
JOURNAL OF COMPLEXITY 12, 315–338 (1996)
ARTICLE NO. 0021

Topological Complexity with Continuous Operations

PETER HERTLING

Theoretische Informatik I, FernUniversität, D-58084 Hagen, Germany

Received May 1996

The topological complexity of algorithms is studied in a general context in the
first part and for zero-finding in the second part. In the first part the level of
discontinuity of a function f is introduced and it is proved that it is a lower bound
for the total number of comparisons plus 1 in any algorithm computing f that uses
only continuous operations and comparisons. This lower bound is proved to be
sharp if arbitrary continuous operations are allowed. Then there exists even a
balanced optimal computation tree for f. In the second part we use these results
in order to determine the topological complexity of zero-finding for continuous
functions f on the unit interval with f (0) ? f (1) , 0. It is proved that roughly log2

log2 «21 comparisons are optimal during a computation in order to approximate a
zero up to «. This is true regardless of whether one allows arbitrary continuous
operations or just function evaluations, the arithmetic operations h1, 2, *, /j, and
the absolute value. It is true also for the subclass of nondecreasing functions. But
for the subclass of increasing functions the topological complexity drops to zero
even for the smaller class of operations.  1996 Academic Press, Inc.

1. INTRODUCTION

This paper consists of two parts. In the first part we analyze the topological
complexity of algorithms which may use arbitrary continuous operations.
In the second part we study the topological complexity of zero-finding.

In the first part we prove a general result on the topological complexity
of algorithms in the sense of Smale (1987) and Vassiliev (1992). They
gave estimations for the total number of branching nodes needed in a
computation tree that computes a vector of zeros of a univariate complex
polynomial up to a small error. We consider computation trees that may
use arbitrary continuous operations. In fact, we consider continuous compu-
tation trees on arbitrary topological spaces. On the other hand, we introduce
a simple and presumably new ordinal rank measuring the discontinuity of
a function, which we call the level of the function. Our main result can be

315
0885-064X/96 $18.00

Copyright  1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81940075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

316 PETER HERTLING

stated as follows: if f is a function of finite level then the minimum of
the total number of branching nodes in any continuous computation tree
computing f is equal to the level of f minus 1. Concerning the upper bound
we show more: there is an optimal continuous computation tree of minimal
depth, i.e., if the level of f is n $ 1 then there is a continuous computation
tree for f with n 2 1 branching nodes and with at most log2 n branching
nodes on any path. Furthermore we give local definitions of the level of
discontinuity of a function at a point and of the topological complexity of
an algorithm at a point and show that also in the local case the analogous
estimates hold true and are sharp. Note that the lower bound is valid for
real number machines as introduced by Blum et al. (1989) and for real
number oracle machines (with continuous operations) as introduced by
Novak (1995) and Novak and Woźniakowski (1996).

In the last mentioned paper Novak and Woźniakowski (1996) study the
topological complexity of zero-finding for continuous functions on the unit
interval. They consider real number oracle machines which for a fixed
« . 0 solve the problem to compute an «-approximation of a zero of f for
any f [C [0, 1] with f (0) , 0 and f (1) . 0, i.e., the problem to compute
a number x such that there is a zero x* of f with ux 2 x*u # «. For
example, the bisection algorithm uses log2 «21 2 1 comparisons during a
computation (for « , 1). One of the results of Novak and Woźniakowski
(1996) states that this is optimal if the real number oracle machine may
use arbitrary Hölder operations, i.e., operations that satisfy a Hölder condi-
tion on any bounded subset of their domain. We show that one can perform
exponentially better with a machine which besides comparisons uses only
function evaluations, the arithmetic operations h1, 2, *, /j, and the absolute
value u ? u. Observe that division is not Hölder. More precisely, we prove
that there is a computation tree using these operations which contains
exactly log2(«21 1 2) 2 2 branching nodes, has minimal depth, and com-
putes an «-approximation of a zero even for any function f [C [0, 1] with
f (0) ? f (1) , 0. Hence it contains at most

log2(log2(«21 1 2) 2 1)

branching nodes on any path. On the other hand, using the characterization
obtained in the first part we show that this is optimal even if arbitrary
continuous arithmetic operations and arbitrary continuous information op-
erations are allowed.

In fact, the lower bound is proved already for the subclass of nondecreas-
ing functions. But for the slightly smaller class of increasing functions the
zero can be approximated by a real number oracle machine that uses only
the arithmetic operations ARIabs :5 h1, 2, *, /, u ? uj, function values, and
no comparisons at all.

TOPOLOGICAL COMPLEXITY WITH CONTINUOUS OPERATIONS 317

We conclude that the approximation of zeros—considered in the second
part—of (nondecreasing) functions f [C [0, 1] with f (0) ? f (1) , 0 is
an example of a problem where a purely topological lower bound—as
considered in the first part—can be achieved by an algorithm that uses
only simple arithmetic operations.

2. CONTINUOUS COMPUTATION TREES AND THE LEVEL OF DISCONTINUITY

First we introduce continuous computation trees, which subsume the
purely topological properties of computation trees arising from e.g. real
number machines as introduced by Blum et al. (1989) or oracle machines,
see Novak and Woźniakowski (1996). Then the level of discontinuity of a
function is defined. In the last subsection results connecting continuous
computation trees and the level of functions are given.

In the whole section X and Y are arbitrary topological spaces if nothing
else is said.

2.1. Continuous Computation Trees

A topological test on X is a function t :# X R hTRUE, FALSEj such
that t21hTRUEj is an open subset of dom(t). (By f :# X R Y we denote a
(possibly partial) function f with dom(f) # X and range(f) # Y).

DEFINITION 2.1. A continuous computation tree (CCT) over (X, Y) is
a finite binary tree T whose internal nodes contain topological tests on X
and whose leaves contain continuous functions g :# X R Y. The function
fT :# X R Y computed by T is defined recursively. If T consists just of one
leaf, T 5 (g) where g :# X R Y is a continuous function, then we set
fT :5 g. If T 5 (if t then T1 else T2) where t is a topological test on X and
T1 and T2 are continuous computation trees, then

fT(x) :5 5
fT1

(x) if t(x)

fT2
(x) if ¬t(x)

undefined if x Ó dom(t)

for all x [X.

