphism with 	 x � x and 	 y � x for i � 1, . . . , n. Assume thati i i i
Ž . Ž .f � S is a bihomogeneous polynomial of degree s, t such that in f � x xi i1 2

Ž Ž ..��� x y ��� y satisfies i 
 i 
 ��� 
 i 
 j 
 ��� 
 j . Then in 	 f �i j j 1 2 s 1 ts 1 t

Ž Ž .. Ž . Ž Ž ..Ž t .	 in f and in f � 	 in f .

Proof. With the condition i 
 i 
 ��� 
 i 
 j 
 ��� 
 j it is easy1 2 s 1 t
Ž Ž .. Ž . Ž .to see that 	 in f � 	 � for all monomials � of f with � � in f .

Proof of Theorem 3.2. By Lemma 3.3, we may assume that the defining
ideal Q of A has a quadratic Grobner basis g , . . . , g with respect to the¨ 1 t
reverse lexicographic term order induced by x � x � ��� � x and that1 2 n
Ž . Ž . Ž .in Q satisfies the � condition of Lemma 3.3. It is easy to see that S �

Ž . Ž Ž1. Ž1. .has a presentation S � � S�J, where J � g , . . . , g , g , . . . , g , L .1 t 1 t
Let � denote the reverse lexicographic term order on S induced by

x � x � ��� � x � y � ��� � y . We will show that the set G �1 2 n 1 n
� Ž1. Ž1.4g , . . . , g , g , . . . , g � L is a Grobner basis for J with respect to � ,¨1 t 1 t
which concludes the proof of the theorem.

Ž .Let f � J be a bihomogeneous polynomial of degree s, t . Then s � 1.
Ž . Ž . Ž .We show that in f is divided by some in g with g � G. Let in f �

x x ��� x y ��� y , where i 
 i 
 ��� 
 i and j 
 j 
 ��� 
 j . Ifi i i j j 1 2 s 1 2 t1 2 s 1 t
Ž . Ž .there exist indices p, q such that i � j then in � divides in f , whichp q i jp q

is the claim.
Otherwise we have i 
 i 
 ��� 
 i 
 j 
 j 
 ��� 
 j . Let 	 denote1 2 s 1 2 t

Ž .the homomorphism from Lemma 3.4. Since f � J, it follows that 	 f � Q.
Ž . Ž Ž ..Ž t . Ž Ž ..By Lemma 3.4, we have in f � in 	 f , where in 	 f � x x ���i i1 2

x x ��� x . Since g , . . . , g is a Grobner basis for Q, there exists a¨i j j 1 ts 1 t
� 4 Ž . Ž Ž .. Ž .g � g , . . . , g such that in g divides in 	 f . By the condition � of1 t

Ž . Ž .Lemma 3.3, we may assume that in g � x x , if s � 1, or in g � x x , ifi i i j1 2 1 1Ž1.Ž . Ž . Ž .s � 1. Now in g or in g divides in f .

Under the strong assumption of Theorem 3.2 it follows from Corollary
jŽ .3.1 that S � has linear resolution for all j � 1. Actually, we have

jŽ .PROPOSITION 3.5. Let j � 1. If A is Koszul, then S � has a linear
A-resolution.

� �In the proof we use results from 13 and some basic facts about the
Ž � � .Koszul complex see 6, Sect. I.1.6 for details .

� �Proof. Let S � K x , . . . , x be the standard graded polynomial ringx 1 n
and A � S �Q. We may assume that the defining ideal Q of A does notx
contain linear forms. Then Q is generated in degree 2. Let � �
Ž .x , . . . , x � A be the graded maximal ideal of A. We denote by K the1 n �
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Ž .Koszul complex of the sequence x , . . . , x � A. Let H K be the first1 n 1 �

Ž . � �homology group of this complex. Recall that S � � A y , . . . , y �J for1 n
jŽ .some bihomogeneous ideal J and that S � is generated by the residue

Ž . jŽ .classes of all monomials in degree 0, j . We consider S � as an
A-module generated in degree j. For j � 1, there exists the downgrading

jŽ . j�1Ž .homomorphism � : S � � �S � mapping a residue class of y yj i i1 2
Ž � �.��� y to the residue class of x y ��� y see 13, Sect. 2 . Note that iti i i ij 1 2 j

does not matter which of the factors y is replaced by x .i il ljŽ .To show that S � has a linear R-resolution for all j � 1 we use
1Ž .induction on j. For j � 1, we have S � � � , which has a linear

resolution because A is Koszul. Let now j � 1. We have the short exact
sequence

� j
j j�11 0� U � S � � �S � � 0,Ž . Ž . Ž .

