
Information and Computation 152, 74�110 (1999)

Incremental Concept Learning for
Bounded Data Mining

John Case

Department of CIS, University of Delaware, Newark, Delaware 19716

E-mail: case�cis.udel.edu

Sanjay Jain

Department of ISCS, National University of Singapore, Lower Kent Ridge Road,
Singapore 119260, Republic of Singapore

E-mail: sanjay�iscs.nus.edu.sg

Steffen Lange

Universita� t Leipzig, Fakulta� t fu� r Mathematik und Informatik, Institut fu� r Informatik,
04109 Leipzig, Germany

E-mail: slange�informatik.uni-leipzig.de

and

Thomas Zeugmann*

Department of Informatics, Kyushu University, Kasuga 816-8580, Japan
E-mail: thomas�i.kyushu-u.ac.jp

Important refinements of concept learning in the limit from positive data
considerably restricting the accessibility of input data are studied. Let c be
any concept; every infinite sequence of elements exhausting c is called
positive presentation of c. In all learning models considered the learning
machine computes a sequence of hypotheses about the target concept
from a positive presentation of it. With iterative learning, the learning
machine, in making a conjecture, has access to its previous conjecture
and the latest data items coming in. In k-bounded example-memory
inference (k is a priori fixed) the learner is allowed to access, in making
a conjecture, its previous hypothesis, its memory of up to k data items it
has already seen, and the next element coming in. In the case of k-feed-
back identification, the learning machine, in making a conjecture, has
access to its previous conjecture, the latest data item coming in, and, on
the basis of this information, it can compute k items and query the
database of previous data to find out, for each of the k items, whether

Article ID inco.1998.2784, available online at http:��www.idealibrary.com on

740890-5401�99 �30.00
Copyright � 1999 by Academic Press
All rights of reproduction in any form reserved.

* Corresponding author.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81939922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

or not it is in the database (k is again a priori fixed). In all cases, the
sequence of conjectures has to converge to a hypothesis correctly describing
the target concept. Our results are manyfold. An infinite hierarchy of more
and more powerful feedback learners in dependence on the number k of
queries allowed to be asked is established. However, the hierarchy collapses
to 1-feedback inference if only indexed families of infinite concepts are
considered, and moreover, its learning power is then equal to learning in
the limit. But it remains infinite for concept classes of only infinite r.e.
concepts. Both k-feedback inference and k-bounded example-memory
identification are more powerful than iterative learning but incomparable
to one another. Furthermore, there are cases where redundancy in the
hypothesis space is shown to be a resource increasing the learning power
of iterative learners. Finally, the union of at most k pattern languages is
shown to be iteratively inferable.] 1999 Academic Press

1. INTRODUCTION

The present paper derives its motivation to a certain extent from the rapidly emerg-
ing field of knowledge discovery in databases (KDD). Historically, there is a variety
of names, including data mining, knowledge extraction, information discovery, data
pattern processing, information harvesting, and data archeology, all referring to the
notion of finding useful information about the data that has not been known before.
Throughout this paper we shall use the term KDD for the overall process of dis-
covering useful knowledge from data and data mining to refer to the particular sub-
process of applying specific algorithms for learning something useful from the data.
Thus, the additional steps such as data presentation, data selection, incorporating
prior knowledge, and defining the semantics of the results obtained belong to KDD
(cf., e.g., Fayyad et al. (1996a, 1996b)). Prominent examples of KDD applications
in health care and finance include Matheus et al. (1996) and Kloesgen (1995). The
importance of KDD research finds its explanation in the fact that the data collected
in various fields, such as biology, finance, retail, astronomy, medicine, are extremely
rapidly growing, while our ability to analyze those data has not kept up proportionally.

KDD mainly combines techniques originating from machine learning, knowledge
acquisition and knowledge representation, artificial intelligence, pattern recognition,
statistics, data visualization, and databases to automatically extract new interrelations,
knowledge, patterns, and the like from huge collections of data. Usually, the data
are available from massive data sets collected, for example, by scientific instruments
(cf., e.g., Fayyad et al. (1996a, 1996b)), by scientists all over the world (as in the
human genome project), or in databases that have been built for other purposes
than a current purpose.

We shall be mainly concerned with the extraction of concepts in the data mining
process. Thereby, we emphasize the aspect of working with huge data sets. For
example, in Fayyad et al. (1996a) the SKICAT-system is described which operates
on 3 terabytes of image data originating from approximately two billion sky objects
which had to be classified. If huge data sets are around, no learning algorithm can
use all the data or even large portions of it simultaneously for computing hypotheses

75INCREMENTAL CONCEPT LEARNING

about concepts represented by the data. Different methods have been proposed for
overcoming the difficulties caused by huge data sets. For example, sampling may be
a method of choice. That is, instead of doing the discovery process on all the data,
one starts with significantly smaller samples, finds the regularities in it, and uses the
different portions of the overall data to verify what one has found. Clearly, a major
problem involved concerns the choice of the right sampling size. One way proposed
to solve this problem as well as other problems related to huge data sets is interac-
tion and iteration (cf., e.g., Brachman and Anand, 1996; Fayyad et al., 1996b). That
is, the whole data mining process is iterated a few times, thereby allowing human
interaction until a satisfactory interpretation of the data is found.

Looking at data mining from the perspective described above, it becomes a true
limiting process. That means, the actual result of the data mining algorithm application
run on a sample is tested versus (some of) the remaining data. Then, if, for any reason
whatever, a current hypothesis is not acceptable, the sample may be enlarged (or
replaced) and the algorithm is run again. Since the data set is extremely large,
clearly not all data can be validated in a prespecified amount of time. Thus, from
a theoretical point of view, it is appropriate to look at the data mining process as
an ongoing, incremental one.

In the present theoretical study, then, we focus on important refinements or
restrictions of Gold's (1967) model of learning in the limit grammars for concepts
from positive instances.1 Gold's (1967) model itself makes the unrealistic assump-
tion that the learner has access to samples of increasingly growing size. Therefore,
we investigate refinements that considerably restrict the accessibility of input data.
In particular, we deal with so-called iterative learning, bounded example-memory
inference, and k-feedback identification (cf. Definitions 3, 4, and 5, respectively).
Each of these models formalizes a kind of incremental learning. In each of these
models we imagine a stream of positive data coming in about a concept and that
the data that arrived in the past sit in a database which can get very, very large.
Intuitively, with iterative learning, the learning machine, in making a conjecture,
has access to its previous conjecture and the latest data item coming in��period. In
bounded example-memory inference, the learning machine, in making a conjecture,
has access to its previous conjecture, its memory of up to k data items it has seen,
and a new data item. Hence, a bounded example-memory machine wanting to
memorize a new data item it has just seen, if it is already remembering k previous
data items, must forget one of the previous k items in its memory to make room
for the new one! In the case of k-feedback identification, the learning machine,
in making a conjecture, has access to its previous conjecture, the latest data item
coming in, and, on the basis of this information, it can compute k items and query
the database of previous data to find out, for each of the k items, whether or not
it is in the database. For some extremely large databases, a query about whether
an item is in there can be very expensive, so, in such cases, k-feedback identification
is interesting when the bound k is small.

76 CASE ET AL.

1 The subfocus on learning grammars, or, equivalently, recognizers (cf. Hopcroft and Ullman, 1969),
for concepts from positive instances nicely models the situation where the database flags or contains
examples of the concept to be learned and does not flag or contain the nonexamples.

Of course the k=0 cases of bounded example-memory inference and feedback
identification are just iterative learning.

Next we summarize informally our main results.
Theorems 3 and 4 imply that, for each k, there are concept classes of infinite r.e.

languages which can be learned by some feedback machine using no more than
k>0 queries of the database, but no feedback machine can learn these classes if
it is restricted to no more than k&1 queries.2 Hence, each additional, possibly
expensive dip into the database buys more concept learning power. However, the
feedback hierarchy collapses to its first level if only indexable classes of infinite
concepts are to be learned (cf. Theorem 5).

A bounded example-memory machine can remember its choice of k items from
the data, and it can choose to forget some old items so as to remember some new
ones. On the other hand, at each point, the feedback machine can query the data-
base about its choice of k things each being or not being in the database. A bounded
example-memory machine chooses which k items to memorize as being in the database,
and the feedback machine can decide which k items to look up to see if they are in
the database. There are apparent similarities between these two kinds of learning
machines, yet Theorems 7 and 8 show that in very strong senses, for each of these
two models, there are concept class domains, where that model is competent and
the other is not!

Theorem 9 shows that, even in fairly concrete contexts, with iterative learning,
redundancy in the hypothesis space increases learning power.

Angluin's (1980a) pattern languages are learnable from positive data, and they
(and finite unions thereof) have been extensively studied and applied to molecular
biology and to the learning of interesting special classes of logic programs (see
the references in Section 3.4 below). Theorem 13 implies that, for each k>0, the
concept class consisting of all unions of at most k pattern languages is learnable
from positive data by an iterative machine!

2. PRELIMINARIES

Unspecified notation follows Rogers (1967). In addition to or in contrast with
Rogers (1967) we use the following. By N=[0, 1, 2, ...] we denote the set of all
natural numbers. We set N+=N"[0]. The cardinality of a set S is denoted by |S |.
Let <, #, /, �, #, and $ denote the empty set, element of, proper subset, subset,
proper superset, and superset, respectively. Let S1 , S2 be any sets; then we write
S1 q S2 to denote the symmetric difference of S1 and S2 ; i.e., S1 q S2=(S1"S2) _

(S2"S1). Additionally, for any sets S1 and S2 and a # N _ [V] we write S1=a S2 ,
provided |S1 q S2|�a, where a=V means that the symmetric difference is finite.

77INCREMENTAL CONCEPT LEARNING

2 That the concepts in the concept classes witnessing this hierarchy are all infinite languages is also
interesting and for two reasons: (1) It is arguable that all natural languages are infinite; (2) many
language learning unsolvability results depend strongly on including the finite languages (cf. Gold, 1967;
Case, 1996). Ditto for other results below, namely, Theorems 7 and 8, which are witnessed by concept
classes containing only infinite concepts.

By max S and min S we denote the maximum and minimum of a set S, respectively,
where, by convention, max <=0 and min <=�.

The quantifiers ``\
�

,'' ``_
�

,'' and ``_!'' are interpreted as ``for all but finitely many,''
``there exist infinitely many,'' and ``there exists a unique,'' respectively (cf. Blum,
1967).

By (} , }): N_N � N we denote Cantor's pairing function.3 Moreover, we let ?1

and ?2 denote the corresponding projection functions over N to the first and second
components, respectively. That is, ?1((x, y))=x and ?2((x, y))= y for all
x, y # N.