The computation path that is followed during a computation on an input
x [dom(fT) is defined in the usual way as the sequence of nodes from
the root to a leaf that are visited during the computation.

Before we define the global and the local topological complexity of a
CCT we discuss why the CCT model expresses the purely topological

318 PETER HERTLING

properties of real number algorithms. For details on real number machines
the reader is referred to Blum et al. (1989). We consider only algorithms
that stop after a bounded number of steps for any input for which they
give a result (if for an algorithm there is no upper bound for the length of
the computations on valid inputs then there is also no upper bound for
the number of comparisons executed during such computations). Their
computation can be described by a finite rooted tree. The computation
starts at the root where the input is read into certain registers and, if
successful, it ends in one of the leaves where the output is contained in
output registers. There are two types of internal nodes. The branching
nodes contain comparisons ‘‘ri : rj’’ of real numbers where ‘‘:’’ [h5, ?, ,,
., #, $j. The computation nodes contain arithmetic operations ‘‘ri :5
op(ri1

, . . . , rik
)’’ where op belongs to a prescribed class ARI of basic

arithmetic operations. This might include only the four basic operations
h1, 2, p, /j (and rational constants) or evaluation of polynomials or addi-
tionally some elementary functions like e.g. exp, log, or the absolute value
u ? u. If a division by zero is tried or, more generally, if an argument does
not lie in the domain of definition of the operation which is to be executed
then the computation stops without result.

In this paper we are interested only in the topological complexity of an
algorithm, i.e., in its branching nodes. Hence we rewrite the algorithm
without arithmetic nodes. They can be eliminated by replacing the simple
comparisons in the branching nodes by tests of the form ‘‘T(x) : 0’’ where
x is the input and T is the function composed of the basic arithmetic
operations that are executed on the sequence of nodes leading from the
root to the corresponding branching node. In the same way one has to
write the results in the leaves in the form ‘‘g(x)’’ for analogously resulting
functions g. If all the basic arithmetic operations are continuous then the
composed functions T and g are continuous too. Hence we have a continu-
ous computation tree.

This can also be applied to real number algorithms with additional infor-
mation operations. If the considered input space is not a finite-dimensional
Euclidean space but, e.g., a sufficiently large subspace of C[0, 1] then in
the real number model one has to use other operations in order to obtain
information about the input objects. Novak and Woźniakowski (1996) have
introduced the real number oracle machines that have additional informa-
tion nodes. In these nodes information operations L: I 3 Rk R R, defined
on the input space I and on a real Euclidean space Rk, are executed. If for
example the input space is a subspace of C [0, 1] then the evaluation operator
eval : C [0, 1] 3 [0, 1] R R, eval(f, x) 5 f (x) is a common information
operator. If the used information operators and the arithmetic operations
are continuous then one can eliminate them as above and again one obtains
a continuous computation tree.

TOPOLOGICAL COMPLEXITY WITH CONTINUOUS OPERATIONS 319

We conclude that any computation tree describing a real number machine
or a real number oracle machine can be transformed canonically into a CCT
if all used operations—besides the comparisons, of course—are continuous.
Especially any lower bounds proved for CCTs are valid for real number
(oracle) machines, too.

Following Smale (1987), in this section we consider the total number of
branching nodes in a computation tree as the topological complexity of the
algorithm. Since our trees are binary this is the number of leaves minus
one. In Section 2.3 we will see that in this context the depth of a tree is a
less sharp complexity measure since for any CCT there is an equivalent
(i.e., computing the same function) balanced CCT of minimal size.

We define also a local version of the topological complexity of T at a
point.

DEFINITION 2.2. The size Size(T) of a CCT T is the number of leaves
of T. The branching number size(T, x) of T at a point x [X is the
number of all computation paths such that in any neighborhood U
of x there are points x9 [dom(fT) > U such that on input x9 this path is
followed.

The branching number can also be expressed recursively. If T is a CCT
over (X, Y) and M # X is a subset of X, then the restriction of T to M is
defined recursively by

T uM :5 H(guM) if T 5 (g)

(if t then T1uM else T2uM) if T 5 (if t then T1 else T2).

LEMMA 2.3. Let T be a CCT over (X, Y) and x [X. If T 5 (g) then

size(T, x) 5 H1 if x [dom(g)

0 else,

and if T 5 (if t then T1 else T2) then

size(T, x) 5 size(T1ut21hTRUEj , x) 1 size(T2ut21hFALSEj , x).

The proof is easily done by induction. Obviously size(T, x) # Size(T)
for all x [X.

Remarks. 1. The branching number can be described as the number
of all computation paths that could be followed if x is disturbed slightly at
the beginning of the computation. Another local version of the topological
complexity seems to be interesting as well: the number of all computation

320 PETER HERTLING

paths that could be followed if at any internal node the input x might be
disturbed independently. This level of degeneracy sizeb(T, x) of T at a point
x can also be defined recursively: if T 5 (g) then

sizeb(T, x) 5 H1 if x [dom(g)

0 else,

and if T 5 (if t then T1 else T2), then

sizeb(T, x)

5 5
sizeb(T1 , x) 1 sizeb(T2 , x) if x [t21hTRUEj > t21hFALSEj

sizeb(T1 , x) if x [t21hTRUEj \ t21hFALSEj

sizeb(T2 , x) if x [t21hFALSEj \ t21hTRUEj

0 if x [X \ dom(t).

One easily checks size(T, x) # sizeb(T, x) # Size(T) for all x [X. Compare
also the second remark in Section 2.3.

2. We have considered only binary tests. Sometimes also comparisons
of real numbers with a subsequent ternary branching according to the result
‘‘less’’, ‘‘equal’’, or ‘‘larger’’ of the comparison are considered. If all of the
used operations are continuous then these tests have the form t :# X R
h21, 0, 1j where t21 h21j and t21h1j are disjoint open subsets of dom(t). It
is not difficult to prove that a continuous computation tree which may
contain also such ternary tests can be transformed into a CCT according
to Definition 2.1 (i.e., containing only binary topological tests) that contains
at most as many branching nodes. Thus, if arbitrary continuous operations
are allowed, then one cannot reduce the total number of branching nodes
needed by using ternary tests.

