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Abstract

The convergence of the Neumann-type series to {1, 2}-inverses has been shown by K.
Tanabe [Linear Algebra Appl. 10 (1975) 163]. In this paper, these results indicating conditions
characterizing the convergence of this series to different generalized inverses are extended.
In addition, these results for obtaining different generalized inverses from the hyperpower
method are applied. Finally, generalized involutory matrices are introduced and characterized
using the obtained results. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction and notation

It is well known that the inverse A−1 of a nonsingular matrix has a series expan-
sion of the type
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A−1 =
∞∑
i=0

(I −XA)iX, (1)

which is satisfied when ρ(I −XA) < 1, where ρ(M) is the spectral radius of the
square matrix M, that is the maximum moduli of its eigenvalues. It is also well
known [2] that expansion (1) is valid for a rectangular or a singular matrix A, in
the case that A−1 is replaced by the Moore–Penrose inverse A+. Furthermore, a
similar expression for the {1,2}-inverses was established by Tanabe [8] and by Bru
and Thome [5] for the group inverse. It is very easy to see that the series

X + (I −XA)X + (I − XA)2X + · · · (2)

and the series

X +X(I − AX)+X(I − AX)2 + · · ·
coincide; then it is possible to use them indistinctly. However, we will normally use
the first one.

In many papers, the hyperpower iterative method has been studied. It was intro-
duced by Ben-Israel [1] for p = 2. Petryshyn [7] and Zlobec [11] extended it for
p � 2. Garnet et al. [6] applied it for computing the product A+B, where moreover
the optimum order p was found in the sense of minimizing the computational effort.
In 1975, Tanabe [8] used this iterative method for generating reflexive generalized
inverses. Chen and Hartwig [9] generalized the hyperpower method in 1996 by
inserting an idempotent matrix into the residual of the Neumann-type expansion
I − AX. Sufficient conditions for the convergence of the Neumann-type series to the
generalized inverseA(2)T ,S has been given in terms of the V -norm by Wei [10] in 1998.

We will use the mentioned hyperpower method to give conditions that character-
ize the convergence of the method to different generalized inverses as A#, AD, A+
and A(2)T ,S . Various known results are obtained as corollaries.

Given a complex matrix A, we denote byA∗ the conjugate transpose of A, and by
Ker(A) and Im(A), the kernel and range of A, respectively. Furthermore, the index
of a square matrix A, denoted by ind(A), is the smallest nonnegative integer such
that Im(Ak) = Im(Ak+1). The following conditions (see [4])

(gi.1) AXA = A,
(gi.2) XAX = X,
(gi.3) AX = (AX)∗,
(gi.4) XA = (XA)∗,
(gi.5) AX = XA,
(gi.6) Ak+1 = XAk , where k = ind(A),

define different generalized inverse matrices of a nonzero matrix A. In fact, if � is a
subset of {1, 2, 3, 4, 5, 6}, then a complex matrix X is called a �-inverse of A if X
satisfies conditions (gi.n), for each n ∈ �.

It is well known that the Moore–Penrose inverse is the unique {1, 2, 3, 4}-inverse
of A which we will denote by A+. Also, there exists a unique {2, 5, 6}-inverse of
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A called the Drazin inverse denoted by AD. If there exists a {1, 2, 5}-inverse of A,
then it is unique, denoted by A# and called the group inverse of A. Furthermore,
there always exist {1}- and {1, 2}-inverses and they are not unique. Another kind
of generalized inverse is the A(2)T ,S which, when it exists is unique, is defined in the
following lemma.

Lemma 1 (Theorem 2.12 of [3]). LetA ∈ Cm×n be of the rank r, let T be a subspace
of Cn of dimension s � r, and let S be a subspace of Cm of dimensionm− s. ThenA
has a {2}-inverse X such that Im(X) = T and Ker(X) = S if and only if AT ⊕ S =
Cn in which case X is unique and denoted by A(2)T ,S .

We recall the following properties for further references (see [3]).

Lemma 2. Let A ∈ Cm×n and let PR,S be a projector on R along S. Then

(i) Ker(A) = [Im(A∗)]⊥, Ker(A∗) = [Im(A)]⊥;
(ii) for L, M subspaces of Cm and Cn, respectively, P ∗

L,M = PM⊥,L⊥ holds.

The paper is organized as follows. First, in Section 2, we give the conditions
to characterize the convergence of the Neumann-type series to the Moore–Penrose,
the Drazin inverse and to the generalized inverse A(2)T ,S . And then, in Section 3, we
apply the above results. More exactly, using the hyperpower method we present an
iterative scheme for obtaining the mentioned generalized inverses; and furthermore,
we introduce and characterize some generalized involutory matrices.