Let .0 , .1 , .2 , ... denote any fixed acceptable programming system (cf. Rogers,
1967) for all (and only) the partial recursive functions over N, and let 80 , 81 ,
82 , ... be any associated complexity measure (cf. Blum, 1967). Then .k is the partial
recursive function computed by program k. Furthermore, let k, x # N; if .k(x) is
defined (.k(x) a) then we also say that .k(x) converges; otherwise .k(x) diverges.

In the following two subsections we define the learning models discussed in the
Introduction.

2.1. Defining Gold-Style Concept Learning

Any recursively enumerable set X is called a learning domain. By ^(X) we denote
the power set of X. Let C�^(X), and let c # C; then we refer to C and c as a
concept class and a concept, respectively. Let c be a concept, and let T=(xj) j # N be
an infinite sequence of elements xj # c _ [*] such that range(T)=df [xj | xj{*,
j # N]=c. Then T is said to be a positive presentation or, synonymously, a text for
c. By text(c) we denote the set of all positive presentations for c. Moreover, let T
be a positive presentation, and let y # N. Then, we set Ty=x0 , ..., xy ; i.e., Ty is the
initial segment of T of length y+1, and T +

y =df [x j | x j {*, j� y]. We refer to T +
y

as the content of Ty . Intuitively, the *'s represent pauses in the positive presenta-
tion of the data of a concept c. Furthermore, let _=x0 , ..., xn&1 be any finite
sequence. Then we use |_| to denote the length n of _, and let content(_) and _+,
respectively, denote the content of _. Additionally, let T be a text and let { be a
finite sequence; then we use _ h T and _ h { to denote the sequence obtained by
concatenating _ onto the front of T and {, respectively. By SEQ we denote the set
of all finite sequences of elements from X _ [*].

As a special case, we often consider the scenario X=N and C=E, where E

denotes the collection of all recursively enumerable sets Wi , i # N, of natural
numbers. These sets Wi can be described as Wi=domain(.i). Thus, we also say
that Wi is accepted, recognized or, equivalently, generated by the .-program i.
Hence, we also refer to the index i of Wi as a grammar for Wi .

Furthermore, we sometimes consider the scenario that indexed families of recur-
sive languages have to be learned (cf. Angluin, 1980b). Let 7 be any finite alphabet
of symbols, and let X be the free monoid over 7, i.e., X=7*. As usual, we refer
to subsets L�X as languages. A sequence L=(Lj) j # N is said to be an indexed

78 CASE ET AL.

3 This function is easily computable, 1�1, and onto (cf. Rogers, 1967).

family provided all the Lj are nonempty and there is a recursive function f such that
for all j # N and all strings x # X we have

f (j, x)={1,
0,

if x # Lj ,
otherwise.

Since the paper of Angluin (1980b) learning of indexed families of languages has
attracted much attention (cf., e.g., Zeugmann and Lange, 1995). Mainly, this seems
due to the fact that most of the established language families such as regular languages,
context-free languages, context-sensitive languages, and pattern languages are indexed
families.

Essentially from Gold (1967) we define an inductive inference machine (IIM), or
simply a learning machine, to be an algorithmic mapping from SEQ to N _ [?].
Intuitively, we interpret the output of a learning machine with respect to a suitably
chosen hypothesis space H. The output ``?'' is uniformly interpreted as ``no conjecture.''
We always take as a hypothesis space a recursively enumerable family H=(hj) j # N

of concepts (construed as sets or languages), where the j in hj is thought of as a
numerical name for some finite description or computer program for hj .

Let M be an IIM, let T be a positive presentation, and let y # N. The sequence
(M(Ty))y # N is said to converge to the number j iff in (M(Ty))y # N all but finitely
many terms are equal to j.

Now we define some models of learning. We start with Gold's (1967) unrestricted
learning in the limit (and some variants). Then we will present the definitions of the
models which more usefully restrict access to the database.

Definition 1 (Gold, 1967). Let C be a concept class, let c be a concept, let
H=(hj) j # N be a hypothesis space, and let a # N _ [V]. An IIM M TxtExa

H-infers
c iff, for every T # text(c), there exists a j # N such that the sequence (M(Ty))y # N

converges to j and c=a h j . M TxtExa
H-infers C iff M TxtExa

H-infers c, for each
c # C. Let TxtExa

H denote the collection of all concept classes C for which there is
an IIM M such that M TxtExa

H-infers C. TxtExa denotes the collection of all
concept classes C for which there are an IIM M and a hypothesis space H such
that M TxtExa

H-infers C.

The a represents the number of mistakes or anomalies allowed in the final conjec-
tures (cf. Case and Smith, 1983), with a=0 being Gold's (1967) original case where
no mistakes are allowed. The a=V case goes back to Blum and Blum (1975). If
a=0, we usually omit the upper index; i.e., we write TxtEx, instead of TxtEx0. We
adopt this convention in the definitions of the learning types below.

Since, by the definition of convergence, only finitely many data about c were seen
by the IIM up to the (unknown) point of convergence, whenever an IIM infers the
concept c, some form of learning must have taken place. For this reason, hereinafter
the terms infer, learn, and identify are used interchangeably.

For TxtExa
H-inference, a learner has to converge to a single description for the

target to be inferred. However, it is imaginable that humans do not converge to a
single grammar when learning their mother tongue. Instead, we may learn a small

79INCREMENTAL CONCEPT LEARNING

number of equivalent grammars, each of which is easier to apply than the others in
quite different situations. This speculation directly suggests the following definition.

Definition 2 (Case and Smith, 1983). Let C be a concept class, let c be a
concept, let H=(hj) j # N be a hypothesis space, and let a # N _ [V]. An IIM M
TxtFexa

H-infers c iff, for every T # text(c), there exists a nonempty finite set D such
that c=a hj , for all j # D and M(Ty) # D, for all but finitely many y. M TxtFexa

H-infers
C iff M TxtFexa

H-infers c, for each c # C. Let TxtFexa
H denote the collection of all

concept classes C for which there is an IIM M such that M TxtFexa
H -infers C.

TxtFexa denotes the collection of all concept classes C for which there are an IIM
M and a hypothesis space H such that M TxtFexa

H -infers C.

The following theorem clarifies the relation between Gold's (1967) classical learn-
ing in the limit and TxtFex-inference. The assertion remains true even if the learner
is only allowed to vacillate between up to two descriptions, i.e., in the case |D|�2
(cf. Case, 1988, 1996).

Theorem 1 (Osherson et al., 1986; Case, 1988, 1996). TxtExa/TxtFexa, for all
a # N _ [V].

2.2. Formalizing Incremental Concept Learning

Looking at the above definitions, we see that an IIM M always has access to the
whole history of the learning process, i.e., in order to compute its actual guess M
is fed all examples seen so far. In contrast to that, we next define iterative IIMs
and a natural generalization of them called k-bounded example-memory IIMs.
An iterative IIM is only allowed to use its last guess and the next element in the
positive presentation of the target concept for computing its actual guess. Concep-
tionally, an iterative IIM M defines a sequence (Mn)n # N of machines each of which
takes as its input the output of its predecessor.

Definition 3 (Wiehagen, 1976). Let C be a concept class, let c be a concept, let
H=(hj) j # N be a hypothesis space, and let a # N _ [V]. An IIM M TxtItExa

H -infers
c iff for every T=(xj) j # N # text(c) the following conditions are satisfied:

(1) for all n # N, Mn(T) is defined, where M0(T)=df M(x0) and for all n�0:
Mn+1(T)=df M(Mn(T), xn+1),

(2) the sequence (Mn(T))n # N converges to a number j such that c=a hj .

Finally, M TxtItExa
H -infers C iff, for each c # C, M TxtItExa

H -infers c.

The resulting learning types TxtItExa
H and TxtItExa are analogously defined as

above.
In the latter definition Mn(T) denotes the (n+1)th hypothesis output by M

when successively fed the positive presentation T. Thus, it is justified to make the
following convention. Let _=x0 , ..., xn be any finite sequence of elements over the
relevant learning domain. Moreover, let C be any concept class over X, and let M
be any IIM that iteratively learns C. Then we denote by My(_) the (y+1)th
hypothesis output by M when successively fed _, provided y�n, and there exists

80 CASE ET AL.

a concept c # C with _+�c. Furthermore, we let M
*

(_) denote M |_| &1(_). We
adopt these conventions to the learning types defined below.

Within the following definition we consider a natural relaxation of iterative
learning which we call k-bounded example-memory inference.4 Now, an IIM M is
allowed to memorize at most k of the examples it already has had access to during
the learning process, where k # N is a priori fixed. Again, M defines a sequence
(Mn)n # N of machines, each of which takes as input the output of its predecessor.
Consequently, a k-bounded example-memory IIM has to output a hypothesis, as
well as a subset of the set of examples seen so far.

Definition 4 (Lange and Zeugmann, 1996a). Let k # N, let C be a concept class,
let c be a concept, let H=(hj) j # N be a hypothesis space, and let a # N _ [V]. An
IIM M TxtBemkExa

H -infers c iff for every T=(x j) j # N # text(c) the following condi-
tions are satisfied:

(1) for all n # N, Mn(T) is defined, where M0(T)=df M(x0)=(j0 , S0) such
that S0 �T +

0 and |S0 |�k, and for all n�0: Mn+1(T)=df M(Mn(T), xn+1)=
(jn+1 , Sn+1) such that Sn+1�Sn _ [xn+1] and |Sn+1 |�k,

(2) the jn in the sequence ((jn , Sn))n # N of M's guesses converges to a j # N

with c=a hj .

Finally, M TxtBemkExa
H -infers C iff, for each c # C, M TxtBemkExa

H-infers c.

For every k # N, the resulting learning types TxtBemkExa
H and TxtBemkExa are

analogously defined as above. Clearly, by definition, TxtItExa=TxtBem0 Exa, for
all a # N _ [V].

Finally, we define learning by feedback IIMs. The idea of feedback learning goes
back to Wiehagen (1976) who considered it in the setting of inductive inference of
recursive functions. Lange and Zeugmann (1996a) adapted the concept of feedback
learning to inference from positive data. Here, we generalize this definition. Infor-
mally, a feedback IIM M is an iterative IIM that is additionally allowed to make
a bounded number of a particular type of queries. In each learning stage n+1, M
has access to the actual input xn+1 , and its previous guess jn . However, M is
additionally allowed to compute queries from xn+1 and jn . Each query concerns
the history of the learning process. Let k # N; then a k-feedback learner computes
a k-tuple of elements (y1 , ..., yk) # Xk and gets a k-tuple of ``YES�NO'' answers such
that the i th component of the answer is 1, if yi # T +

n , and it is 0 otherwise. Hence,
M can just ask whether or not k particular strings have already been presented in
previous learning stages. Below An

k : Xk � [0, 1]k denotes the answer to the queries
based on whether the corresponding queried elements appear in Tn or not.

