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Summary

Many intracellular bacterial pathogens undergo actin-based
motility to promote cell-cell spread during infection [1]. For

each pathogen, motility was assumed to be driven by a sin-
gle actin polymerization pathway. Curiously, spotted fever

group Rickettsia differ from other pathogens in possessing
two actin-polymerizing proteins. RickA, an activator of the

host Arp2/3 complex, was initially proposed to drive motility
[2, 3]. Sca2, a mimic of host formins [4, 5], was later shown

to be required for motility [6]. Whether and how their activ-
ities are coordinated has remained unclear. Here, we show

that each protein directs an independent mode of Rickettsia
parkeri motility at different times during infection. Early

after invasion, motility is slow and meandering, generating
short, curved actin tails that are enriched with Arp2/3 com-

plex and cofilin. Early motility requires RickA and Arp2/3

complex and is correlated with transient RickA localization
to the bacterial pole. Later in infection, motility is faster and

directionally persistent, resulting in long, straight actin
tails. Late motility is independent of Arp2/3 complex and

RickA and requires Sca2, which accumulates at the bacte-
rial pole. Both motility pathways facilitate cell-to-cell

spread. The ability to exploit two actin assembly pathways
may allow Rickettsia to establish an intracellular niche

and spread between diverse cells throughout a prolonged
infection.
Results and Discussion

Rickettsia Motility Occurs in Two Phases with Distinct

Movement Parameters
Pathogens that undergo actin-based motility (ABM), including
Listeria monocytogenes and Shigella flexneri, were assumed
to deploy one protein that harnesses a single actin polymeriza-
tion pathway, resulting in a mechanistically uniform mode of
motility throughout infection [7]. However, spotted fever group
(SFG) Rickettsia differ from L. monocytogenes and S. flexneri
in having a slower doubling time (8–12 hr versus 40–60 min)
and longer persistence time in host cells (120 hr ormore versus
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8–24 hr) [8, 9]. Previous studies examined Rickettsia ABM pri-
marily at 24–48 hr postinfection (hpi) [10–12], with one report of
rare motility at 30 min postinfection (mpi) [10]. These reports
did not, however, quantify movement parameters or molecular
requirements throughout infection. We sought to determine
how ABM progresses during infection with Rickettsia parkeri,
an emerging SFG pathogen that causes eschar-associated
rickettsiosis in humans [13].
We investigated the appearance of actin tails at various

times after infection of human microvascular endothelial
(HMEC-1) cells. Early after invasion (15–30 mpi), actin tails
were predominantly short or curved (Figures 1A and 1B).
Most bacteria with actin tails were intracellular even at
15 mpi (see Figure S1A available online), with a small extracel-
lular fraction that may have been invading or escaping from
host cells. At intermediate times postinfection (2–12 hpi), few
tails were observed (Figure 1A). At later times (24–48 hpi), tails
were more frequent and were predominantly long (Figures 1A
and 1B). This suggests that R. parkeri transitions through an
early motile phase prior to bacterial replication, an intermedi-
ate phase with infrequent motility, and a latemotile phase after
replication commences.
To discern whether the parameters of movement change

over time, we observed motility of individual R. parkeri early
(15–60 mpi) and late (48 hpi) after infection of HMEC-1 cells
(Movies S1 and S2; Figure S1B and S1C) and compared
these with the parameters of L. monocytogenes motility (8–
12 hpi) (Movie S3; Figure S1D). Early R. parkeri motility was
slower and produced shorter actin tails in comparison with
late R. parkeri and L. monocytogenes motility (Figures 1C
and 1D). Tail length and speed were well correlated for both
early R. parkeri (R2 = 0.69) and L. monocytogenes motility
(R2 = 0.78) (Figure 1E), similar to previous observations for
L. monocytogenes [17]. However, there was little correlation
for late R. parkeri motility (R2 = 0.30), as seen previously [18].
We also measured path curvature by calculating movement
efficiency (displacement / distance traveled) and the average
cos(Dq) (Dq = change in tangent angle between track seg-
ments) (Figures 1F and 1G) over 60 s. The median values for
both curvature measures were close to 1 for late R. parkeri
motility, indicating straighter trajectories. Both measure-
ments were significantly different for early R. parkeri motility,
reflecting more curved trajectories similar to those of
L. monocytogenes. Thus, early and late R. parkeri motility
differ in key parameters, suggesting that each phase is driven
by a distinct actin polymerization mechanism.