2. Generalized inverses and Neumann-type series

In this section we establish some representations of the group inverse, the Moore–
Penrose inverse, the Drazin inverse and the generalized inverse A(2)T ,S of a matrix
A.

We recall that a square matrix R is convergent if there exists limi→∞ Ri (see, for
example [8]).

Throughout the paper we will consider two complex matrices (of appropriate size)
A and X satisfying some of the following conditions:

(a) I −XA is a convergent matrix,
(b) Im(XA) = Im(X),
(c) Ker(XA) = Ker(A),
(d) AX = XA,
(e) Im(AX) = [Ker(X)]⊥,
(f) Ker(XA) = [Im(X)]⊥,
(g) Ak+1X = Ak , where k = ind(A).

Next, we quote some known results for further references.
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Theorem 1 (Theorem 2.2 of [8]). Let A ∈ Cm×n and X ∈ Cn×m. The convergence
of series (2) is equivalent to conditions (a) and (b). Furthermore, if G is the limit of
the convergent series (2), then G is a {2}-inverse of A.

Theorem 2 (Theorem 2.5 of [8]). Let A ∈ Cm×n and X ∈ Cn×m. Series (2) con-
verges to a {1}-inverse of A if and only if conditions (a)–(c) hold. In this case, the
limit G of series (2) is a {1, 2}-inverse of A.

In the result below, the convergence of a Neumann-type series to the group inverse
was studied. More precisely, the conditions under which the group inverse of A can
be expressed by means of series (2) for some matrix X were established.

Theorem 3 (Theorem 6 of [5]). LetA ∈ Cn×n andX ∈ Cn×n matrices satisfying the
four conditions (a)–(d). Then series (2) converges to the group inverse of A.

Now, necessary and sufficient geometrical conditions are given under which the
Neumann-type expansion converges to the Moore–Penrose inverse. Analogously, al-
though under more restrictive conditions we also give conditions for the convergence
of this series to the Drazin inverse. We also derive a similar result for the generalized
inverse A(2)T ,S.

In the following theorem we find all matricesX such that the Neumann-type series
converges to the Moore–Penrose inverse.

Theorem 4. Let A ∈ Cm×n. The matrix X ∈ Cn×m satisfies conditions (a)–(c),
(e) and (f) if and only if series (2) converges to the Moore–Penrose inverse of A.

Proof. By Theorem 2, conditions (a)–(c) are equivalent to the convergence of series
(2) to a matrix G which is a {1,2}-inverse of A. It is necessary to be shown that
conditions (e) and (f) are, respectively, equivalent to the equalities (AG)∗ = AG and
(GA)∗ = GA. In fact, by using that AG = PIm(AX),Ker(X) (see [8, Corollary 2.4]),
together with condition (d) and Lemma 2 we have that

(AG)∗ = [PIm(AX),Ker(X)]∗ = P[Ker(X)]⊥,[Im(AX)]⊥ = PIm(AX),Ker(X) = AG.
In a similar way, it is possible to see that (GA)∗ = GA, by using GA =

PIm(X),Ker(XA), condition (e) and Lemma 2. Thus, G is the Moore–Penrose inverse
of matrix A. Conversely, since (AG)∗ = AG we have

P[Ker(X)]⊥,[Im(AX)]⊥ = PIm(AX),Ker(X).

Then [Ker(X)]⊥ = Im(AX). Furthermore, from (GA)∗ = GA we can check that
condition Ker(XA) = [Im(X)]⊥ is satisfied, for which we use that

P[Ker(XA)]⊥,[Im(X)]⊥ = PIm(X),Ker(XA).

This concludes the proof. �
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Corollary 1 (Theorem 16 of [2]). Let A ∈ Cm×n. Then equality

A+ =
∞∑
i=0

(I − A∗A)iA∗

holds if ρ(I − A∗A) < 1.

Proof. Taking X = A∗, using Lemma 2(i) and the chain of equalities

rank(AA∗) = rank(A∗) = rank(A) = rank(A∗A),

the properties (a)–(c), (e) and (f) required in Theorem 4 can be shown. Then, the
proof is fulfilled. �

We now present a similar result related to the Drazin inverse by using the Neumann-
type series (2).

Theorem 5. Let A ∈ Cn×n. If matrix X ∈ Cn×n satisfies conditions (a), (b), (d) and
(g), then series (2) converges to the Drazin inverse of A.

Proof. By Theorem 1, conditions (a) and (b) are equivalent to the convergence
of series (2) to a matrix G which satisfies the equality GAG = G. By using the
Newton binomial we can prove that condition (d) implies AG = GA, with the same
technique employed to prove Theorem 3. We only need to prove that Ak+1G = Ak
holds if condition (g) is fulfilled. To do this, it is sufficient to show that

Ak+1(I −XA)nX = O for all n � 1 (3)

because

Ak+1G=Ak+1


 lim
j→∞

j∑
n=0

(I −XA)nX



=Ak + lim
j→∞

j∑
n=1

Ak+1(I −XA)nX.