Definition 5. Let k # N, let C be a concept class, let c be a concept, let H=
(hj) j # N be a hypothesis space, and let a # N _ [V]. Moreover, let Qk : N_X � Xk,
be a computable total mapping. An IIM M, with query asking function Qk ,
TxtFbkExa

H -infers c iff for every positive presentation T=(x j) j # N # text(c) the
following conditions are satisfied:

81INCREMENTAL CONCEPT LEARNING

4 Our definition is a variant of one found in Osherson et al. (1986) and Fulk et al. (1994) which will
be discussed later.

(1) for all n # N, Mn(T) is defined, where M0(T)=df M(x0) and for all n�0:
Mn+1(T)=df M(Mn(T), An

k(Qk(Mn(T), xn+1)), xn+1),

(2) the sequence (Mn(T))n # N converges to a number j such that c=a hj ,
provided that An

k truthfully answers the questions computed by Qk (i.e., the j th
component of An

k(Qk(Mn(T), xn+1)) is 1 iff the j th component of Qk(Mn(T), xn+1)
appears in Tn .)

Finally, M TxtFbk Exa
H -infers C iff there is computable mapping Qk as described

above such that, for each c # C, M, with query asking function Qk , TxtFbk Exa
H-

identifies c.

The resulting learning types TxtFbkExa
H and TxtFbkExa are defined analogously

as above.
Finally, we extend Definitions 3 through 5 to the Fex case analogously to the

generalization of TxtExa
H to TxtFexa

H (cf. Definitions 1 and 2). The resulting learn-
ing types are denoted by TxtItFexa

H , TxtBemkFexa
H , and TxtFbExa

H . Moreover,
for the sake of notation, we shall use the convention for learning machines corre-
sponding to Definitions 3 through 5, as well as to TxtItFexa

H , TxtBemk Fexa
H , and

TxtFbExa
H .

In all of the criteria of inference considered above, the hypothesis space of
(Wj) j # N is the most general; i.e., if a class of languages is learnable using some
hypothesis space H, then it is also learnable using the hypothesis space (Wj) j # N .
For this reason, unless explicitly stated otherwise, we will often assume the hypo-
thesis space to be (Wj)j # N , without explicitly saying so.

3. RESULTS

At the beginning of this section, we briefly summarize what has been known concerning
the pros and cons of incremental concept learning. The first thorough investigation
has been provided by Lange and Zeugmann (1996a). In their paper, the important
special case of learning indexed families of recursive languages has been analyzed.

When learning indexed families L, it is generally assumed that the hypothesis
space H has to be an indexed family, too. We distinguish class preserving learning
and class comprising learning defined by range(L)=range(H) and range(L)�
range(H), respectively. When dealing with class preserving learning, one has the
freedom to choose as hypothesis space a possibly different enumeration of the target
family L. In contrast, when class comprising learning is concerned, the hypothesis
space may enumerate, additionally, languages not belonging to range(L). Note
that, in general, one has to allow class comprising hypothesis spaces to obtain the
maximum possible learning power (cf. Lange and Zeugmann, 1993a, 1996b).

Lange and Zeugmann (1996a) studies class comprising incremental learning of
indexed families. In particular, it has been proved that all models of incremental
learning are less powerful than unrestricted learning in the limit, and that 1-feedback
learning and k-bounded example-memory inference are strictly extending iterative
learning. Moreover, the learning capabilities of 1-feedback learning and k-bounded
example-memory inference are incomparable to one another.

82 CASE ET AL.

Since the set of admissible hypothesis spaces has been restricted to indexed
families, it is conceivable that the separating classes used do not witness the same
separations in the general case of unrestricted recursively enumerable hypothesis
spaces. However, a closer look at their proofs shows that the nonlearnability in all
considered cases is due to purely information-theoretic arguments. Consequently,
their results translate into our more general setting and are summarized in the
following theorem.

Theorem 3.1 (Lange and Zeugmann, 1996a). (1) TxtFb1Ex/TxtEx.

(2) TxtBemkEx/TxtEx, for all k # N+.

(3) TxtFb1Ex * TxtBemk Ex, for all k # N+.

Within the remaining part of this section we present our results. In the next
subsection, we deal with feedback learning. Our aim is twofold. On the one hand,
we investigate the learning power of feedback inference in dependence on k, i.e., the
number of strings that may be simultaneously queried. On the other hand, we
compare feedback identification with the other learning models introduced, varying
the error parameter too (cf. Subsection 3.2). In subsequent subsections we study
iterative learning: in Subsection 3.3, the efficacy of redundant hypotheses for iterative
learning and, in Subsection 3.4, the iterative learning of finite unions of pattern
languages. Finally, we turn our attention to the differences and similarities between
Definition 4 and a variant thereof that has been considered in the literature.

3.1. Feedback Inference

The next theorem establishes a new infinite hierarchy of successively more power-
ful feedback learners in dependence on the number k of database queries allowed
to be asked simultaneously.

Theorem 3. TxtFbk&1Ex/TxtFbkEx for all k # N+.

Theorem 4 below not only provides the hierarchy of Theorem 3, but it says that,
for suitable concept domains, the feedback learning power of k+1 queries of the
data base, where a single, correct grammar is found in the limit, beats the feedback
learning power of k queries, even when finitely many grammars, each with finitely
many anomalies, are allowed in the limit.

Theorem 4. TxtFbk+1Ex"TxtFbkFex*{< for all k # N. Moreover, this separa-
tion can be witnessed by a class consisting of only infinite languages.

Proof. For every w # N, we define Xw=[(j, w, i) | 1� j�k+2, i # N], and
X0

w=[(j, w, 0) | 1� j�k+2].
A number e is said to be nice iff

(a) [x # N | (0, x, 0) # We]=[e] and

(b) c(_w)[X 0
w �We].

Finally, we define the desired concept class:
Let L=[L | (_ nice e)[|L|=� 7 [L=We 6 (_! w)[L=We _ Xw]]]].

83INCREMENTAL CONCEPT LEARNING

Claim 1. L # TxtFbk+1Ex.

Proof. Intuitively, from a text for L # L, a learner can iteratively determine the
unique e such that (0, e, 0) # L, and it can remember e in its output using padding.
To determine the unique w, if any, such that L=We _ Xw , Property (b) in the
definition of nice as well as X 0

w �Xw are exploited. That is, the learner tries to verify
X0

w �L whenever receiving an element of the form (j, w, 0) with 1� j�k+2 by
just asking whether the other k+1 elements in X 0

w"[(j, w, 0)] have already
appeared in the text. Now, if L=We , then Property (b) above ensures that the
answer is always ``NO,'' and the learner just repeats its previous guess. On the other
hand, if the answer is ``YES,'' then the learner has verified X 0

w �L, and applying
property (b) as well as X 0

w �Xw , it may conclude L=We _ Xw . Thus, it remembers
w in its output using padding. Moreover, e and w, if any, can be easily used to form
a grammar for L, along with the relevant padding. We now formally define M
behaving as above.

Let the pad be a 1�1 recursive function such that, for all i, j # N, Wpad(0, j)=<,
Wpad(i+1, 0)=Wi , and Wpad(i+1, j+1)=Wi _ Xj . M, and its associated query asking
function Qk+1 , witnessing that L # TxtFbk+1Ex are defined as follows. M's output
will be of the form, pad(e$, w$). Furthermore, e$ and w$ are used for ``memory'' by
M. Intuitively, if the input seen so far contains (0, e, 0) then e$=e+1; if the input
contains X 0

w then w$=w+1.
Let T=s0 , s1 , ... be a text for some L # L. Suppose s0=(j, z, i). If i= j=0, then

let M(s0)=pad(z+1, 0). Otherwise, let M(s0)=pad(0, 0).
Qk+1(q, sm+1) is computed as follows. Suppose sm+1=(j, z, i). If i=0 and

1� j�k+2, then let y1 , y2 , ..., yk+1 be such that [y1 , y2 , ..., yk+1]=[(j $, z, 0) | 1
� j $�k+2, j ${ j]. If i{0, then let y1= y2= } } } = yk+1=0 (we do not need any
query in this case).

We now define M(q, Ak+1(Qk+1(q, sm+1)), sm+1) as:

M(q, Ak+1(Qk+1(q, sm+1)), sm+1)

1. Suppose sm+1=(j, z, i) , and q=pad(e$, w$).

2. If i=0, 1� j�k+2 and Ak+1(Qk+1(q, sm+1))=(1, 1, ..., 1), then let
w$=z+1.

3. If i=0, j=0, then let e$=z+1.

4. Output pad(e$, w$).

End

It is easy to verify that M TxtFbk+1Ex-infers every language in L. This proves
Claim 1. K

Claim 2. L � TxtFbkFex*.

Proof. Suppose the converse, i.e., that there are an IIM M and an associated
query asking function Qk such that M witnesses L # TxtFbkFex*. Then by implicit
use of the recursion theorem (cf. Rogers, 1967) there exists an e such that We may
be described as follows (note that e will be nice):

84 CASE ET AL.

For any finite sequence {=x0 , x1 , ..., xl , let M0({)=M(x0); and for i<l,
let Mi+1({)=M(Mi ({), A i

k(Qk(Mi ({), xi+1)), xi+1), where A i
k answers questions

based on whether the corresponding elements appear in [xj | j�i]. Let ProgSet(M, {)
=[M

*
(_) | _�{].

Initialization. Enumerate (0, e, 0) in We . Let _0 be such that content(_0)=
[(0, e, 0)]. Let W s

e denote We enumerated before Stage s. Go to Stage 0.

Stage s.
(* Intuitively, in Stage s we try to search for a suitable sequence _s+1 such that

the condition ProgSet(M, _s+1){ProgSet(M, _s) holds. Thus, if there are
infinitely many stages, then M does not TxtFbkFex*-identify �s _s , which will
be a text for We . In case some stage starts but does not end, we will have that
a suitable We _ Xw is not TxtFbk Fex*-identified by M. *)

1. Let Ss=ProgSet(M, _s).
2. Let S$=Ss .
3. Let Pos=content(_s); Neg=<. Let Y=<; {=_s .
4. While M

*
({) # S$ Do

(* We will have the following invariant at the beginning of every iteration
of the while loop:

If for some suitable {$ extending {, M
*

({$) � S$, then there exists a
suitable # extending {$ such that M

*
(#) � ProgSet(M, _s), where by

suitable above for {$ and # we mean:
(a) content({$) & Neg=<,
(b) Pos�content({$),
(c) (\w)[X 0

w�3 content({$) _ Y],
(d) [x | (0, x, 0) # (content({$) _ Y)]=[e],
(e) Pos _ Y�content(#),
(f) (\w)[X 0

w�3 content(#)], and
(g) [x | (0, x, 0) # content(#)]=[e].