Different Host Proteins Are Recruited and Required for

Early and Late Motility
The observation that early R. parkeri motility resembles
L. monocytogenes motility, which requires the host Arp2/3
complex [7], suggested that differences between early versus
late R. parkerimotility result from differential utilization of pro-
teins involved in Arp2/3-dependent actin network assembly
and disassembly. The recruitment of the Arp2/3 complex to
R. parkeri actin tails was examined in HMEC-1 cells expressing
the mCherry-tagged ARPC5 subunit. mCherry-ARPC5 local-
ized intensely to earlyR. parkeri actin tails in both live and fixed
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Figure 1. R. parkeri Motility Occurs in Early and Late Phases with Distinct

Movement Characteristics

(A) Graph depicting the percentage of R. parkeri with actin tails that are

curved (blue; >90� bend in tail), short (yellow; <2 bacteria lengths), or long

(red; >2 bacteria lengths) in HMEC-1 cells infected synchronously for the

indicated times as described previously [14]. Results are the average from

three independent experiments performed in duplicate.
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cells (Figures 2A and 2C), similar to Arp2/3 complex localiza-
tion in L. monocytogenes tails [20, 21]. In fixed cells, the
Arp3 subunit of native Arp2/3 complex was also observed in
early tails (Figure S2A). In contrast, ARPC5 andArp3 intensities
were indistinguishable from controls in late R. parkeri actin
tails (Figures 2B and 2C; Figure S2B), consistent with previous
findings [12, 18, 22]. We also examined the localization of the
actin-severing and -depolymerizing protein cofilin, which is
enriched in cellular actin networks containing Arp2/3 [23]. In
HMEC-1 cells expressing cofilin tagged with EGFP, EGFP-
cofilin intensity was significantly higher in early R. parkeri actin
tails compared with late tails, and intensity in both tail types
was significantly higher than control intensity (Figures 2D–
2F; Figure S2C). Earlier qualitative observations also found
cofilin to be more abundant in L. monocytogenes actin tails
than in late R. parkeri tails [12, 18]. The distinct composition
of actin cytoskeletal proteins in early and late R. parkeri actin
tails likely reflects differences in the mechanisms of actin
assembly and dynamics.
We tested for differences in the functional requirement for

host Arp2/3 complex in early versus late R. parkeri ABM by
treating infected HMEC-1 and COS7 cells with the small-mole-
cule Arp2/3 inhibitor CK869 [24], the inactive control com-
pound CK312, or DMSO alone (Figures 2G–2I; Figure S2). Early
actin tail formation (30 mpi) was significantly reduced upon
15 min treatment with inhibitor relative to controls (Figure 2G;
Figure S2D). In contrast, latemotility (48 hpi) was unaffected by
30 min or 24 hr treatment with Arp2/3 inhibitor (Figures 2H and
2I; Figure S2E). Thus, the molecular mechanisms of actin
nucleation during early and late motility are distinct, with early
motility exhibiting an Arp2/3-dependent mechanism similar to
that used by L. monocytogenes [7].

Early Motility Requires RickA and Late Motility Requires

Sca2
Differences in the requirement for host Arp2/3 complex in
early versus late R. parkeri ABM suggested that the bacte-
rial actin-polymerizing proteins RickA and Sca2 might also
contribute differentially to each motility phase. Using the
pMW1650/himar1 transposon system [25, 26] in R. parkeri,
we isolated transposon insertion mutations in the rickA or
(B) R. parkeri-infected cells were fixed at the indicated times and stained

with anti-Rickettsia antibody (red) and for actin with Alexa Fluor 488-phalloi-

din (green).