2.2. The Level of Discontinuity of a Function

In the last section we considered the topological complexity of algorithms.
Here we introduce a very simple, but presumably new, ordinal rank measur-
ing the discontinuity of a function. In the next section we shall see that it
is a lower bound for the topological complexity of an algorithm computing
the function, and, in the case of CCTs, a sharp lower bound.

We introduce a global and a local version.

DEFINITION 2.4. Let f :# X R Y be a (possibly partial) function. We
set C0(f) :5 dom(f) and for any n [N 5 h0, 1, 2, . . .j

TOPOLOGICAL COMPLEXITY WITH CONTINUOUS OPERATIONS 321

Cn11(f) :5 dom(f) > closurehx [Cn(f) u f uCn(f) is discontinuous in xj.

The level of f is Lev(f) :5 minhn u Cn(f) 5 Bj where we set min B :5 y,
and for any x [X the level of f in x is lev(f, x) :5 minhn u x Ó Cn(f)j.

The following properties are obvious.

LEMMA 2.5. Let functions f, g :# X R Y be fixed.

1. The sequence (Cn(f))n is falling, i.e., Cn(f) # Cm(f) for any m , n.

2. lev(f, x) # Lev(f) for all x [X and Lev(f) 5 maxhlev(f, x) u
x [X j if Lev(f) is finite.

3. If U # X is open and the functions f and g coincide on U, i.e.,
f uU 5 guU , then lev(f, x) 5 lev(g, x) for all x [U.

4. If f 5 guM is the restriction of g to a subset M # X then
lev(f, x) # lev(g, x) for all x [X.

The level is additive in the following sense.

LEMMA 2.6. Let f :# X R Y be a function. Then Cm(f uCn(f)) 5 Cn1m(f)
for all m, n [N and hence lev(f, x) 5 n 1 lev(f uCn(f) , x) for all x [Cn(f),
n [N.

Proof. The second assertion is a consequence of the first. We prove
the first by induction over m. It is trivial for m 5 0. We obtain

Cn1m11(f) 5 dom(f) > closurehx [Cn1m(f) u f uCn1m(f) is discontinuous in xj

5 Cn(f) > closurehx [Cm(f uCn(f)) u f uCm(f uC
n
(f)

)

is discontinuous in xj

5 Cm11(f uCn(f))

by Lemma 2.5(1) and by the induction hypothesis. n

Remarks. 1. We have defined the sequence Cn(f) only for finite index
n. One can in a natural way extend the definition to arbitrary ordinal
numbers and, thus, obtain transfinite levels of discontinuity. When one
considers only the characteristic functions of sets the resulting subhierarchy
coincides (essentially) with Hausdorff’s (1935) difference hierarchy of sets;
see Hertling (1996).

2. Instead of the sets Cn(f) one could consider the sets An(f) which
are defined in the same way without taking the closure, i.e., A0(f) :5
dom(f),

322 PETER HERTLING

An11(f) :5 hx [An(f) u f uAn(f) is discontinuous in xj.

The definition can also be extended to arbitrary ordinals. The level Lev9(f)
of f, defined via this sequence of sets, has very similar properties to the
level according to Definition 2.4. In general the level Lev(f) can be much
larger than Lev9(f). But if the range of f is a regular space then
Lev9(f) # Lev(f) # Lev9(f) 1 1, and, if additionally Lev(f) is finite,
then even Lev(f) 5 Lev9(f) can be proved. For more results on the levels
see Hertling (1996). Altogether the level Lev(f), resp. lev(f, x) from Defi-
nition 2.4, seems to have more natural properties.

2.3. The Topological Complexity and the Level of Discontinuity

The first main result combining the topological complexity and the level
states that the level of a function gives a lower bound for the topological
complexity of any algorithm that computes the function and uses only
comparisons and continuous arithmetic (and information) operations. In
fact, it is a lower bound for the size of a CCT computing the function. This
is true globally and locally. Second, if for the algorithm one allows arbitrary
continuous operations, i.e., a CCT, then this estimation is sharp. One can
even construct an optimal CCT which is balanced and contains only to-
tal tests.

THEOREM 2.7. Let T be a CCT over (X, Y). Then Lev(fT) # Size(T)
and lev(fT , x) # size(T, x) for all x [X.

A binary tree with n leaves is called balanced if it has minimal depth,
i.e., if its longest path contains log2 n branching nodes.

THEOREM 2.8. Let f :# X R Y be a function with finite level 0 ,
Lev(f) , y. There is a balanced CCT T containing only total tests which
computes f (i.e., f 5 fT) and satisfies Size(T) 5 Lev(f) and size(T, x) 5
lev(f, x) for all x [dom(f).

Remarks. 1. If X is a metric space then any topological test ‘‘t(x)’’
can be written in the usual form ‘‘T(x) . 0’’ for a continuous function T.
Namely, one uses T :# X R R defined by dom(T) :5 dom(t), by T (x) :5
d(x, t21hFALSEj) for x [dom(t) if t21hFALSEj ? B, and by T(x) :5 1 for
x [dom(t) if t21hFALSEj 5 B. Hence a function f :# X R Y of finite
level, defined on a metric space X, can be computed by a balanced, optimal
real number algorithm using continuous operations and the usual compari-
sons of real numbers.

2. Previous versions of these results have been presented by Hertling
and Weihrauch (1994). There also the following issue is discussed. The
level of discontinuity seems to be a scalar measure for the ‘‘inherent degen-

TOPOLOGICAL COMPLEXITY WITH CONTINUOUS OPERATIONS 323

eracies’’ introduced by Yap (1990) for problems in computational geometry.
Correspondingly, the branching number and the level of degeneracy (see
the first remark at the end of Section 2.1) seem to be scalar measures for
the ‘‘algorithm-induced degeneracies’’ introduced in the same paper. Under
this assumption our Theorem 2.7 gives a quantitative proof of Yap’s obser-
vation: ‘‘it seems that induced degeneracies subsume inherent degener-
acies’’.

For the proof of Theorem 2.7 we need a simple statement about the
branching number. A function f : X R N on a topological space X is upper
semicontinuous if for any point x [X there is a neighborhood U of x such
that f (x9) # f (x) for all x9 [U.

LEMMA 2.9. Let T be a CCT. Then the branching number function
size(T, .) : X R N is upper semicontinuous.