Moreover, S$ becomes smaller with each iteration of the while loop. *)
4.1. Search for p # S$, y # N and finite sets Pos$, Neg$ such that

y � Neg,
Pos�Pos$,
Neg�Neg$,
Pos$ & Neg$=<,
(\w)[X 0

w �3 Pos$ _ [y] _ Y],
[x | (0, x, 0) # (Pos$ _ [y] _ Y)]=[e], and
M(p, Ak(Qk(p, y)), y) a � S$, where all the questions asked by Qk

belong to Pos$ _ Neg$, and Ak answers the question z positively if
z # Pos$, and negatively if z # Neg$.

4.2. If and when such p, y, Pos$, Neg$ are found,
Let S$=S$"[p],
Neg=Neg$,
Pos=Pos$,

85INCREMENTAL CONCEPT LEARNING

Y=Y _ [y].
Enumerate Pos in We .
Let { be an extension of _s such that content({)=Pos
(* Note that y may or may not be in Pos or Neg. *)

Endwhile
5. Let _s+1 extending { be such that

Pos _ Y _ [(k+3, s, 0)]/content(_s+1).
(\w)[X 0

w �3 content(_s+1)],
[x | (0, x, 0) # content(_s+1)]=[e], and
ProgSet(M, _s+1){ProgSet(M, _s).

(* Note that by the invariant above, there exists such a _s+1 . *)
Enumerate content(_s+1) in We , and go to Stage s+1.

End Stage s.

Note that the invariant can be easily proved by induction on the number of times
the while loop is executed. We now consider two cases:

Case 1. All stages terminate. In this case clearly, We is infinite and e is nice.
Thus, we conclude We # L. Also, T=�s _s is a text for We . However, M on T
outputs infinitely many different programs.

Case 2. Stage s starts but does not terminate. By construction, if Stage s is
not left, then We is finite and e is again nice. We show that there is a set Xw such
that We _ Xw # L but We _ Xw is not TxtFbkFex*-inferred by M.

Now, let S$, Pos, Neg, and { be as in the last iteration of the while loop that is
executed in Step 4 of Stage s. Furthermore, let w be such that

(i) (\p # S$)[Xw & Wp=< 6 (_
�

w$)[Xw$ & Wp {<]]

(ii) Xw & (Pos _ Neg)=<.

Note that there exists such a w, since S$, Pos, and Neg are all finite.
Clearly, We _ Xw # L. We now claim that M, with query asking function Qk ,

cannot TxtFbkFex*-infer We _ Xw . Note that, by construction, We _ Xw does not
contain any element of Neg. Also, We is finite and Xw & Xw$=< for w{w$.
Furthermore, for all p # S$, either Xw & Wp=< or Wp intersects infinitely many
Xw$. Thus, none of the programs in S$ is a program for a finite variant of We _ Xw .

We claim that for all {$ h y extending { such that content({$ h y)�We _ Xw ,
M

*
({$ h y) # S$. Suppose by way of contradiction the converse. Let {$ h y be the

smallest sequence that violates this condition. Then M
*

({$) # S$. Let P be the set of
questions answered positively, and let S be the set of questions answered negatively
for the queries Qk(M

*
({$), y). Then p=M

*
({$), y, Pos$=Pos _ P and Neg$=Neg _ S,

witness that the search in Step 4.1 will succeed, a contradiction.
Thus we can conclude that M, with associated question asking function Qk , does

not TxtFbkFex*-identify (We _ Xw) # L. K

From the above claims, the theorem follows. Q.E.D.

Theorem 4 above nicely contrasts with the following result actually stating that
the feedback hierarchy collapses to its first level provided only indexed families of

86 CASE ET AL.

infinite languages are considered. Note that it is necessary to require that the target
indexed family consists of infinite languages, only. For seeing this, consider the
indexed family that contains the infinite language L=[a]+ "[a], together with all
finite languages Lk=[a, ..., ak], k�1. This indexed family separates TxtEx and
TxtFb1Ex (cf. Lange and Zeugmann, 1996a, for further indexed families witnessing
this separation and a detailed discussion).

Theorem 5. Let L be any indexed family consisting of only infinite languages,
and let H be a class comprising hypothesis space for it. Then, L # TxtFexH implies
that there is a class comprising hypothesis space H� for L such that L # TxtFb1ExH� .

Proof. Throughout this proof, let H=(hj) j # N , with or without superscripts,
range over indexed families. The proof is done in three major steps. First, we show
that every TxtFex-inferable indexed family is TxtEx-learnable, too (cf. Lemma 1).
Note that this result also nicely contrasts Theorem 1. Next, we point out another
peculiarity of TxtEx-identifiable indexed families consisting of infinite languages
only. That is, we prove them to be TxtEx-identifiable by an IIM that never over-
generalizes, provided the hypothesis space is appropriately chosen (cf. Lemma 2).
Finally, we demonstrate the assertion stated in the theorem.

Lemma 1. Let L be an indexed family and let H=(hj) j # N be any hypothesis
space for L. Then L # TxtFexH implies L # TxtExH .

Proof. First, we consider the hypothesis space H� obtained from H by canoni-
cally enumerating all finite intersections of hypotheses from H. Now, let M be any
IIM witnessing L # TxtFexH . An IIM M� that TxtExH� -infers L can be easily
defined as follows. Let L # range(L), let T # text(L), and let x # N.

IIM M� . On input Tx do the following: Compute successively jy=M(Ty) for all
y=0, ..., x. For every jy{? test whether or not T +

x �h jy
. Let Cons be the set of all

hypotheses passing this test. If Cons=<, output ?. Otherwise, output the canonical
index in H� for � Cons.

We leave it to the reader to verify that M� witnesses L # TxtExH� . Finally, the
TxtExH -inferability of L directly follows from Proposition 1 in Lange and Zeugmann
(1993b), and thus Lemma 1 is proved. Q.E.D.

Lemma 2. Let L be an indexed family exclusively containing infinite languages
such that L # TxtEx. Then there are a hypothesis space H=(hj) j # N and an IIM M
such that

(1) M TxtExH -infers L,

(2) for all L # range(L), all T # text(L) and all y, z # N, if ?{M(Ty){
M(Ty+z) then T +

y+z �3 hM(Ty) .

(3) for all L # range(L), all T # text(L) and all y, z # N, if ?{M(Ty) then
M(Ty+z){?.

Proof. Let L # TxtEx. Without loss of generality, we may assume that there is
an IIM M witnessing L # TxtExL (cf. Lange and Zeugmann, 1993b). By Angluin's

87INCREMENTAL CONCEPT LEARNING

(1980b) characterization of TxtEx, there is a uniformly recursively generable family
(T y

j) j, y # N of finite telltale sets such that

(:) for all j, y # N, T y
j �T y+1

j �L j ,

(;) for all j # N, Tj=limy � �(T y
j) exists,

(#) for all j, k # N, Tj �Lk implies Lk /3 Lj .

Using this family (T y
j) j, y # N , we define the desired hypothesis space H=(h(j, y)) j, y # N

as follows. We specify the languages enumerated in H via their characteristic functions
fh(j, y)

. For all j, y, z # N, we set

1, z�y, z # Lj ,

fh(j, y)
(z)={1, z> y, z # Lj , Tz

j =T y
j ,

0, otherwise.

Since (T y
j) j, y # N is a uniformly recursively generable family of finite sets and since

L is an indexed family, H is also an indexed family. Furthermore, by construction
we directly obtain that for all j, y # N, h(j, y) is either a finite language or
h(j, y)=Lj . Moreover, h(j, y) is finite iff T y

j {Tj .
Next, we define the desired IIM M. Let L # range(L), let T # text(L), and

let x # N.

IIM M. On input Tx proceed as follows: If x=0 or M(Tx&1)=? then set h=?,
and execute instruction (B); else, goto (A):

(A) Let (j, y)=M(Tx&1). Check whether or not T +
x �h(j, y) . In case it is,

output (j, y). Otherwise, set h=M(Tx&1) and go to (B).

(B) For all pairs (j, y)�x, (ordered by their Cantor numbers) test whether
or not T y

j �T +
x �h(j, y) until the first such pair is found; then output it. If all

pairs (j, y)�x failed, then output h.

By definition, M is recursive and fulfills assertions (2) and (3). It remains to show
that M witnesses L # TxtExH . Let L # range(L), and let T # text(L).

Claim 1. M converges when fed T.

Proof. Let j0=min[j | j # N, L=L j], and let y0=min[y | y # N, Tj0
=T y

j0
].

Since T # text(L), there must be an x�(j0 , y0) such that Tj0
�T +

x is fulfilled.
Thus past point x, M never outputs ?, and, in step (B), it never outputs a hypothesis
(j, y)>(j0 , y0). Moreover, if a guess (j, y) has been output and is abandoned
later, say on Tz , then T +

z �3 h(j, y) . Thus, it will never be repeated in any subse-
quent learning step. Finally, at least (j0 , y0) can never be rejected, and thus M has
to converge. K

Claim 2. If M converges, say to (j, y) , then h(j, y) =L.

Proof. Suppose the converse, i.e., M converges to (j, y) but h(j, y) {L. Obviously,
h(j, y) cannot be a finite language, since L is infinite, and thus T +

x �h(j, y) is even-
tually contradicted. Consequently, h(j, y) describes an infinite language, and hence,
by construction of H we know that h(j, y)=Lj . Now, since M has converged, it

88 CASE ET AL.

must have verified Tj �T +
x �L, too. Thus, Condition (#) immediately implies

L/3 Lj=h(j, y) . Taking L{h(j, y) into account we have L"h(j, y) {<, contradict-
ing T +

x �h(j, y) for all x. K

Hence, Lemma 2 is proved. Q.E.D.

Now, we are ready to prove the theorem, i.e., TxtFex�TxtFb1Ex when restricted
to indexed families containing only infinite languages.

Proof. Let L # TxtFex and, therefore, by Lemmata 1 and 2, we know that there
are an IIM and a hypothesis space H=(hj) j # N such that M fulfills (1) through (3)
of Lemma 2.