(C–G) Bacterial motility parameters in HMEC-1 cells expressing Lifeact-

EGFP and infected with R. parkeri expressing mCherry [15] early (12–

60min postinfection [mpi]) or late (48 hr postinfection [hpi]), or HMEC-1 cells

expressing Lifeact-mCherry and infected with L. monocytogenes strain

10403S expressing GFP [16] at 8–12 hpi.

(C and D) Speed of movement (C) and actin tail length (D) for R. parkeri early

(blue) and late (red), and for L. monocytogenes (gray). Data are mean6 SD,

***p < 0.001 by ANOVA with Bonferroni’s multiple comparison test, from

three separate experiments, with tracking and speed data in 60 s intervals

for each bacterium.

(E) Relationship between average speed and actin tail length for each bac-

terium, with best-fit linear regression.

(F) Average efficiency of movement, calculated by dividing the total xy

displacement by the total distance moved over 60 s for each bacterium.

(G) Path straightness for each bacterium, calculated by averaging cosines of

the change in tangent angle between adjacent track segments (Dq) over 60 s

ofmovement. For (F) and (G), we analyzed variation around themedians due

to the non-Gaussian distribution of the data. Data aremedian6 interquartile

range, **p < 0.01, ***p < 0.001 by Kruskal-Wallis test with Dunn’s multiple

comparison test.

See also Figure S1 and Movies S1, S2, and S3.



Figure 2. Different Host Proteins Are Recruited

and Required for Early and Late Motility

(A, B, D, and E) Confocal micrographs of live

HMEC-1 cells stably expressing Lifeact-33BFP

(green) infected with R. parkeri for 30 mpi (early)

or 48 hpi (late). Cells also expressed mCherry-

ARPC5 (red; A and B) or EGFP-cofilin (D and E;

red) [19].

(C and F) Average intensities of line scans along

the first 100 pixels (w6.5 mm) of actin tails prox-

imal to bacteria, or control lines in various areas

of transfected cells (a.u., arbitrary units). Intensity

was measured for 26–36 tails in snapshots of

multiple live cells after identical rolling circle

background correction using ImageJ. Asterisks

indicate significantly different average peak in-

tensities (at 5 pixels for C and 10 pixels for F)

compared with controls, with **p < 0.01 or

***p < 0.001 based on ANOVA with Bonferroni’s

multiple comparison test.

(G) Percent of all bacteria with an actin tail in

HMEC-1 cells infected with R. parkeri for 15 min

to allow invasion and then treated with 1%

DMSO or 100 mM inactive control (CK312) or

Arp2/3 inhibitor (CK869) for 15mpi before fixation

at 30 mpi.

(H) HMEC-1 cells infected with R. parkeri for 48 hr

and then treated with 1% DMSO or 100 mM

CK312 or CK869 for 30 min before fixation.

(I) COS7 cells infected with R. parkeri for 24 hr

and then treated with 1% DMSO or 100 mM

CK312 or CK869 for an additional 24 hr (with fresh

media plus inhibitors exchanged at 32 hr, 40 hr,

and 48 hr). For (G)–(I), cells were stained with

Alexa Fluor 488-phalloidin and anti-Rickettsia

antibody, and 5–10 random fields of view were

imaged. Results represent the mean 6 SD of

two (G) or three (H and I) independent experi-

ments performed in duplicate; ***p < 0.001 by

ANOVA with Bonferroni’s multiple comparison

test.

See also Figure S2.
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sca2 genes (Figures S3A and S3B). The sca2::tn mutation
causes the expression of a truncated 50 kDa protein, whereas
the rickA::tn mutation eliminates detectable expression of
RickA (Figure S3C). Neither mutation deleteriously affected
the growth of R. parkeri (Figure S3D). Importantly, the
rickA::tn mutant was completely defective in early tail forma-
tion (Figures 3A and 3B) but showed no defect in late tail for-
mation (Figures 3C and 3D). Conversely, the sca2::tn mutant
was completely deficient in late tail formation (Figures 3C
and 3D; similar to the sca2::tn mutant in R. rickettsii [6]) and
exhibited a slight defect in early tail formation (Figures 3A
and 3B), perhaps reflecting a small subset of early ABM driven
by Sca2. Thus, the two phases of Rickettsia motility are
mechanistically independent, with RickA and Arp2/3 complex
required for early motility, and Sca2 alone required for late
motility.