The proof is done by induction using Lemma 2.3.

Proof of Theorem 2.7. The first assertion follows immediately from the
second assertion because

lev(fT , x) # size(T, x) (1)

for all x [X induces Size(T) $ maxhsize(T, x)ux [Xj $ maxhlev(fT , x)u
x [Xj 5 Lev(fT).

Fix an x [X. We prove (1) by induction over the structure of T. If
T 5 (g) consists of one leaf then fT 5 g is a continuous function, hence

lev(fT , x) 5 lev(g, x) 5 H1 if x [dom(g)

0 else
J# size(T, x).

Otherwise T has the form T 5 (if t then T1 else T2) where t is a topological
test and T1 and T2 are CCTs. We define T 91 :5 T1ut21hTRUEj and

k :5 size(T 91 , x).

If lev(fT , x) # k then the proof is finished by Lemma 2.3. Let us assume
lev(fT , x) . k, i.e., x [Ck(fT). By Lemma 2.6 we obtain lev(fT , x) 5
k 1 lev(fTuCk(fT), x). Hence by Lemma 2.3 we have to show only

lev(fTuCk(fT) , x) # size(T2ut21hFALSEj , x). (2)

324 PETER HERTLING

FIG. 1. Equivalent CCTs, part 1.

Let U # X be open with U > dom(t) 5 t21hTRUEj. Then fTuU 5 fT uU 5
fT91 . For all x9 [U we have by Lemma 2.5(3) and by the induction hypothesis

lev(fT , x9) 5 lev(fTuU , x9) 5 lev(fT91 , x9) # size(T 91 , x9).

Since the branching number is upper semicontinuous by Lemma 2.9 there
is an open neighborhood V of x such that size(T 91 , x9) # size(T 91 , x) for all
x9 [V. For all x9 [U > V we obtain

lev(fT , x9) # size(T 91 , x) 5 k,

hence Ck(fT) > U > V 5 B and thus Ck(fT) > V # X \ U. Using Lemma
2.5, fTuX \U 5 fT2ut21hFALSEj

, and the induction hypothesis we finally deduce the
assertion (2):

lev(fTuCk(fT), x) 5 lev(fTuCk(fT)>V , x)

lev(fTuX \U , x)

5 lev(fT2ut21hFALSEj
, x)

size(T2ut21hFALSEj , x). n

The main part of the construction in the proof of Theorem 2.8 will give
an unbalanced tree. For the balancing we use the following lemma. Let t1 ,
t2 : X R hTRUE, FALSEj be total topological tests on X. Then their
conjunction t1 ` t2 : X R hTRUE, FALSEj and their disjunction t1 ~ t2 :
X R hTRUE, FALSEj are also total topological tests.

LEMMA 2.10. Let t1 , t2 : X R hTRUE, FALSEj be total topological tests
and T1 , T2 , T3 CCTs. Then the two CCTs in Fig. 1 are equivalent to each
other and the two CCTs in Fig. 2 are equivalent to each other. Furthermore,
in both cases the branching number is the same at each point.

TOPOLOGICAL COMPLEXITY WITH CONTINUOUS OPERATIONS 325

FIG. 2. Equivalent CCTs, part 2.

The proof follows immediately from the definitions and from Lemma 2.3.

Proof of Theorem 2.8. We construct a tree T which has all the requested
properties except being balanced. With the last lemma one can transform
this tree into a CCT which is additionally balanced.

If f is continuous with nonempty domain, i.e., Lev(f) 5 1, then f is
computed by the CCT T :5 (f) without any tests. Then Size(T) 5 1 5
Lev(f) and lev(f, x) 5 1 5 size(T, x) for all x [dom(f).

Let f be a function with Lev(f) 5 n 1 1 for some n $ 1. The function
f (2) :5 f uC1(f) has level Lev(f (2)) 5 n by Lemma 2.5(2) und Lemma 2.6.
Hence, by the induction hypothesis there is a CCT T(2) with n 2 1 total
tests which computes f (2) and has the properties lev(f (2), x) 5 size(T (2),
x) for all x [dom(f (2)). Using the continuous function f (1) :5 f uX \C1(f) we
define a CCT T by

T :5 (if x [X \ C1(f) then (f (1)) else T (2)).

Note that the set C1(f) is closed in dom(f). It is obvious that the CCT T
computes the function f. The tests in T are total. The tree T contains n
tests. Hence it has size Size(T) 5 n 1 1 5 Lev(f). We still have to show
size(T, x) 5 lev(f, x) for all x [dom(f). By Theorem 2.7 we already know
size (T, x) $ lev(f, x) for all x [X. Hence it is sufficient to prove

size(T, x) # lev(f, x) (3)

for all x [dom(f). Fix an x [dom(f). By definition we have

size(T, x) 5 size((f (1))uX \ C1(f) , x) 1 size(T (2)uC1(f) , x).

Obviously size((f (1))uX \ C1(f) , x) # 1 and size(T (2)uC1(f) , x) # size(T (2), x),
hence

326 PETER HERTLING

size(T, x) # 1 1 size(T (2), x).

We distinguish the cases x [dom(f) \ C1(f) and x [C1(f).
First assume x [dom(f) \ C1(f). Then x Ó C1(f) 5 dom(f (2)) 5

dom(fT (2)). This implies size(T (2), x) 5 0. Thus, in the case x [dom(f) \
C1(f) we have size(T, x) # 1 5 lev(f, x).

Now assume x [C1(f). Then x [dom(f (2)). By the induction hypothesis
we know size(T (2), x) 5 lev(f (2), x). We obtain

size(T, x) # 1 1 lev(f (2), x) 5 lev(f, x)

where for the last equation we used the additivity of the level (Lemma
2.6). We have proved (3) in both cases. This finishes the proof. n

3. APPROXIMATING ZEROS

3.1. The Problem and the Results

In their recent paper Novak and Woźniakowski (1996) studied the topo-
logical complexity of zero-finding for continuous functions on the unit
interval under various assumptions. We give new results of the same type.
Consider the space

F :5 h f [C[0, 1] u f (0) ? f (1) , 0j

with the maximum norm i f i 5 maxhu f (x)u ux [X j for all f [F and its
subspace of nondecreasing functions

Fnd :5 h f [C [0, 1] u f is nondecreasing and f (0) , 0, f (1) . 0j.