The desired simulation is based on the following idea. The feedback learner M$
aims to simulate the machine M. This is done by successively computing a
candidate for an initial segment of the lexicographically ordered text of the target
language L. If such a candidate has been found, it is fed to the IIM M. If M
computes a hypothesis j (referred to as ordinary hypothesis), the feedback learner
outputs it, together with the initial segment used to compute it. Then, M$ switches
to the so-called test mode; i.e., it maintains this hypothesis as long as it is not
contradicted by the data received. Otherwise, the whole process has to be iterated.
Now, there are two difficulties we have to overcome. First, we must avoid M$ using
the same candidate for an initial segment more than once. This is done by memoriz-
ing the misclassified string, as well as the old candidate, for an initial segment in
an auxiliary hypothesis. Additionally, since M$ is only allowed to query one string
at a time, auxiliary hypotheses are also used to reflect the results of the queries
made, until a new, sufficiently large initial segment is found. Second, the test phase
cannot be exclusively realized by using the actual strings received, since then finitely
many strings may be overlooked. Thus, during the test phase M$ has to query one
string at a time, too. Obviously, M$ cannot use its actual ordinary hypothesis j for
computing all the queries needed. Instead, each actual string received is used for
computing a query s. If s has been already provided, it is tested whether or not
s # hj . But what if s # L but did not yet appear in the data provided so far? Clearly,
we cannot check s � hj , since this would eventually force M$ to reject a correct
hypothesis, too. Instead, we have to ensure that at least all strings s that are
negatively answered are queried again.

The feedback learner M$ uses the class comprising hypothesis space H� =(h� r)r # N

defined as follows. Let F0 , F1 , F2 , ... be any effective enumeration of all nonempty
finite subsets of N. For every l # N, let rf (Fl) be the repetition-free enumeration of
all the elements of Fl in increasing order. Let h� 2 (j, l)=hj for all j, l # N, i.e., even
indices encode ordinary hypotheses. The underlying semantics is as follows: The
ordinary hypothesis 2 (j, l) represents the fact that the simulated IIM M is out-
putting the guess j when fed rf (Fl). Odd indices are used for auxiliary hypotheses.
For ease of presentation, assume that (} , } , }) is a bijection from N_(N _ [&1])
_N onto N. (Note that, we can easily convert it to regular coding of triples by just
adding one to the second argument.) For all l, y, z # N, we set h� 2 (l, y, z)+1=Fl .
The first component l encodes that all strings belonging to Fl have been already
presented. Both y and z are counters that M$ uses to compute its queries. For the

89INCREMENTAL CONCEPT LEARNING

sake of readability, we introduce the following conventions. When M$ outputs an
ordinary hypothesis, say 2 (j, l) , we instead say that M$ is guessing the pair
(j, Fl). Similarly, if M$ is outputting an auxiliary hypothesis, say 2 (l, y, z)+1, we
say that M$ is guessing the triple (Fl , y, z).

Assume any recursive function such that for each L # range(L) and for each
l # N, there exist infinitely many w # L such that g(w)=l.

Now, we define the desired feedback learner M$. Let L # range(L), T=(wn)n # N #
text(L), and n # N. We define M$ in stages, where Stage n conceptually describes M$n .

Stage 0. On input w0 do the following. Output the triple ([w0], 0, 0), and go to
Stage 1.

Stage n, n�1. M$ receives as input jn&1 and the (n+1)th element wn of T.
Case A. jn&1 is an ordinary hypothesis, say the pair (j, F).
Test whether or not wn # hj . If not, go to (:3). Otherwise, query ``g(wn).'' If the
answer is ``NO,'' then go to (:1). If the answer is ``YES,'' test whether or not
g(wn) # hj . If it is, execute (:1). Else, go to (:2).

(:1) Output the ordinary hypothesis (j, F).

(:2) Set F :=F _ [g(wn)], and z=|F |. Output the auxiliary hypothesis
(F, z, z).

(:3) Set F :=F _ [wn], and z=|F |. Output the auxiliary hypothesis
(F, z, z).

Case B. jn&1 is an auxiliary hypothesis, say the triple (F, y, z).
Set F :=F _ [wn] and check whether or not y�0. In case it is, go to (;1). Else,
execute (;2).

(;1) Query ``z& y.'' If the answer is ``YES,'' then set F :=F _ [z& y].
Output the auxiliary hypothesis (F, y&1, z).

(;2) Compute M(rf (F)) and test whether or not M(rf (F)){?. In case it
is, let j=M(rf (F)) and output the ordinary hypothesis (j, F). Otherwise, let
z :=z+1 and query ``z.'' If the answer is ``YES,'' then set F :=F _ [z]. Output
the auxiliary hypothesis (F, &1, z).

By definition, M$ is a feedback learner. By construction, if M$ rejects an ordinary
hypothesis then an inconsistency with the data presented has been detected. It remains
to show that M$ witnesses L # TxtFb1ExH� . Let L # range(L) and T # text(L).

Claim 1. Let (F $, &1, z$) be an auxiliary hypothesis output by M$, say in
Stage z. Then, for all l�z$, l # T +

z implies l # F $.

Proof. Recall that, by construction, M$ outputs in all the Stages z&z$,
z&z$+1, ..., z auxiliary hypotheses, too, and queries 0, 1, ..., z$, respectively (cf.
case B). Thus, for all l�z$, if l # T +

z&z$+l the answer to the query must be ``YES,''
and therefore, l # F $ (cf. case B). On the other hand, if l # T +

z "T +
z&z$+l , then l is

presented after the query has been made for it, and thus it is memorized, too (cf.
case B). This proves Claim 1. K

90 CASE ET AL.

Furthermore, since two successively output auxiliary hypotheses are definitely
different, M$ cannot converge to an auxiliary hypothesis.

Claim 2. If M$ converges to an ordinary hypothesis, say to the pair (j, F), then
hj=L.

Proof. By construction, j=M(rf (F)), and thus it suffices to prove that L=hj .
Suppose the converse, i.e., L{hj . Let y0 be the least y such that M$ outputs the
ordinary hypothesis (j, F) in Stage y. By Lemma 2, assertion (2), we know L/3 hj .
Thus, L"hj {<, and hence there must be a string l # L"hj . Since T=(wn)n # N #
text(L), there exists a z # N with wz=l. If z> y0 , then l � h j is verified in Stage z
(cf. case A), a contradiction. Now, suppose z� y0 . Taking into account that |T +|
=� and that g(v)=l for infinitely many v # T + =L, there must be an r # N such
that g(wy0+r)=l. Thus, the query ``l'' is made in Stage y0+r. But l # T +

y0
�T +

y0+r ,
and hence the answer to it is ``YES,'' and l # hj is tested, too (cf. case A). Therefore,
M$ must execute (:2), and cannot converge to (j, F). This proves Claim 2. K

Claim 3. M$ outputs an ordinary hypothesis in infinitely many stages.

Proof. Suppose the converse; i.e., there is a least z # N such that M$ outputs in
every Stage z+n, n # N, an auxiliary hypothesis. By Lemma 2, assertion (1), M
learns L from all its texts. Let TL be L's lexicographically ordered text. Let y be the
least ' such that M(T L

')= j and L=h j . Hence, assertion (2) of Lemma 2 implies
M(T L

y h _)= j for all finite sequences _ satisfying _+�L. Let m0=max[k | k # N,
k # T L, +

y], and let x0 be the least x with T L, +
y �T +

x .
By construction, there is an r>max[z, x0 , m0] such that M$ in Stage r must

output an auxiliary hypothesis of the form (F $, &1, z$) with z$�m0 . Hence, [l | l #
T +

r , l�z$]�F $ by Claim 1. Moreover, T L, +
y �T +

r because of r�x0 and T L, +
y �

T+
x0

, and hence, T L, +
y �F $, since m0�z$ and T L, +

y =[l | l�m0 , l # L]. Therefore,
M$ simulates M on input rf (F $) in Stage r+1 (cf. case B, instruction (;2)). By the
choice of T L

y , and since T L
y is an initial segment of rf (F $) we know that M(rf (F $))= j,

and thus, M$ must output an ordinary hypothesis, a contradiction. Thus, Claim 3
follows. K

Claim 4. M$ converges.

Proof. Suppose, M$ diverges. Then, M$ must output infinitely often an ordinary
hypothesis, since otherwise Claim 3 is contradicted. Let j, y, m0 , x0 be as in the
proof of Claim 3. Consider the minimal r>x0 such that M$, when successively fed
Tr , has already output its m0 th ordinary hypothesis, say (j $, F). Thus, |F |�m0

in accordance with the definition of M$. Since M$ diverges, the guess (j $, F) is
abandoned in some subsequent stage, say in Stage *, *>r. Thus in Stage *, M$
outputs an auxiliary hypothesis, say (F $, |F $|, |F $|). Note that F/F $ (cf. case A,
instructions (:2), (:3)). In all the Stages *+1, *+2, ..., *+m0 , ..., and *+|F $|+1,
M$ outputs auxiliary hypotheses, too (cf. case B, instruction (;1)). Moreover, in
Stage *+|F $|+1, M$ outputs an auxiliary hypothesis having the form (F", &1, |F $|).
Applying mutatis mutandis the same argument as in Claim 3, we obtain TL

y �F".
Therefore in the next stage, M$ simulates M when fed a finite sequence { having the
initial segment T L

y (cf. case B, instruction (;2)). Again, by Lemma 2, assertion (2),

91INCREMENTAL CONCEPT LEARNING

M({)= j follows, and thus M$ outputs the ordinary hypothesis (j, F"). But hj=L
implies that the hypothesis (j, F") cannot be abandoned, since otherwise an incon-
sistency to T would be detected. Hence, M$ converges, a contradiction. This proves
Claim 4. K Q.E.D.

Hence, in the case of indexed families of infinite languages, the hierarchy of
Theorem 3 collapses for k�2; furthermore, again, for indexed families of infinite
languages, the expansion of Gold's (1967) model, which not only has unrestricted
access to the data base, but which also allows finitely many correct grammars out-
put in the limit, achieves no more learning power than feedback identification with
only one query of the database. Moreover, our proof shows actually a bit more.
That is, for indexed families of infinite languages conservative5 learning does not
constitute a restriction provided the hypothesis space is appropriately chosen
(cf. Lemma 2). As a matter of fact, this result is nicely inherited by our feedback
learner defined in the proof above. It also never overgeneralizes. Here overgenerali-
zation6 means that the learner outputs a description for a proper superset of the
target concept. Thus what we have actually proved is the equality of TxtFex and
conservative feedback inference with only one query per time.

Next, we compare feedback inference and TxtFexa-identification in dependence
on the number of anomalies allowed.

Theorem 6. TxtFb0Exa+1"TxtFexa{<, for all a # N.

Proof. Let L be any indexed family such that exactly L=[b]+ and all L$�L
with |L"L$|�a+1 belong to range(L). Obviously, L # TxtFb0Exa+1, since it
suffices to output always an index for L. Now, suppose to the contrary that there
is an IIM M$ that TxtFexa-identifies L. Then, one can easily show that there is
some text for L on which M$ outputs infinitely many different hypotheses. We omit
the details. Q.E.D.

