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dures discussed here are known to control the familywise
error rate or false-discovery rate in particular situations
(e.g., independent covariates), their performance in more
general situations needs further investigation.
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Reply to Kraft

To the Editor:
Our study (Bugawan et al. 2003) reported a negative
association of a specific IL4-524 haplotype with type 1
diabetes (T1D), consistent with a previous report (Mirel
et al. 2002), and presented evidence for a genetic inter-
action between IL4-524 and IL4R SNPs. To test the lat-

ter, we computed relevant P values by permuting mul-
tilocus genotypes separately in case and control groups.

The criticism raised by Kraft (2004 [in this issue]) is
not directed at our implementation of permutation test-
ing, per se, but at permutation testing in general. His
argument is that permutation testing does not properly
account for multiple comparisons, resulting in an in-
crease in false claims of significance, or type I familywise
error (FWE). In the place of permutation testing, Kraft
advocates the use of the Simes method—an elaboration
of the classic Bonferroni procedure. In response, we wish
to show that permutation testing can be used to obtain
a desired false-positive error rate (as, indeed, can be dem-
onstrated using Kraft’s example) and, moreover, that
such an approach has the added advantage of providing
additional protection against false claims of nonsignif-
icance, or type II error.

It should be noted that permutation methods are well
established as a robust approach for obtaining overall
significance levels while minimizing type II error (e.g.,
Good 1994; Doerge and Churchill 1996; Lynch and
Walsh 1998), that such methods are extensible to mul-
tiple-testing scenarios (Westfall and Young 1993), and
that examples of their application to human genetics are
not uncommon (e.g., Lewis et al. 2003). However, as
with any statistical method, the validity is dependent on
correct application. Kraft provides an analysis of the
permutation testing by discussing the distribution of two
P values obtained from hypothetically permuted distri-
butions (i.e., independent and uniformly distributed un-
der the null hypothesis). The joint cumulative distribu-
tion function (CDF) for these two P values is given as

, where P(1) and P(2) are, re-F(P P ) p P (2P � P )(1), (2) (1) (2) (1)

spectively, the first- and second-ordered P values. As
such, Kraft notes that the for this joint dis-Pr (P ! .05)
tribution is ∼0.1, indicating that we would expect to see
the smaller P value, or , about 10% of the time.P ! .05(1)

Kraft’s argument, therefore, is that for independent tests,
use of a critical value of .05 leads to a type I error rate
of 10%.

In fact, the proper approach for permutation testing—
adjusted or unadjusted for multiple comparisons—is to
find the critical value corresponding to the desired type
I error rate. Specifically, if we consider the simulations
presented by Kraft as equivalent to the result of a per-
mutation test, we would seek the value of x in the per-
muted distribution for which is actually �aPr (P ! x)
and would use that value, not the .05 value as Kraft
appears to suggest. For P(1), this critical value would be
.0253, as can be shown either by simulation or by solv-
ing Kraft’s joint CDF for , given (ina p 0.05 P p 1(2)

effect, solving the marginal CDF for P(1)). It is interesting
to note that the first P value that Kraft gives (.10) cor-
responds to the Sidak multiple comparison–adjusted P
value for observed and tests, whereasa p 0.05 k p 2
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the value we give corresponds to the Sidak-adjusted
threshold ( ). As such, this example nicely1/k1 � [1 � a]
illustrates that permutation testing, for two indepen-
dent tests, yields familiar and contextually appropriate
results.

It should also be noted that multiple-testing methods
that rely on raw Bonferroni-type inequalities fail to in-
corporate correlation structures between tests. There-
fore, although such methods (e.g., Simes 1986; Hoch-
berg 1988; Rom 1990) provide control of FWE, they
nevertheless are expected to be less powerful than meth-
ods that account for such dependencies. Indeed, these
methods may be made more precise through resampling-
based approaches (Westfall and Young 1993). In par-
ticular, the data from which the tests in table 7 (Bugawan
et al. 2003) were derived are strongly correlated, and,
therefore, tests that assume independence are not ex-
pected to be the most powerful. Moreover, Kraft fails
to take into account the nonindependence of genotype
distributions between chromosome 5 and chromosome
16 SNPs presented in table 6 (Bugawan et al. 2003).
Applying the Simes correction suggested by the author
for 10 comparisons (two sets: patients and controls, and
five SNPs), the independence between IL4-524 and IL4R
patient genotypes would be rejected with , sup-P ! .01
porting our conclusion of an interaction between chro-
mosome 5 and chromosome 16 in T1D susceptibility.