An «-approximation of a number x* is a number x with ux 2 x*u # «. For
a fixed subspace G of F and a fixed « . 0 we consider the problem to
determine an «-approximation of a zero of f, for any f [G. We are interested
in the minimal topological complexity of an algorithm that solves this
problem. Here under an algorithm we understand a real number oracle
machine as sketched in Section 2.1. For details see Novak and Woźniakow-
ski (1996). In this section we study the topological complexity for the
spaces F and Fnd and in the final section we shall consider the subspace of
increasing functions.

A purely topological lower bound for the problem over the space Fnd is
given by the following proposition, which will be proved in Section 3.2.

TOPOLOGICAL COMPLEXITY WITH CONTINUOUS OPERATIONS 327

PROPOSITION 3.1. Let « . 0 and let P« : Fnd R R be a function such
that P«(f) is an «-approximation of a zero of f for any f [Fnd . Then
Lev(P«) $ log2(«21 1 2) 2 1.

By Theorem 2.7 this gives a lower bound for the total number of
branching nodes in any CCT computing an «-approximation for any f [
Fnd . We will see that it is a sharp bound. In fact it is a sharp bound not
only for Fnd but for F. Using this, Theorem 2.8 tells us that there is an
optimal balanced CCT solving the problem. We shall prove that there is
even an optimal balanced tree describing a real number oracle machine
that—besides comparisons—uses only the arithmetic operations

ARIabs :5 h1, 2, p, /, u ? uj,

i.e., the four basic arithmetic operations of addition, subtraction, multiplica-
tion, and division, and the absolute value, and for information operations
it uses only the evaluation operator

eval: F 3 [0, 1] R R, eval(f, x) :5 f (x).

Note that the arithmetic operations in ARIabs and the information operator
eval are continuous. The main properties of the algorithm are described
in the next proposition. The proof is given in Section 3.3.

PROPOSITION 3.2. For any n [N there is a computation tree with the
following properties: (1) for any function f [F it computes a (1/(2n12 2
2))-approximation of a zero of f; (2) it uses only ARIabs , the information
operator eval, and comparisons; and (3) the total number of branching nodes
is n and the maximal number of branching nodes on any computation path
is log2(n 1 1).

Especially, we conclude that the lower bound of Proposition 3.1 is sharp.

COROLLARY 3.3. Let « . 0 and G be a subspace with Fnd # G # F.
Then the minimum of the levels of all functions P« : G R R, such that P«(f)
is an «-approximation of a zero of f for any f [G, is equal to log2(«21 1
2) 2 1.

Proof. The lower bound is given by Proposition 3.1. For the upper
bound set

n« :5 log2(«21 1 2) 2 2 and d :5
1

2n
«12 2 2

.

Then the computation tree of Proposition 3.2, applied to n« , is a CCT with

328 PETER HERTLING

size log2(«21 1 2) 2 1. It computes a d-approximation of a zero of f. This
is also an «-approximation because of d # «. Now use Theorem 2.7. n

We summarize the results for real number oracle machines.

THEOREM 3.4. Let G be a subspace of functions with Fnd # G # F and
« . 0. Consider the set of all real number oracle machines that compute an
«-approximation of a zero of f for any f [G.

1. Even if such a machine is allowed to use arbitrary continuous arith-
metic operations and arbitrary continuous information operations its compu-
tation tree must contain at least log2(«21 1 2) 2 2 branching nodes in total
and at least log2(log2(«21 1 2) 2 1) branching nodes on its longest path.

2. There is a such a machine which uses only the arithmetic oper-
ations ARIabs and the information operator eval and whose computation
tree contains log2(«21 1 2) 2 2 branching nodes in total and at most
log2(log2(«21 1 2) 2 1) branching nodes on any path.

Proof. The lower bound for the total number of tests in the first part
follows from Proposition 3.1 and Theorem 2.7. Since a binary tree with n
leaves must have at least one path with at least log2 n branching nodes,
the lower bound for the depth follows, too. For the upper bound one
observes that the real number oracle machine of Proposition 3.2, applied
to n« :5 log2(«21 1 2) 2 2, has all the desired properties. n

Finally we give a formulation in the terminology for real number oracle
machines established by Novak and Woźniakowski (1996). For an algorithm
A and an input f for A we denote by costTOP (A, f) the number of tests
that are executed during the computation of A on input f. For any subspace
G # F, for any set of arithmetic operations ARI, and for any « . 0 we define

compTOP (G, ARI, «) :5 min
alg. A

sup
f[G

costTOP (A, f)

where the minimum is taken over all algorithms A that compute an
«-approximation of a zero of f for any f [G and that use only the arithmetic
operations ARI and the information operator eval (besides comparisons).
Let us denote by ARIcon the set of all continuous arithmetic operations.

THEOREM 3.5. Let G be a subspace with Fnd # G # F, let ARI be a set
of arithmetic operations with ARIabs # ARI # ARIcon , and let « . 0. Then

compTOP(G, ARI, «) 5 log2(log2(«21 1 2) 2 1).

Proof. The number compTOP(G, ARI, «) is the minimal possible depth

TOPOLOGICAL COMPLEXITY WITH CONTINUOUS OPERATIONS 329

of a computation tree for the problem, with the given restrictions. The
assertion follows immediately from Theorem 3.4. n

Novak and Woźniakowski (1996) have proved

compTOP(G, ARIhol , «) 5 log2 «21 2 1,

where G is any subspace of F* :5 h f [F u f (0) , 0 and f (1) . 0j containing
all linear functions and where ARIhol denotes the set of all arithmetic
operations that satisfy a Hölder condition on any bounded subset of their
domain of definition. Thus, among these algorithms the bisection algorithm
is already optimal. But, as we have seen, one can perform exponentially
better if one drops the Hölder condition. Note that addition, subtraction,
and the absolute value satisfy even a Lipschitz condition on their whole
domain R2, resp. R, while multiplication satisfies a Lipschitz condition at
least on any bounded subset of R2. But division does not satisfy a Hölder
condition on each bounded subset of its domain. Just adding the division
makes an exponentially better algorithm possible.

3.2. The Lower Bound

Here we prove Proposition 3.1. It follows immediately from the next
lemma and Lemma 2.5(2). For 0 , l , 1 we define

Fl :5 h f [Fnd u f 21h0j is an interval of length l j.