Hence, for some concept domains, the model of iterative learning, where we
tolerate a+1 anomalies in the single final grammar, is competent, but the expanded
Gold (1967) model, where we allow unlimited access to the database and finitely
many grammars in the limit each with no more than a anomalies, is not. A little
extra anomaly tolerance nicely buys, in such cases, no need to remember any past
database history or to query it!

3.2. Feedback Inference versus Bounded Example-Memory Learning

As promised in the introductory section, the next two theorems show that, for
each of these two models of k-bounded example-memory inference and feedback
identification, there are concept class domains where that model is competent and
the other is not! Theorem 7 below says that, for suitable concept domains, the feed-
back learning power of one query of the data base, where a single, correct grammar

92 CASE ET AL.

5 Conservativeness is nothing else than condition (2) in Lemma 2.
6 Note that in the setting of indexed families conservative inference and learning without over-

generalization are essentially equivalent (cf. Lange and Zeugmann, 1993c), while, in general, they are not
(cf. Jain and Sharma, 1994).

is found in the limit, beats the k-bounded example-memory learning power of
memorizing k database items, even where finitely many grammars each with finitely
many anomalies are allowed in the limit.

We start with a technical lemma pointing to combinatorial limitations of k-bounded
example-memory learning.

Lemma 3. Suppose M is a k-bounded example-memory learning machine. Let P
be a finite set, let _ be a sequence, and let Z be a set such that 2 |Z|>|P| V (|Z|+k)k.
Then, either

(a) there exists a _$ such that content(_$)�Z and ?1(M
*

(_ h _$)) � P, or

(b) there exist _$, _" and j # Z, such that content(_$)=Z"[j], content(_")=Z,
and M

*
(_ h _$)=M

*
(_ h _").

Proof. Suppose (a) does not hold. Thus, by the pigeonhole principle, there exist
{$, {" such that

(a) content({$) _ content({")�Z,

(b) content({"){content({$), and

(c) M
*

(_ h {$)=M
*

(_ h {").

This is so since there are 2 |Z| possibilities for content({), but at most |P| V (|Z|+k)k,
possibilities for M

*
(_ h {). Let {$, {" be such that (a) through (c) are satisfied. Suppose

j # content({")"content({$). Now let {$$$ be such that content({$$$)=Z"[j]. Taking
_$={$ h {$$$ and _"={" h {$$$ proves the lemma. Q.E.D.

Now, we are ready to prove the first of the two theorems announced.

Theorem 7. TxtFb1Ex"TxtBemk Fex*{<, for all k # N. Moreover, this separa-
tion can be witnessed by a class consisting of only infinite languages.

Proof. For any language L, let C i
L=[x | (i, x) # L]. We say that e is nice iff

(a) C 0
We

=[e], and

(b) C 1
We

& C 2
We

=<.

The desired class L is defined as follows. Let L1=[L | |L|=� 7 (_ nice e)
[L=We]], and let L2=[L | |L|=� 7 (_e$)[C 1

L & C 2
L=[e$] 7 L=We$]]. We set

L=L1 _ L2 .
It is easy to verify that L # TxtFb1Ex. We omit the details.
Next, we show that L � TxtBemkFex*. Suppose the converse; i.e., there is an

IIM M that TxtBemkFex*-identifies L. For a sequence _=x0 , x1 , ..., xl , let
M0(_)=M(x0), and for i<l, let Mi+1(_)=M(Mi (_), xi+1).

For any finite sequence {, let ProgSet(M, {)=[?1(M
*

(_)) | _�{], and we define
for any text T the set ProgSet(M, T) similarly.

Then by implicit use of the operator recursion theorem (cf. Case, 1974, 1994)
there exists a recursive 1�1 increasing function p, such that Wp(}) may be defined as
follows (p(0) will be nice).

Enumerate (0, p(0)) in Wp(0) . Let _0 be such that content(_0)=[(0, p(0))].
Let W s

p(0) denote Wp(0) enumerated before Stage s. Let avail0=1. Intuitively, avails

93INCREMENTAL CONCEPT LEARNING

denotes a number such that for all j�avails , p(j) is available for use in the
diagonalization at the beginning of Stage s. Go to Stage 0.

Stage s.

(* Intuitively, if infinitely many stages are there, i.e. step 2 succeeds infinitely
often, then Wp(0) # L1 witnesses the diagonalization. If Stage s starts but does
not finish, then each of Wp(ji)

, 1�i�l, as defined in steps 3 and 4, is in L2 ,
and one of them witnesses the diagonalization. *)

1. Let Ps=ProgSet(M, _s).
Dovetail steps 2 and 3�4, until step 2 succeeds. If step 2 succeeds, then go to
step 5.

2. Search for a _ extending _s such that
(a) C 0

content(_)=[p(0)],
(b) C 1

content(_) & C 2
content(_)=<,

(c) ProgSet(M, _){Ps .

3. Let m0=avails .
Let l=|Ps|+1, {0=_s .
Search for m1 , m2 , ..., ml , j1 , j2 , ..., jl , {1 , {2 , ..., {l , {$1 , {$2 , ..., {$l , such that,

(a) For 1�i�l, mi&1< ji<mi ,

(b) For 1�i�l, content({i)=[(1, p(j)) | mi&1� j<mi 7 j{ j i].

(c) For 1�i�l, content({$i)=[(1, p(j)) | mi&1� j<m i].

(d) For 1�i�l, M
*

({0 h {1 h } } } {i&1 h {i)=M
*

({0 h {1 h } } } {i&1

h {$i)

(e) For 1�i�l, ?1(M
*

({0 h {1 h } } } {i&1 h {i)) # Ps .

4. Let m1 , m2 , ..., ml , j1 , j2 , ..., jl , {1 , {2 , ..., {l , {$1 , {$2 , ..., {$l , be as found in step 3.
Let Y=content(_s) _ [(1, p(j)) | m0� j�ml]"[(1, p(j i)) | 1�i�l].
For 1�i�l, enumerate Y _ [(1, p(ji)) , (2, p(ji))] in Wp(ji) .
For x=0 to � Do

For 1�i�l, enumerate (3+i, x) in Wp(ji)
.

Endfor

5. Enumerate content(_) _ [(3, s)] in Wp(0) .
Let _s+1 be an extension of _ such that content(_s+1)=content(_) _ [(3, s)].
Let z=ml , if step 3 succeeded; otherwise z=0.
Let avails+1=1+avails+z+max[j | p(j) # C 1

content(_s+1) _ C 2
content(_s+1)].

End Stage s.

We now consider two cases:

Case 1. All stages terminate. In this case, clearly, We is nice and infinite, and
thus We belongs to L1 . Also, T=�s _s is a text for We . However, M on T outputs
infinitely many programs.

Case 2. Stage s starts but does not terminate. In this case we first claim that
step 3, must have succeeded. This follows directly from repeated use of Lemma 3.

94 CASE ET AL.

Let l, mi , ji , {i , {$i be as in step 4. Now, for 1�i�l, Wp(ji)
L2 and Wp(ji) are

pairwise infinitely different. Thus, by the pigeonhole principle, there exists an i,
1�i�l, such that ProgSet(M, _s) does not contain a grammar for a finite variant
of Wp(ji)

. Fix one such i.
Let Ti be a text for Wp(ji)

"[(1, p(ji))]. Furthermore, let

T$i={0 h {1 h } } } h {i&1 h {$i h {i+1 h } } } h {l h Ti

Ti"={0 h {1 h } } } h { i&1 h {i h {i+1 h } } } h {l h Ti .

Note that T$i is a text for Wp(ji)
. However, we have ProgSet(M, T$i)=ProgSet(M, Ti")

=ProgSet(M, _s) (the first equality follows from the definition of k-bounded
example-memory inference (cf. Definition 4) and the choice of {i , {$i in step 3; the
second equality holds since step 2 did not succeed in Stage s). Thus, M does not
TxtFex*-identify Wp(ji)

.
From the above cases we have that L � TxtBemkFex*. Q.E.D.

Next we show the second theorem announced above. Theorem 8 below says that,
for suitable concept domains, the k-bounded example-memory learning power of
memorizing one item from the data base history beats the feedback learning power
of k queries of the database, even where the final grammar is allowed to have
finitely many anomalies. It is currently open whether or not TxtFbkEx* in Theorem
8 can be replaced by TxtFbkFex*.

Theorem 8. TxtBem1 Ex"TxtFbk Ex*{<, for all k # N. Moreover, this separa-
tion can be witnessed by a class consisting of only infinite languages.

Proof. For a query asking function Qk , we denote by Questions(Qk , q, x) the
questions asked by Qk(q, x). For all L, let C i

L denote the set [x | (i, x) # L]. We
say that e is nice iff C 0

We
=[e], and C 1

We
=<.

Let L1=[L | |L|=� 7 (_ nice e)[L=We]]. Furthermore, let L2=[L | |L|=�
7 (_ nice e)(_w, m)[C 1

L=[w] 7 max C 2
L=m<w 7 (L=We _ [(1, w)])]], and

let L3=[L | |L|=� 7 (_w, m) [C 1
L=[w] 7 max C 2

L<� 7 max C 2
L=m�w 7

L=Wm]]. Finally, we set L=L1 _ L2 _ L3 .
It is easy to show that L # TxtBem1Ex. The machine just needs to remember

max C 2
L ; C 0

L , C 1
L can be padded onto the output program. From C 0

L , C 1
L , max C 2

L ,
one can easily find a grammar for L. We omit the details.

Next, we show L � TxtFbkEx*. The intuitive idea behind the formal proof below
is that no feedback learner can memorize what the maximal m with m=(2, x) # L
is. Suppose by way of contradiction that M (with associated query asking function
Qk) is a k-feedback machine which TxtFbk Ex*-identifies L. For _=x0 , x1 , ..., xl ,
let M0(_)=M(x0) and for i<l let Mi+1(_)=M(Mi (_), A i

k(Qk(Mi (_), xi+1)),
xi+1), where A i

k answers the questions based on whether the corresponding
elements appear in [x j | j�i]. By the operator recursion theorem (cf. Case, 1974,
1994) there exists a recursive 1�1 increasing function p such that Wp(}) may be
defined as follows. Initially enumerate (0, p(0)) in Wp(0) . Let _0 be such that
content(_0)=[(0, p(0))]. Let avail=1. Intuitively, avail denotes a number such
that, for all j�avail, p(j) is available for use in the diagonalization. Go to Stage 0.

95INCREMENTAL CONCEPT LEARNING

Stage s.

(* Intuitively, if infinitely many stages are there, (i.e. step 2 succeeds infinitely
often) then Wp(0) # L1 witnesses the diagonalization. If Stage s starts but
does not finish, then let l be as in step 3 of Stage s. If there are infinitely
many substages in Stage s (i.e. step 3.2 succeeds infinitely often in
Stage s), then (Wp(0) _ [(1, l)]) # L2 witnesses the diagonalization.
Otherwise, one of Wp(ji)

, Wp(j$i)
, i�k, will be in L3 , and witness the

diagonalization. *)
1. Dovetail steps 2 and 3. If and when step 2 succeeds, go to step 4.