We next investigated the function of RickA and Sca2 in
R. parkeri cell-cell spread. The efficiency of spread at 24 hpi
was determined by measuring the size
of infectious foci in A549 cell mono-
layers, and at 5 days postinfection (dpi)
by measuring the size of plaques in
Vero cell monolayers. At 24 hpi, both
the rickA::tn and sca2::tn mutants
exhibited significantly smaller foci than wild-type, although
the sca2::tn mutant phenotype was more severe (Figures 3E
and 3F). At 5 dpi, however, only the sca2::tnmutant had signif-
icantly smaller plaques than wild-type (Figures 3G and 3H),
consistent with small plaques formed by a R. rickettsii sca2
mutant [6]. Thus, both RickA and Sca2 are important for
efficient spread kinetics early in infection, whereas Sca2 is
primarily important for spread later in infection.

A Transition between Phases Is Mediated by Changes in
RickA and Sca2 Localization

For L. monocytogenes and S. flexneri, polar localization of the
bacterial actin-polymerizing proteins ActA or IcsA is important
for efficient ABM [27]. Previous studies reported diffuse locali-
zation of RickA [2, 15] and polar localization of Sca2 [4] late in
infection. We hypothesized that changes in the localization or
abundance of RickA and Sca2 might coordinate their activities
in the two phases of motility. Surface-accessible protein



Figure 3. Early Actin-Based Motility Requires

RickA, and Late Motility Requires Sca2

(A and C) HMEC-1 cells infected with wild-type or

mutant R. parkeri for 30 min (A) or 48 hr (C),

stained with Alexa Fluor 488-phalloidin to label

actin and anti-Rickettsia antibody. Arrowheads

indicate bacteria with an actin tail.

(B and D) Percentage of wild-type or mutant

R. parkeriwith actin tails in HMEC-1 cells infected

for 30 min (B) or 48 hr (D). Data are mean6 SD of

five random fields of view in each of three inde-

pendent experiments performed in duplicate.

(E) Infectious foci formed by wild-type or mutant

R. parkeri in A549 cells, stained with DAPI (blue),

anti-b-catenin antibody (red), and anti-Rickettsia

antibody (green). Asterisks indicate infected

cells.

(F) Number of infected cells per focus for strains

in (E). Data are mean 6 SD for ten foci.

(G) Plaques formed by wild-type or mutant

R. parkeri in Vero cells 5 days postinfection (dpi).

(H) Plaque area for strains in (G). Data aremean6

SEM of data from three independent experi-

ments. *p < 0.05, ***p < 0.001 for mean versus

wild-type values by ANOVA with Bonferroni’s

multiple comparison test.

See also Figure S3.
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localization was determined in a synchronized infection of
HMEC-1 cells (Figure 4; Table S1). At 30 mpi, 97% of bacteria
with actin tails exhibited robust RickA staining at the actin-
polymerizing pole (Figures 4A and 4C). In bacteria expressing
FLAG-tagged RickA [15], the tagged protein was also polar
at 30 mpi (Figure S2A). In contrast, 96% of bacteria with early
actin tails lacked Sca2 staining or exhibited weak and diffuse
Sca2 (Figures 4D and 4F). At 8 or 48 hpi, 80%–93% of bacteria
with actin tails showed intense staining of Sca2 at the actin-
polymerizing pole (Figures 4E and 4F). However, more than
90% of bacteria with late tails lacked RickA staining or had
diffusely distributed or dispersed punctate RickA (Figures 4B
and 4C). Thus, there was excellent correspondence of polar
RickA localization with early tail formation, and polar Sca2
localization with late tail formation. We also quantified RickA
and Sca2 protein levels by western blotting relative to the
control outer membrane protein OmpA but did not observe
statistically significant changes in their abundance (Figures
S4A and S4B). Thus, if protein abundance does vary, it does
so at the level of individual bacteria rather than the whole-
population level. The correspondence between polar localiza-
tion of each protein and formation of actin tails at each time
point suggests that sequential polar localization of RickA
followed by Sca2 regulates the transition between early and
late motility.
Models and Functions for Dual