LEMMA 3.6. Let « . 0 and P« : Fnd R R be a function such that P«(f)
is an «-approximation of a zero of f for any f [Fnd . Then lev(P« , f) $
log2(l/« 1 2) 2 1 for all f [Fl , l [(0, 1).

Proof. Let « . 0 be fixed. For l [(0, 1) we define nl :5 log2(l/« 1
2) 2 1. Hence the number nl is uniquely determined by

(2nl11 2 2) ? « $ l . (2nl 2 2) ? «.

It is always greater than zero. The proof of the assertion ‘‘lev(P« , f) $ nl

for all f [Fl ’’ is done by induction over nl .
Since P« is defined on all functions f [Fnd we have lev(P« , f) $ 1 for

all f [Fnd . Hence the assertion is true for nl 5 1.
Now fix an l [(0, 1) with nl $ 2 and a function f [Fl . We define

l 9 :5 S l
2

2 « 1 (2nl21 2 2) ? «D/2.

330 PETER HERTLING

Then

l
2

2 « . l 9 . (2nl21 2 2) ? «

and nl9 5 nl 2 1. At least one of the two endpoints of the interval I :5
f 21h0j has distance greater than or equal to l/2 from the point P«(f). Hence
the interval I contains a closed subinterval J of length l9 with d(P«(f),
J) $ l/2 2 l9 . «. Arbitrarily close to f there are functions g [Fl9 with
g21h0j 5 J. For these functions g we have d(P«(f), P«(g)) $ l/2 2 l9 2
« . 0. By the induction hypothesis we know lev(P« , f) $ nl 2 1 and
lev(P« , g) $ nl9 5 nl 2 1 for these functions g, hence f, g [Cnl22(P«). We
conclude that the restricted function P«uCn

l
22(P«) is discontinuous in f. This

finally implies lev(P« , f) $ nl . n

3.3. The Algorithm

In this section we prove Proposition 3.2. The following lemma shows
that with the help of ARIabs one can compute maximum, minimum, and
the sign function except of the point of discontinuity.

LEMMA 3.7. For the following functions there are arithmetic expressions
over ARIabs .

1. max, min : Rn R R for each n [N,

2. sig : R \ h0j R h0, 1j with sig(x) :5 0 if x , 0, 1 if x . 0.

Proof. It is sufficient to show the assertion about max and min for
n 5 2. For x, y [R one has maxhx, yj 5 As ? (x 1 y 1 ux 2 yu) and minhx,
yj 5 As ? (x 1 y 2 ux 2 yu). For all x [R \ h0j one has sig(x) 5 As ? (1 1 x/uxu). n

We remark that vice versa uxu 5 maxhx, 2 xj for all x [R. The algorithm
constructed in the following proof will use only the arithmetic operations
h1, 2, p, max, min, sigj. Division and taking the absolute value will be
used only implicitly via Lemma 3.7.

Proof of Proposition 3.2. We shall construct an algorithm that solves
the problem for functions in the subspace

F* :5 h f [C [0, 1] u f (0) , 0 and f (1) . 0j

of F. Given a function f [F, one can apply the algorithm to the function

TOPOLOGICAL COMPLEXITY WITH CONTINUOUS OPERATIONS 331

FIG. 3. Nonbalanced algorithm for the approximation of zeros.

f (1) ? f [F*. We construct a computation tree as in Fig. 3. Here O1(f),
. . . , On11(f) are the output values at the end of each computation path.
The functions Ti : F* R R for i 5 1, . . . , n are total real-valued functions.
The functions Oi :# F* R (0, 1) for i 5 1, . . . , n 1 1 are partial functions
with values in the interval (0, 1). They are defined at least on h f [F* u
Tj (f) . 0 for 1 # j , ij, for i 5 1, . . . , n 1 1 respectively. The values
Ti(f) as well as the values Oi(f) will be given by arithmetic expressions
using only ARIabs and the values f (j/(2n11 21)) for j 5 1, . . . , 2n11 2 2.

This computation tree already has size n. In order to obtain a tree with
the desired depth log2(n 1 1) one has to construct an equivalent balanced
tree of the same size. But the tree can be balanced as in Lemma 2.10 since
the functions Ti are total and the resulting logical combinations of tests
can also be expressed via ARIabs and eval because of

a . 0 ` b . 0 ⇔ minha, bj . 0,

a . 0 ~ b . 0 ⇔ maxha, bj . 0,

and Lemma 3.7.
Before we give the general definition of the functions Ti and Oi we

explain the case n 5 1. Using one test the bisection algorithm gives a
Af-approximation of a zero of a function f [F*. Our algorithm will give a
Ah-approximation of a zero. For n 5 1 the definitions below evaluate to

T1(f) 5 f (Ad) ? f (Sd),

O1(f) 5 As,

O2(f) 5 Ah ? sig(f (Sd)) 1 Gh ? sig(2f (Sd)),

332 PETER HERTLING

FIG. 4. Subdivision of the interval [0, 1] for n 5 2.

where sig is the function introduced in Lemma 3.7. If T1(f) # 0 then the
interval [Ad, Sd] contains a zero and the output O1(f) 5 As is a Ah-approximation
of a zero of f. If T1(f) . 0 then f (Ad) and f (Sd) are either both positive or
both negative. If they are positive then the interval (0, Ad) contains a zero
because of f (0) , 0, and the output O2(f) 5 Ah is a Ah-approximation of a
zero. If they are negative then the interval (Sd, 1) contains a zero because
of f (1) . 0, and the output O2(f) 5 Gh is a Ah-approximation of a zero. Note
that the function sig is evaluated only for nonzero arguments and that it
can be computed using only ARIabs and no tests.