In conclusion, what is needed, from a methodological
perspective, are statistical procedures that adequately
protect against false claims of significance while simul-
taneously addressing the correlated nature of multiple
testing. The various methods discussed by Kraft address
the former but do not address the latter. Having said
this, whatever the statistical approach, the strongest test
of the significance of any reported genetic interaction
lies neither in initial-discovery P values nor in biologic
plausibility—which we believe is high in this case—but
in the ability to reproduce observations in independent
cohorts.

ANA MARIA VALDES, BRIAN RHEES, AND

HENRY ERLICH

Roche Molecular Systems
Alameda, CA

References

Bugawan TL, Mirel DB, Valdes AM, Panelo A, Pozzilli P, Erlich
HA (2003) Association and interaction of the IL4R, IL4,
and IL13 loci with type 1 diabetes among Filipinos. Am J
Hum Genet 72:1505–1514

Doerge RW, Churchill GA (1996) Permutation tests for mul-
tiple loci affecting a quantitative character. Genetics 142:
285–294

Good P (1994) Permutation tests: a practical guide to resam-

pling methods for testing hypotheses. Springer-Verlag, New
York

Hochberg Y (1988) A sharper Bonferroni procedure for mul-
tiple tests of significance. Biometrika 75:800–802

Kraft P (2004) Multiple comparisons in studies of gene # gene,
gene # environment interaction. Am J Hum Genet 74:
582–584 (in this issue)

Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE,
Hovatta I, Williams NM, et al (2003) Genome scan meta-
analysis of schizophrenia and bipolar disorder, part II:
schizophrenia. Am J Hum Genet 73:34–48

Lynch M, Walsh B (1998) Genetics and analysis of quantitative
traits. Sinauer Associated, Sunderland, MA, pp 441–442

Mirel DB, Valdes AM, Lazzeroni LC, Reynolds RL, Erlich HA,
Noble JA (2002) Association of IL4R haplotypes with type
1 diabetes. Diabetes 51:3336–3341

Rom DM (1990) A sequentially rejective test procedure based
on a modified Bonferroni inequality. Biometrika 77:663–
665

Simes RJ (1986) An improved Bonferroni procedure for mul-
tiple tests of significance. Biometrika 73:751–754

Westfall PH, Young SS (1993) Resampling-based multiple test-
ing: examples and methods for P-value adjustment. John
Wiley & Sons, New York

Address for correspondence and reprints: Dr. Brian K. Rhees, Roche Molecular
Systems, Department of Human Genetics, 1145 Atlantic Avenue, Alameda, CA
94501. E-mail: brian.rhees@roche.com

� 2004 by The American Society of Human Genetics. All rights reserved.
0002-9297/2004/7403-0028$15.00

Am. J. Hum. Genet. 74:585–588, 2004

Revisiting the Clinical Validity of Multiplex Genetic
Testing in Complex Diseases

To the Editor:
The usefulness of genetic testing to identify high-risk
patients for common multifactorial diseases is subject to
debate. Optimism about the public health opportunities
is counterbalanced with skepticism, since genetic factors
appear to play a role in only a minority of patients with
complex diseases, the number of genes involved is large,
and their penetrance is incomplete (Holtzman and Mar-
teau 2000; Vineis et al. 2001).

In last March’s issue of the Journal, Yang and col-
leagues addressed the question of whether prediction of
disease is improved by multiplex genetic testing (Yang
et al. 2003). At first sight, their results seem promising.
In a simulation study, they considered five genetic tests
(g1–g5), which each could have a positive ( ) org p 1i

negative result ( ). Yang et al. used the likelihoodg p 0i

ratio to indicate the magnitude of change in disease
probability before and after genetic testing. Positive test
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