� �where U � ker � . By 13, Lemma 2.2 , U is a subquotient of the modulej
Ž . Ž .Ž . sN � H K � A�� �j 	 2 for some integer s � 1. The module1 � A� �

N is annihilated by �. Since Q is generated in degree 2, it follows that
Ž . SxŽ . Ž . tH K � Tor A, K is generated in degree 2. Therefore, U � K �j1 � 1

for some integer t � 0 and U has a j-linear A-resolution because A is
j�1Ž . Ž .Koszul. By the induction hypothesis, S � has j � 1 -linear A-resolu-

� � j�1Ž .tion. Thus, by 7, Lemma 6.4 , the module �S � has a j-linear
A-resolution. The assertion follows when we apply the long exact sequence

AŽ . Ž .of the functor Tor �, K to the sequence 1 .

The hypothesis of Theorem 3.2 cannot be weakened to the assump-
tion that A is only Koszul. A counterexample is the algebra A �

� � Ž 2 2 .K x , x � x , x . As a complete intersection. A is Koszul, but with the1 2 1 2
Ž .help of the program Macaulay we find that S � is not Koszul. This

example shows also that the converse of Corollary 3.1 is false because, by
jŽ .Proposition 3.5, all symmetric powers S � have a linear resolution.

A further intensively studied class of bigraded algebras is the Rees
algebras. Let I � A be a homogeneous ideal which is minimality generated
by homogeneous elements f , f , . . . , f of the same degree d. Recall that1 2 m

Ž . � �the Rees ring R I � A It of I admits a standard bigrading assigning the
Ž . Ž . Ž .degree 1, 0 to the generators of � � A and setting deg f t � 0, 1 fori

i � 1, . . . , m. As a consequence of Theorem 2.1 we observe

Ž . jCOROLLARY 3.6. If R I is Koszul, then A is Koszul and the ideal I has
a linear A-resolution for all j � 0.

Ž . Ž . jProof. Let � be the 1, 0 -diagonal. Then R I � A and I ��

Ž .Ž0, j.Ž . jR I �dj . Thus, by Corollary 2.2, the ideal I has a linear A resolu-�

tion.
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Ž .Note that the Rees algebra R � is always Koszul because it is a Segre
� �product of two Koszul algebras. In 11 Herzog et al. prove that the

Ž .defining ideal of R � has a quadratic Grobner basis provided Q has a¨
quadratic Grobner basis.¨
As direct consequences of Theorem 2.1 we get some well-known facts

about positively graded Koszul algebras. Let d � 1 be an integer. Recall
that the dth Veronese subring AŽd . of A is the positively graded algebra
AŽd . � � A . For two standard graded K-algebras A and B the tensori di� 0
product A � B � � A � B is a standard bigraded algebra. TheK i K ji, j� 0

Ž .Segre product of A and B, denoted by A�B, is the 1, 1 -diagonal of
Ž � �.A � B. We recover some well-known results see 9 .K

COROLLARY 3.7. Tensor products, Segre products, and Veronese subrings
of Koszul algebras are Koszul.

Ž .Proof. Let F resp. G be the minimal free resolution of K over A
� �

Ž .resp. B . Then the tensor product G � F gives a minimal free resolu-
� K �

tion of K over A � B. Thus if A and B are Koszul, A � B is Koszul.K K
Ž .Now the Segre product A�B is the 1, 1 -diagonal A � B, which isK

Koszul by Theorem 2.1.
Let A be a positively graded Koszul algebra. Consider A as a standard

Ž . Žd .bigraded algebra where all generators have degree 1, 0 . Then A is a
Žd .diagonal of A and, by Theorem 2.1, A is Koszul.