2. Search for a _ extending _s such that
C 0

content(_)=[p(0)],
C 1

content(_)=<, and
M

*
(_){M

*
(_s).

3. Let l=1+max C 2
content(_s) .

Let {0 be such that content({0)=[(1, l)].
Go to Substage 0.

Substage t.
3.1 Dovetail steps 3.2, 3.3, and 3.4 until step 3.2 succeeds. If and when

step 3.2 succeeds, then go to step 3.5.
3.2 Search for a { such that

content({)�[(3, x) | x # N], and
M

*
(_s h {t h {){M

*
(_s h {t).

3.3 Let q=M
*

(_s h {t).
Let Ques=�# h y�{t

Questions(Qk , M
*

(_s h #), y).
Set avail=1+avail+l+max[x | (2, p(x)) # Ques]
(* Note that this implies p(avail)>l and any p(j) such that a ques-

tion of the form (2, p(j)) was asked by M (using Qk) on { such
that _s /{�_s h {t . *)

For i�k, let ji=avail+i.
For i�k, let j $i=avail+k+1+i.
Let avail=avail+2 V (k+1).
For i�k, let Oi=[(3, x) | (\B | B�C 3

N)[M(q, Ak(Qk(q, (3, x))),
(3, x)) a , where Ak answers queries by Qk based on whether
the corresponding elements appear in content(_s h {t) _ B, and
[(2, p(ji), (2, p(j $i))] & Questions(Qk , q, (3, x))=<]].

For i�k, let x0
i , x1

i , ..., denote a 1�1 enumeration of elements of Oi .
For i�k, let Wp(ji)

=content(_sh{t) _ [(2, p(ji))] _ [x2r
i | |Oi |>2r].

For i�k, let Wp(j $i)
=content(_sh{t) _ [(2, p(j $i))] _ [x2r+1

i | |Oi |
>2r+1].

3.4 For x=0 to � do
enumerate (3, x) in Wp(0) .

EndFor
3.5 If and when step 3.2 succeeds, let { be as found in step 3.2.

Enumerate content({) _ [(3, t)] in Wp(0) .

96 CASE ET AL.

Let S=([Wp(0) enumerated until now] & [(3, x) | x # N]) _ [(1, l)].
Let {t+1 be an extension of {th{ such that content({t+1)=S.
Go to Substage t+1.

End Substage t.
4. If and when step 2 succeeds, let _ be as found in step 2.

Enumerate content(_) _ [(3, s)] in Wp(0) .
Let S=Wp(0) enumerated until now.
Let _s+1 be an extension of _ such that content(_s+1)=S.
Go to Stage s+1.

End Stage s.

We now consider the following cases:

Case 1. All stages terminate. In this case clearly, L=Wp(0) # L1 . However, on
T=�s _s , a text for L, M does not converge.

Case 2. Stage s starts but does not terminate. Let l be defined in step 3 of
Stage s.

Case 2.1. All substages in Stage s terminate. In this case clearly, L=
(Wp(0) _ [(1, l)]) # L2 . However, on T=�t _s h {t , a text for L, M does not
converge.

Case 2.2. Substage t in Stage s starts but does not terminate. In this case let
q, ji , j$i , Oi , (for i�k) be as defined in step 3.3 of Stage s, Substage t.

Now, for all all { such that content({)�C 3
N , M

*
(_s h {t h {)=M

*
(_s h {t)

=q. Thus (\B | B�C 3
N)[M(q, Ak(Qk(q, (3, x))), (3, x)) a], where Ak answers

queries from Qk based on whether the corresponding elements appear in content(_s

h {t) _ B. Moreover, taking into account that �B�C3
N

Questions(Qk , q, (3, x))
can have at most k elements, we have that at least one of the Oi 's must be infinite.
Let i be such that Oi is infinite. It follows that Wp(ji) and Wp(j$i)

are both infinite
and infinitely different from one another. Now,

(a) M
*

(_s h (2, p(j i)))=M
*

(_s h (2, p(j $i)))=M(_s),

(b) (2, p(ji)) and (2, p(ji $)) are not in content(_s h {t),

(c) for all B�C 3
N , for all texts T for B, M

*
(_s h {t h T)=q, and

(d) for all B�Oi , for all texts T for B, for any {, y such that _s /{ h y�
_s h {t h T, Qk(M

*
({), y) does not ask a question about (2, p(ji)) or (2, p(ji $)).

Thus, for w # [j i , j$i], for any text T for Wp(w)"content(_s h (2, p(w)) h {t), we
have M

*
(_s h (2, p(w)) h {t h T)=q. Thus, M fails to TxtEx*-identify at least

one of Wp(ji)
and Wp(j$i)

, both of which are in L3 .
From the above cases we have that L � TxtFbkEx*. Q.E.D.

3.3. Iterative Learning

In this subsection we show that redundancy in the hypothesis space may con-
siderably increase the learning power of iterative learners. Intuitively, redundancy
means that the hypothesis space H is larger than necessary; i.e., there is at least one

97INCREMENTAL CONCEPT LEARNING

hypothesis in H not describing any concept from the target class or one concept
possesses at least two different descriptions in H. Thus, nonredundant hypothesis
spaces are as small as possible.

Formally, a hypothesis space H=(hj) j # N is nonredundant for some target
concept class L iff range(H)=range(L) and hi {hj for all i, j # N with i{ j.
Otherwise, H is a redundant hypothesis space for L.

Lange and Zeugmann (1996a) point out that redundancy may serve as a resource
for iterative learners allowing them to overgeneralize in learning stages before
convergence. Their proof uses an argument based on the noncomputability of the
halting problem. Next, we show the weakness of nonredundant hypothesis spaces
by applying a purely information-theoretic argument, again on the level of indexed
families.

Theorem 9. There is an indexed family L such that

(1) L # TxtItExH for a class preserving redundant hypothesis space H, and

(2) L � TxtItExH� for every nonredundant hypothesis space H� .

Proof. Let Lred be the canonical enumeration of all languages L�[b]+ with
|L|=2 or |L|=3. We show that Lred satisfies assertions (1) and (2). For proving
(1), we define H=(h(i, j, k)) i, j, k # N . The semantics is as follows. If i, j # N+ and
i{ j then h(i, j, k)=[bi, b j, bk] in case that k{0, and h(i, j, k)=[bi, b j], if k=0.
Furthermore, we set h(i, i, k)=[bi, bi+1] for i>0, and h(i, j, k)=[b, b2] otherwise.
Obviously, H is class preserving. Since it contains for every L with |L|=2 at least
two descriptions, it is redundant, too.

We define M(bi)=(i, i, 0), and

(i, j, k), if bz # h(i, j, k) ,

M((i, j, k) , bz)={(i, z, 0) if bz � h(i, j, k) , i= j,

(i, j, z) , otherwise.

One easily verifies that M TxtItExH -learns Lred . We omit the details.
Next, we show assertion (2). Suppose that there are a nonredundant hypothesis

space H� =(h� j) j # N for Lred and an IIM M which TxtItExH� -identifies Lred . We
define a text T for some L and a text T $ for some L$ such that M fails to learn at
least one of them.

Let j0=M(b); then we must have b # h� j0
. For seeing this suppose that b � h� j0

, and
let h� j0

=[bl, bm] _ [bn] with l{m. By assumption, M has to infer h� j0
, and there-

fore it converges on text T� =bl, bm, bn, bl, bm, bn, ... to j0 , since H� is nonredunant.
Hence, M(j0 , bl)= j0 and M, when fed the text T� =b, bl, bl, ..., converges to j0 , but
b � h� j0

.
Now, let h� j0=[b, bm] _ [bn]. Applying mutatis mutandis the same argument as

above, we have M(j0 , bm)= j0 . We distinguish the following cases. First, if |h� j0
|=3

then M fails to learn L=[b, bm] from text T=b, bm, bm,
Finally, let |h� j0

|=2. Hence, h� j0
=[b, bm]. As above, one easily verifies that

M(j0 , b)= j0 , too. Now, select any z>1 with z{m. Set L=[b, bm, bz], L$=[b, bz],
and T=b, bm, bz, bz, ..., as well as T $=b, b, bz, bz, Since M

*
(T1)=M

*
(T $1), M

98 CASE ET AL.

converges, if ever, on both texts T and T $ to the same hypothesis, and thus fails to
learn L or L$. Since L, L$ # Lred , this proves assertion (2). Q.E.D.

A closer look at the latter proof shows that we have exploited two properties any
IIM M must possess provided it TxtItExH -learns the concept class Lred with
respect to some nonredundant hypothesis space H, i.e., conservativeness and
consistency.7 Thus, it is natural to ask whether or not these conditions have to be
fulfilled in general, too. The answer is yes and no, that is, conservativeness is
inevitable (cf. Theorem 10), while consistency is not.

Theorem 10. Let C be any concept class, and let H=(hj)j # N be any nonredundant
hypothesis space for C. Then, every IIM M that TxtItExH-infers C is conservative.

Proof. Suppose the converse, i.e., there are a concept c # C, a text T=(xj) j # N #
text(c), and a y # N such that, for j=M

*
(Ty) and k=M

*
(Ty+1)=M(j, xy+1),

both j{k and T +
y+1 �h j are satisfied. The latter implies xy+1 # h j , and thus we

may consider the following text T� # text(hj). Let T� =(x̂j) j # N be any text for hj and
let T� =x̂0 , xy+1 , x̂1 , xy+1 , x̂2 , Since M has to learn hj from T� there must be a
z # N such that M

*
(T� z+r)= j for all r�0. But M

*
(T� 2z+1)=M(j, xy+1)=k, a

contradiction. Q.E.D.

Consider the set Ls of all singleton languages over [b]+ and any nonredundant
hypothesis space H for it. Just defining an IIM M by M(bz)=0 and behaving
otherwise consistently shows that consistency may be violated. Clearly, Ls can also
be learned iteratively and consistently with respect to H. Naturally, the question
arises whether this simple example is hiding some general insight; i.e., if some
indexed family can be iteratively learned with respect to some nonredundant
hypothesis space then there is also an iterative and consistent learner doing the
same job. This is not the case! As we shall see, there are prominent indexed families,
e.g., the pattern languages (cf. Subsection 3.4 below), that can be iteratively learned
with respect to some nonredundant hypothesis space, but every iterative IIM doing
so has inevitably to output inconsistent intermediate hypotheses.

The final theorem in this subsection sheds some light on the limitations of
iterative IIM's that are supposed to learn consistently with respect to nonredundant
hypothesis spaces. Additionally, it is an essential tool in achieving the nonlearn-
ability result for pattern languages announced above.