Motility Phases
Our results indicate that R. parkeri ABM
proceeds in mechanistically indepen-
dent phases. Early motility is driven by
RickA and the host Arp2/3 complex,
whereas late motility is driven by Sca2.
The rickA and sca2 genes are highly
similar in nearly all SFG Rickettsia,
suggesting that biphasic motility is
conserved among these species. How-
ever, the typhus group species R. typhi,
which forms short actin tails [10], lacks rickA [28] and has a
divergent sca2 [4], suggesting that it may undergo a single
motility phasedrivenbyadistinctmechanism. ForSFGRickett-
sia, a transition between phases is correlated with changes in
RickA and Sca2 localization. Such changes could be attributed
to temporal control over secretion, with RickA being secreted
during or just following invasion and Sca2 being secreted and
localized during bacterial replication, as seen for S. flexneri
IcsA and other autotransporter proteins [29]. RickA and Sca2
localization and function might also be regulated by posttrans-
lational modification. Changes in motility behavior and surface
protein localization may define key stages of Rickettsia
infection and suggest that Rickettsia may undergo previously
unappreciated developmental switches. It is also notable that
early RickA-Arp2/3 and late Sca2-formin-like actin polymeriza-
tion pathways result in fundamentally different movement
parameters. This suggests that actin networks generated by
different actin nucleators result in biophysically distinct forces
andmovements. Further study ofRickettsiamotility may reveal
how different actin nucleation pathways impact the movement
of pathogens as well as host cell organelles and structures.
The execution of two ABM phases distinguishes SFG

Rickettsia from other motile bacterial pathogens, which are
thought to undergo a single mode of motility [1], although
S. flexneri protrusion formation and spread are enhanced by



Figure 4. Transition between Early and Late

Motility Is Accompanied by Changes in the

Localization of RickA and Sca2

(A, B, D, and E) Localization of RickA using anti-

RickA antibody (A and B) [3] or Sca2 using anti-

Sca2 antibody (D and E) [4] in HMEC-1 cells

infected with wild-type R. parkeri for 30 min

(early) or 48 hr (late). Cells were fixed and stained

for immunofluorescence microscopy with DAPI

to visualize DNA and Alexa Fluor 488-phalloidin

to visualize actin. Time postinfection and locali-

zation patterns are noted at left.

(C and F) The percentage of bacteria with the

indicated RickA or Sca2 localization patterns

was scored for 400–1,200 bacteria over two

independent experiments. Localization patterns

correspond to those shown in (A), (B), (D), and

(E), and only bacteria also having an actin tail

are shown.

See also Figure S4 and Table S1.
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the host formin Dia1 [30]. Why did SFG Rickettsia evolve to
separately exploit both RickA-Arp2/3 and Sca2-formin-like
pathways? Our results suggest that one function of both early
and late ABM is to promote cell-cell spread. RickA-driven early
motilitymight promote efficient spread kinetics frompreviously
infectedcellsbeforebacterial replication, ashasbeenobserved
for vaccinia virus [31]. Sca2-mediated late motility appears to
play a crucial role in spread once bacterial replication has
commenced. The newly developed mouse model of R. parkeri
infection [32] will ultimately be useful for illuminating how each
motility mechanism enhances spread between the diverse cell
types of themammalian host. A second central function of actin
polymerization is tomodulatebacterial targetingby thehost cell
autophagy pathway. For L. monocytogenes, binding and
recruitment of the Arp2/3 complex is crucial for evading auto-
phagy [33]. For S. flexneri, in contrast, association with actin
appears to promote autophagy [34, 35]. For Rickettsia, how-
ever, the role of actin in autophagic targeting is poorly under-
stood [34], and differential recruitment of the Arp2/3 complex
and actin early and late in Rickettsia infection may modulate
autophagy to adapt Rickettsia to their long residence time in
host cells. Thus, understanding why SFG Rickettsia exploit
two actin polymerization pathways will reveal diverse evolu-
tionary strategies bywhich pathogens exploit actin to establish
an intracellular niche and avoid degradation.
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