� �Let M be a graded A-module. Recall from 1 that the rate of M is
� Ž . 4 � �given by rate M � sup t M �i: i � 0 . A similar definition is given in 4 ,A i

where Backelin proves that AŽd . is Koszul for d � 0. Note an A-module
Žd . � �M is naturally an A -module. Aramova et al. have proved in 1 that

2 rate Žd .M 
 rate M�dŽ . � �A A

for an arbitrary K-algebra A and all d � c where c is a constant
depending on A. Moreover, they showed that c � 1, if A is a polynomial
ring. For this, they used that the relative Veronese modules AŽd, j. �
� A for j � 0, . . . , d � 1 have linear A-resolutions. Since thei d	ji� 0
relative Veronese modules coincide with side-diagonal modules, it follows

Ž .from Corollary 2.3 that 2 is valid for c � 1 provided A is Koszul. We get
similar upper bounds for the regularity over Koszul algebras.

COROLLARY 3.8. Let A be Koszul and M be a finitely generated graded
� �Žd .A-module. Then reg M 
 reg M�d for all d � 1. In particular,A A

reg Žd .M 
 1 if d � reg M.A A

Ž .Proof. Consider A as a bigraded algebra generated in degree 1, 0 . Let
Ž . Žd . Žd .� be the d, 0 -diagonal of A. Then A � A and, as an A -module, we�

d�1 Žc, 0.have M � � M . By Theorem 2.6, the claim follows.�c�0
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4. SEMIGROUP RINGS

Finally, we study the consequences of the main result for bihomoge-
neous semigroup rings. Let 
 � �d be a finitely generated semigroup. We
call 
 standard bigraded if

Ž .a 
 is the disjoint union � 
 ,i, j� 0 Ž i, j.

Ž .b 
 � 0, 
 	 
 � 
 for all integers i, j, k, l � 0,Ž0, 0. Ž i, j. Žk , l . Ž i	k , j	l .
and

Ž .c 
 is generated by elements of 
 and 
 .Ž1, 0. Ž0, 1.

Ž .We call the elements of 
 bihomogeneous of degree i, j . Similarly,Ž i, j.
one defines a graded semigroup. Let 
 be a standard bigraded semigroup
which is minimally generated by � , . . . , � � 
 and � , . . . , � �1 n Ž1, 0. 1 m

� �
 , and let K t , . . . , t denote the polynomial ring. To a semigroupŽ0, 1. 1 d
Ž . � a1 a2 adelement � � a , . . . , a � 
 we assign the monomial t � t t ��� t .1 d 1 2 d

� �Recall that the semigroup ring K 
 is the K-algebra generated by the
� i � j � �monomials t , t , where i � 1, . . . , n and j � 1, . . . , m. Let 	 : S � K 


Ž . � i Ž . � j Ž .be the epimorphism with 	 x � t and 	 y � t . Then J � ker 	 isi j
� �called the toric ideal of the semigroup ring K 
 . If 
 is bigraded then

� �K 
 � S�J is a standard bigraded algebra.
� �The divisibility relation of the monomials in K 
 defines a partial

order � on 
. For �, � � 
 we set � � � if � � 
 	 � for some 
 � 
.� �

Ž . � 4Then the open intervals �, � � 
 � 
: � � 
 � � are partially or-
dered with the induced ordering.

Ž . Ž .Let P, � be a finite poset. Recall that the boundary complex � P is�

the simplicial complex whose faces are the totally ordered subsets of P.
Ž .For � � 
 we denote the boundary complex of the interval 0, � by � .�

� �The following is stated in 12; 14, Corollary 2.2 .

� �PROPOSITION 4.1. K 
 is Koszul if and only if � is Cohen�Macaulay�

for all � � 
.

Let 
 be a bigraded semigroup. In analogy to the definition for
K-algebras we set


 � 
 and 
 � 
˜� �� Ž i a , i b. � Ž i a , jb.
i�0 i , j�0

Ž .for the a, b -diagonal �. Note that 
 is graded and partially ordered by�

Ž .the induced ordering. If � � 
 , then we use � for the boundaryŽ i a, i b. � �

Ž .complex of the induced open interval 0, � � 
 . Similarly, we define�

Ž .� for � � 
 . Finally, we reformulate our main result for semi-˜� � Ž i a, jb.
group rings.
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COROLLARY 4.2. Let 
 � �d be a bigraded semigroup and � a diagonal.
If � is Cohen�Macaulay for all � � 
, then:�

Ž . Ž .a � is Cohen�Macaulay for all � � 
 .� � �

Ž . Ž .b � is Cohen�Macaulay for all � � 
 .˜ ˜� � �
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