Applying the Newton binomial formula, expression (3) can be easily obtained. �

Note that Theorem 5 implies Theorem 3 because if ind (A) = 1, the condition
Ker(XA) = Ker(A) is deduced from A2X = A and AX = XA. In fact, if z ∈
Ker(XA), commuting and premultiplying by A we have XAz = 0, that is AXz = 0
and then A2Xz = 0. Therefore, z ∈ Ker(A), that is Ker(XA) ⊆ Ker(A). The other
inclusion can be easily shown.

We finish this section with the following general result.
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Theorem 6. Let T and S be subspaces of Cn and Cm, respectively. Let A ∈ Cm×n
and consider a matrix X ∈ Cn×n such that

Im(X) = T and Ker(X) = S.
Then, series (2) converges to the matrix A(2)T ,S if and only if conditions (a), (b) and
(c) hold.

Proof. From Corollary 2.4 of Tanabe [8] we see that

GAG = G, GA = PIm(X),Ker(XA) and AG = PIm(AX),Ker(X).

Then, we have

AG = PIm(AX),Ker(X) = PAIm(X),Ker(X) = PAT,S
and

GA=PIm(X),Ker(XA)

=PIm(X),[Im(XA)∗]⊥ = PIm(X),[A∗(Ker(X))⊥]⊥ = PT,(A∗S⊥)⊥ .

So, by Exercise 2.5.31 of Ben-Israel and Greville [3] we conclude thatG = A(2)T ,S . �

As a consequence of Theorem 6 we can obtain several well-known results as
corollaries. We summarize all these results in Table 1.

3. Applications

The aim of this section is to apply the above results to derive an iterative scheme
to compute the generalized inversesA#, AD, A+ and A(2)T ,S. First, we describe briefly
the pth order hyperpower method.

Let A ∈ Cn×n and let X0 ∈ Cn×n be an arbitrary initial matrix. The pth order
hyperpower method

Xi+1 = Xi + (I −XiA)Xi + · · · + (I −XiA)p−1Xi

Table 1

T S A
(2)
T ,S Result

Im(A∗) Ker(A∗) A+ [8, Theorem 2.5]

Im(N−1A∗M) Ker(N−1A∗M) A+
MN

Note before Corollary 2.6 in [8]

Im(A) Ker(A) A# [5, Theorem 6.1]

Im(Ak) Ker(Ak) AD Theorem 5
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generates the sequence {Xi}∞i=0. Our purpose is to use it for obtaining different
generalized inverses.

Theorem 7 (Lemma 3.1 of [8]). The pth order hyperpower method generates the
partial sum of series (2) by means of

Xl =
pl−1∑
i=0

(I −XA)iX,

where pl indicates the lth power of p.

Theorem 3.2 of Tanabe [8] shows that assumptions (a)–(c) guarantee the conver-
gence of series (2) to a one {1, 2}-inverse of A. The following theorem states similar
results for other kinds of generalized inverses.

Theorem 8. Let A ∈ Cn×n. Then the pth order hyperpower method generates a
convergent sequence of matrices {Xi}∞i=0 that converge to

(i) the group inverse of A, if conditions (a)–(d) hold;
(ii) the Moore–Penrose inverse of A, if conditions (a)–(c), (e) and (f) hold;

(iii) the Drazin inverse of A, if conditions (a), (b), (d) and (g) hold;
(iv) the generalized inverse A(2)T ,S of A, if conditions (a)–(c) hold.

Proof. The proof of this theorem holds from Theorems 3, 4, 5 and 6, respectively;
and using Theorem 3.2 of Tanabe [8]. �

Remark 1. We can observe that Theorem 3.1 of Wei [10] related to the hyperpower
method can be obtained as a corollary of Theorem 6.

Another application of the results of Section 2 will be presented below. First,
we introduce the generalized involutory matrices in a similar way to how the group
involutory matrix was introduced by Bru and Thome [5].

Definition 1. The matrix A ∈ Cn×n is called

• Moore–Penrose involutory if A+ = A,
• Drazin involutory if AD = A,
• A(2)T ,S involutory if A(2)T ,S = A.

Now, as an immediate consequence of Theorems 4, 5 and 6 we have the following
result.
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Theorem 9. Let A ∈ Cn×n. Then A is Moore-Penrose, Drazin or A(2)T ,S involutory
matrix if and only if the pth order hyperpower method generates a sequence of
matrices {Xi}∞i=0 that converges to A when conditions:

(i) (a)–(c), (e) and (f) hold,
(ii) (a), (b), (d) and (g) hold, or

(iii) (a)–(c) hold,
respectively.
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