We come to the definition of the functions Ti and Oi , hence to the precise
definition of the algorithm. Let n $ 0 be fixed. One divides the unit interval
[0, 1] into 2n11 2 1 subintervals of the same length. We write this length
as 2 ? d with d :5 1/(2n12 2 2). The midpoints of the intervals are indicated
with sign vectors « 5 («1 , . . . , «i) [h21, 1ji for i 5 0, . . . , n,

t « :5
1
2

2 d ? Oi

j51
2n112j ? «j ,

thus, especially t « 5 As for « 5 () [h21, 1j0; compare Fig. 4.
The functions Ti : F* R R for i 5 1, . . . , n are defined by

Ti(f) :5 maxhmin(F « < h f (t « 2 d) ? f (t « 1 d)j) u « [h21, 1ji21j,

where

F « :5 h f (t(«1,. . . ,«j21) 1 d) ? «j u 1 # j # i 2 1j

for « 5 («1 , . . . , «i21) [h21, 1ji21, hence especially F « 5 B for « 5
() [h21, 1j0. The functions Oi :# F* R (0, 1) for i 5 1, . . . , n 1 1
are defined by

Oi(f) :5 O
«[h21,1ji21

t « ? sig(min(h1j < F «)).

Here sig : R \ h0j R h0, 1j is the function from Lemma 3.7. This completes

TOPOLOGICAL COMPLEXITY WITH CONTINUOUS OPERATIONS 333

the description of the algorithm. Note that the functions Ti are total, as
needed for the balancing.

Before proving correctness we sketch the idea of the algorithm. The
basic idea is that before executing the (j 1 1)th test the algorithm has
implicitly determined a sign vector « [h21, 1j j of length j such that the
function f has different signs in the endpoints of the interval with midpoint
t« and of length 2d ? (2n112j 2 1). Then the (j 1 1)th test checks whether
f (t « 2 d) ? f (t « 1 d) # 0 or not. If this is true then the subinterval
[t « 2 d, t « 1 d] in the middle must contain a zero, and the algorithm
produces t « as output. If this is not true then the function must have different
signs either in the endpoints of the remaining left part or in the endpoints
of the remaining right part. In fact, such a sign vector has not really been
computed by the algorithm, but there is only one sign vector « 5 («1 , . . . ,
«j) such that all subvectors («1 , . . . , «i) for 0 # i # j have the same
property. This makes it possible to realize this test by a total function Tj11 .

We still have to prove that the algorithm is correct. Fix a func-
tion f [F*. First we prove the following assertion for 0 # j # n by
induction:

If Tk(f) . 0 for all k with 1 # k # j, then

1. there is a unique «9 [h21, 1j j with min(h1j < F «9) . 0 and
min(h1j < F «) , 0 for all « [h21, 1j j \ h«9 j,

2. this «9 satisfies f (t «9 2 d ? (2n112j 2 1)) , 0 and f (t «9 1 d ?
(2n112j 2 1)) . 0.

For j 5 0 the assertion is correct since by assumption f (0) , 0 and
f (1) . 0. Let us assume 1 # j # n and Tk(f) . 0 for 1 # k # j. By the
induction hypothesis there is a unique sign vector «0 5 («01 , . . . , «0j21) [
h21, 1j j21 with

1. min(h1j < F «0) . 0 and min(h1j < F «) , 0 for all « [h21, 1j j21 \
h«0j, and

2. f (t«0 2 d ? (2n112(j21) 2 1)) , 0 and f (t«0 1 d ? (2n112(j21) 2 1)) . 0.

We have

F « 5 F(«1,...,«j21) < h f (t(«1,...,«j21) 1 d) ? «jj

for arbitrary « 5 («1 , . . . , «j) [h21, 1j j. If («1 , . . . , «j21) ? «0 then the
first part of the induction hypothesis implies min(h1j < F «) , 0. Further-
more, because of Tj(f) . 0 it implies

f (t «0 2 d) ? f (t «0 1 d) . 0.

334 PETER HERTLING

Using the common sign function sgn: R R h21, 0, 1j with sgn(x) 5 21 for
x , 0, sgn(0) 5 0, sgn(x) 5 1 for x . 0, we define

«9 5 («91 , . . . , «9j) :5 («01 , . . . , «0j21 , sgn(f (t «0 1 d))).

This is the unique sign vector demanded in the first part of the inductive
assertion. One computes

t «9 2 d ? (2n112j 2 1) 5 t «0 2 d ? 2n112j ? «9j 2 d ? (2n112j 2 1)

5 5t «0 2 d ? (2n112(j21) 2 1) if «9j 5 1

t «0 1 d if «9j 5 21

and in the same way

t «9 1 d ? (2n112j 2 1) 5 5t «0 2 d if «9j 5 1

t «0 1 d ? (2n112(j21) 2 1) if «9j 5 21.

With the second part of the induction hypothesis and with

sgn(f (t «0 2 d)) 5 sgn(f (t «0 1 d)) 5 «9j

one obtains the second part of the inductive assertion, too. Hence both
parts of the inductive assertion are proved.

The first part of this assertion implies that the function Oi is defined on
the set h f [F* u (;j , i) Tj(f) . 0j, for i 5 1, . . . , n 1 1.

Since the functions Ti are total, the number

if :5 maxhi $ 1 u (;j , i) Tj(f) . 0j

is well defined. By the first part of the assertion above there is a sign vector
«f [h21, 1jif21 with min(h1j < F «f

) . 0 and min(h1j < F «) , 0 for all « [
h21, 1jif21 \ h«fj. Hence, on input f [F* the output of the algorithm is
the point

Oif
(f) 5 t«f

.

In the case if 5 n 1 1 the second part of the assertion above, applied to
j 5 n, gives

TOPOLOGICAL COMPLEXITY WITH CONTINUOUS OPERATIONS 335

f (t«f
2 d) , 0 and f (t«f

1 d) . 0.

Hence, in this case the point t«f
must be a d-approximation of a zero of f.

In the case if # n we have Tif
(f) # 0. Because of min(h1j < F «f

) . 0 we obtain

f (t«f
2 d) ? f (t«f

1 d) # 0.

Hence, the point t«f
is a d-approximation of a zero of f in this case, too.

This proves the correctness of the algorithm and finishes the proof of
Proposition 3.2. n

For numbers n of the form n 5 2m 2 1 the computation tree constructed
in the proof is perfectly balanced and has m branching nodes on each path.
This means that using not more than m comparisons one can already
compute a 1/(22m

11 2 2)-approximation of a zero of an arbitrary function
f [F, using only ARIabs and function values. This is exponentially better
than bisection. A practical drawback of the algorithm is certainly the large
number of function evaluations. During one computation it needs Q(«21)
function evaluations in the worst case while the bisection algorithm requires
only Q(log2(«21)) function values per computation.

3.4. Increasing Functions

We have seen that the topological complexity of zero-finding is the same
for the full class F and for the subclass Fnd of nondecreasing functions,
whether one allows arbitrary continuous operations or just the function
evaluation eval and the set ARIabs . It is not zero. But for the slightly smaller
class of increasing functions

Finc :5 h f [C[0, 1] u f is increasing and f (0) , 0, f (1) . 0j

the topological complexity drops to zero. These functions have a unique
zero and the function

P : Finc R (0, 1), P(f) is the zero of f,

is obviously continuous. Novak and Woźniakowski (1996) have given an
algorithm without branching nodes which computes an «-approximation of
the zero of f for any f [Finc using only eval and the extended set of
arithmetic operations ARIext :5 h1, 2, p, /, exp, logj. This proves compTOP

(Finc , ARIext , «) 5 compTOP(Finc , ARIcon , «) 5 0. We show that there is a
simple algorithm for this problem that uses the absolute value instead of
the functions exp and log.

336 PETER HERTLING

THEOREM 3.8. For any « . 0,

compTOP(Finc , ARIabs , «) 5 0.

Hence, also in this case the topological complexity is the same for arbi-
trary continuous operations and for eval and ARIabs .

Proof. Set n :5 maxh2, «21j. We define an algorithm P« which computes
an «-approximation of a zero of f for any f [Finc without comparisons as
follows. Compute

xi :5 i/n and zi :5 f (xi)

for i 5 0, . . . , n and

ri :5 maxh0, 2zi21 ? zi11j

for i 5 1, . . . , n 2 1. Then set

P«(f) :5
on21

i51 xi ? ri

on21
i51 ri

.

Note that by Lemma 3.7 one can compute the maximum using ARIabs .
The function f is increasing. Hence it has a unique zero x*(f). We

distinguish four cases. If x*(f) # 1/n then r1 . 0 and rj 5 0 for all j . 1,
hence P«(f) 5 x1 5 1/n. If x*(f) $ (n 2 1)/n then rn21 . 0 and rj 5 0 for
all j , n 2 1, hence P«(f) 5 xn21 5 (n 2 1)/n. If x*(f) 5 xi for some i [
h1, . . . , n 2 1j then ri . 0 and rj 5 0 for all j ? i, hence P«(f) 5 xi 5
x*(f). Finally, if x*(f) [(xi , xi11) for some i [h1, . . . , n 2 2j then ri .
0 and ri11 . 0 but rj 5 0 for all j Ó hi, i 1 1j, hence P«(f) 5 (xi ? ri 1
xi11 ? ri11)/(ri 1 ri11) [(xi , xi11). In each case we have uP«(f) 2 x*(f)u ,
1/n # «. n

The algorithm in the proof uses O («21) nonadaptive function evaluations,
i.e., the points at which the function f is evaluated are fixed and do not
depend on f. There is also an algorithm which needs only O (log2(«21))
adaptive function evaluations (and no tests). It is described in the second
proof of Theorem 3.8.

Second Proof of Theorem 3.8. The idea is to use the algorithm above
for n 5 3 (‘‘trisection’’) and to iterate it sufficiently often with variable
input interval and output interval.

Set k :5 maxh0, 2log3/2(2«)j. For f [Finc the algorithm iterates the

TOPOLOGICAL COMPLEXITY WITH CONTINUOUS OPERATIONS 337

following loop k times, starting with (a, b) :5 (0, 1). Finally the midpoint
of the last interval (a, b) is the output.

begin hloopj
c :5 (b 2 a)/3;
for j 5 0, . . . , 3 do begin xj :5 a 1 j ? c;

zj :5 f (xj) end;
for j 5 1, 2 do rj :5 maxh0, 2zj11 ? zj21j;
x :5 (x1r1 1 x2r2)/(r1 1 r2);
a :5 x 2 c; b :5 x 1 c

end hloopj

At the beginning and after each loop the interval (a, b) contains the zero
of f. Hence at the end, after k loops, the midpoint x of the last interval
(a, b) has distance less than As ? (Sd)k # « from the zero of f. n

We have seen that the topological complexity of zero-finding for continu-
ous functions on the unit interval depends on the set of considered functions.
Similarly, in computable analysis different topological obstacles occur in
the determination of zeros for different classes of functions, see Weih-
rauch (1995).

ACKNOWLEDGMENTS

The second part of the paper was inspired by the recent paper of Novak and Woźniakowski
(1996). I thank them for sending me an early version. Furthermore, I thank E. Novak for
useful comments.

REFERENCES

BLUM, L., SHUB, M., AND SMALE, S. (1989), On a theory of computation and complexity over
the real numbers: NP completeness, recursive functions and universal machines, Bull.
Amer. Math. Soc. (N.S.) 21, 1–46.

HAUSDORFF, F. (1935), ‘‘Mengenlehre,’’ 3rd ed., Academic Press, New York.

HERTLING, P. (1996), Unstetigkeitsgrade von Funktionen in der effektiven Analysis, preprint.

HERTLING, P., AND WEIHRAUCH, K. (1994), Levels of degeneracy and exact lower complexity
bounds for geometric algorithms, in ‘‘Proceedings of the Sixth Canadian Conference on
Computational Geometry, Saskatoon,’’ pp. 237–242.

NOVAK, E. (1995), The real number model in numerical analysis, J. Complexity 11, 57–73.

NOVAK, E., AND WOŹNIAKOWSKI, H. (1996), Topological complexity of zero-finding, J. Com-
plexity 12, 380–400.

SMALE, S. (1987), On the topology of algorithms, I, J. Complexity 3, 81–89.

338 PETER HERTLING

VASSILIEV, V. A. (1992), ‘‘Complements of Discriminants of Smooth Maps: Topology and
Applications,’’ Transl of Math. Monographs, Vol. 98, Amer. Math. Soc., Providence, RI.

WEIHRAUCH, K. (1995), ‘‘A Simple Introduction to Computable Analysis,’’ Informatik Bericht,
Vol. 171, 2nd ed., FernUniversität Hagen.

YAP, C.-K. (1990), Symbolic treatment of geometric degeneracies, J. Symbolic Comput. 10,
349–370.