Let L be any indexed family. L meets the superset condition if, for all L, L$ #
range(L), there is some L� # range(L) being a superset of both L and L$.

Theorem 11. Let L be any index family meeting the superset condition, and let
H=(hj) j # N be any nonredundant hypothesis space for L. Then, every consistent IIM
M that TxtItExH -infers L may be used to decide the inclusion problem for H.

Proof. Let 7 be the underlying alphabet, and let (w j) j # N be an effective
enumeration of all strings in 7*. Then, for every i # N, T i=(x i

j)j # N is the following
computable text for hi . Let z be the least index such that wz # hi . Recall that, by

99INCREMENTAL CONCEPT LEARNING

7 An IIM M is said to be consistent iff T +
x �hM(Tx) for all x # N and every text T for every concept

c in the target class C.

definition, hi {<, since H is an indexed family, and thus wz must exist. Then, for
all j # N, we set x i

j=wj , if wj # hi , and x i
j=wz , otherwise.

We claim that the following algorithm Inc decides, for all i, k # N, whether or not
hi �hk .

Algorithm Inc. On input i, k # N do the following: Determine the least y # N

with i=M
*

(T i
y). Check whether or not T i, +

y �hk . In case it is, output ``Yes,'' and
stop. Otherwise, output ``No,'' and stop.

Clearly, since H is an indexed family and T i is a computable text, Inc is an
algorithm. Moreover, M learns hi on every text for it, and H is a nonredundant
hypothesis space. Hence, M has to converge on text T i to i, and therefore Inc has
to terminate.

It remains to verify the correctness of Inc. Let i, k # N. Clearly, if Inc outputs
``No,'' a string s # hi"hk has been found, and hi �3 hk follows.

Next, consider the case that Inc outputs ``Yes.'' Suppose to the contrary that
hi �3 hk . Then, there is some string s # hi"hk . Now, consider M when fed the text
T=T i

y h Tk. Since T i, +
y �hk , T is a text for hk . Since M learns hk , there is some

r # N such that k=M
*

(T i
y h T k

r). By assumption, there are some L� # range(L)
with hi _ hk �L� , and some text T� for L� having the initial segment T i

y h s h T k
r .

By Theorem 10, M is conservative. Since s # hi and i=M
*

(T� y), we obtain M
*

(T� y+1)
=M(i, s)=i. Consequently, M

*
(T i

y h s h T k
r)=M

*
(T i

y h Tk
r). Finally, since

s # T� +
y+r+2 , k=M

*
(T i

y h T k
r), and s � hk , M fails to consistently learn L� from text

T� , a contradiction. This proves the theorem. Q.E.D.

3.4. The Pattern Languages

The pattern languages (defined two paragraphs below) were formally introduced
by Angluin (1980a) and have been widely investigated (cf., e.g., Salomaa, 1994a,
1994b, and Shinohara and Arikawa, 1995, for an overview). Moreover, Angluin
(1980a) proved that the class of all pattern languages is learnable in the limit from
positive data. Subsequently, Nix (1983), as well as Shinohara and Arikawa (1995)
outlined interesting applications of pattern inference algorithms. For example,
pattern language learning algorithms have been successfully applied for solving
problems in molecular biology (cf., e.g., Shimozono et al., 1994; Shinohara and
Arikawa, 1995).

Pattern languages and finite unions of pattern languages turn out to be sub-
classes of Smullyan's (1961) elementary formal systems (EFS). Arikawa et al.
(1992) have shown that EFS can also be treated as a logic programming language
over strings. Recently, the techniques for learning finite unions of pattern languages
have been extended to show the learnability of various subclasses of EFS
(cf. Shinohara, 1991). From a theoretical point of view, investigations of the learna-
bility of subclasses of EFS are important because they yield corresponding results
about the learnability of subclasses of logic programs. Arimura and Shinohara
(1994) have used the insight gained from the learnability of EFS subclasses to show
that a class of linearly covering logic programs with local variables is identifiable
in the limit from only positive data. More recently, using similar techniques,

100 CASE ET AL.

Krishna Rao (1996) has established the learnability from only positive data of an
even larger class of logic programs. These results have consequences for inductive
logic programming.8

Patterns and pattern languages are defined as follows (cf. Angluin, 1980a). Let
A=[0, 1, ...] be any nonempty finite alphabet containing at least two elements,
and let A* be the free monoid over A. The set of all finite nonnull strings of
symbols from A is denoted by A+, i.e., A+=A*"[=], where = denotes the empty
string. By |A| we denote the cardinality of A. Furthermore, let X=[xi | i # N] be
an infinite set of variables such that A & X=<. Patterns are nonempty strings over
A _ X, e.g., 01, 0x0 111, 1x0x00x1x2x0 are patterns. A pattern ? is in canonical
form, provided that, if k is the number of different variables in ?, then the variables
occurring in ? are precisely x0 , ..., xk&1 . Moreover, for every j with 0� j<k&1,
the leftmost occurrence of x j in ? is left to the leftmost occurrence of xj+1 in ?. The
examples given above are patterns in canonical form. In the sequel we assume,
without loss of generality, that all patterns are in canonical form. By Pat we denote
the set of all patterns in canonical form.

The length of a string s # A* and of a pattern ? is denoted by |s| and |?|, respec-
tively. By *var(?) we denote the number of different variables occurring in ?. If
*var(?)=k, then we refer to ? as a k-variable pattern. Let k # N, by Patk we
denote the set of all k-variable patterns.

Now let ? # Patk , and let u0 , ..., uk&1 # A+. We denote by ?[u0�x0 , ..., uk&1 �xk&1]
the string s # A+ obtained by substituting uj for each occurrence of xj , j=0, ..., k&1,
in the pattern ?. The tuple (u0 , ..., uk&1) is called substitution. For every ? # Patk we
define the language generated by pattern ? by L(?)=[?[u0�x0 , ..., uk&1 �xk&1] | u0 , ...,
uk&1 # A+].9 By PATk we denote the set of all k-variable pattern languages. Finally,
PAT=�k # N PATk denotes the set of all pattern languages over A.

Furthermore, we let Q range over finite sets of patterns and define L(Q)=
�? # Q L(?), i.e., the union of all pattern languages generated by patterns from Q.
Moreover, we use Pat(k) and PAT(k) to denote the family of all unions of at most
k canonical patterns and the family of all unions of at most k pattern languages,
respectively. That is, Pat(k)=[Q | Q�Pat, |Q|�k] and PAT(k)=[L | (_Q #
Pat(k))[L=L(Q)]]. Finally, let L�A+ be a language, and let k # N+ ; we define
Club(L, k)=[Q | |Q|�k, L�L(Q), (\Q$)[Q$/Q O L�3 L(Q$)]]. Club stands for
consistent least upper bounds.

As already mentioned above, the class PAT is TxtExPat-learnable from positive
data (cf. Angluin, 1980a). Subsequently, Lange and Wiehagen (1991) showed PAT
to be TxtItExPat -inferable. Their algorithm is allowed to output inconsistent inter-
mediate hypotheses. Next, we argue that inconsistency cannot be avoided when
iteratively learning PAT with respect to Pat. Note that Pat is a nonredundant
hypothesis space. PAT also meets the superset condition, since L(x0)=A+.

101INCREMENTAL CONCEPT LEARNING

8 We are grateful to Arun Sharma for bringing to our fuller attention these potential applications to
ILP of learning special cases of pattern languages and finite unions of pattern languages.

9 We study so-called nonerasing substitutions. It is also possible to consider erasing substitutions,
where variables may be replaced by empty strings, leading to a different class of languages (cf.
File� , 1988).

Moreover, the inclusion problem for Pat is undecidable (cf. Jiang et al., 1993).
Therefore, by Theorem 11, we immediately arrive at the following corollary.

Corollary 12. There is no consistent IIM M that TxtItExPat-learns PAT.

As a matter of fact, the latter corollary generalizes to all nonredundant hypo-
thesis spaces for PAT. All the ingredients to prove this can be found in Zeugmann
et al. (1995). Consequently, if unions of pattern languages can be iteratively learned
at all, then either redundant hypothesis spaces or inconsistent learners cannot be
avoided.

As for unions, the first result goes back to Shinohara (1983) who proved the class
of all unions of at most two pattern languages to be in TxtExPat(2) . Wright (1989)
extended this result to PAT(k) # TxtExPat(k) for all k�1. Moreover, Theorem 4.2 in
Shinohara and Arimura's (1996), together with a lemma from Blum and Blum
(1975) shows that �k # N PAT(k) is not TxtExH -inferable for every hypothesis
space H. However, nothing was known previous to the present paper concerning
the incremental learnability of PAT(k). We resolve this problem by showing the
strongest possible result (Theorem 13 below); each PAT(k) is iteratively learnable!
Moreover, the learner presented in the proof is consistent, too. Thus, the hypothesis
space used had to be designed to be redundant.

Proposition 1. (1) For all L�A+ and all k # N+, Club(L, k) is finite.

(2) If L # PAT(k), then Club(L, k) is nonempty and contains Q, such that
L(Q)=L.

Proof. Part (2) is obvious. Part (1) is easy for finite L. For infinite L, it follows
from the lemma below.

Lemma 4. Let k # N+, let L�A+ be any language, and suppose T=(sj) j # N #
text(L). Then,

(1) Club(T +
0 , k) can be effectively obtained from s0 , and Club(T +

n+1 , k) can be
effectively obtained from Club(T +

n , k) and sn+1 (* note the iterative nature *).

(2) The sequence Club(T +
0 , k), Club(T +

1 , k), ... converges to Club(L, k).

Proof. For proving assertion (1), fix any k�1 and suppose T=s0 , s1 ..., sn ,
sn+1 , ... to be a text for L. Furthermore, let S0=[[?] | s0 # L(?)]. We proceed
inductively; for n�0, we define S$n+1=[Q # Sn | sn+1 # L(Q)] _ [Q _ [?] | Q # Sn ,
sn+1 � L(Q), |Q|<k, sn+1 # L(?)], and then Sn+1=[Q # S$n+1 | (\Q$ # S$n+1)
[Q$/3 Q]].

Note that S0 can be effectively obtained from s0 , since every pattern ? with
s0 # L(?) must satisfy |?|�|s0 |. Thus, there are only finitely many candidate
patterns ? with s0 # L(?) which can be effectively constructed. Since membership is
uniformly decidable, we are done. Furthermore, using the same argument, Sn+1 can
be effectively obtained from Sn and sn+1 , too. Also it is easy to verify, by induction
on n, that Sn=Club(T +

n , k). Thus, (1) is satisfied.
Next, we show assertion (2). Consider a tree T formed mimicking the above

construction of Sn as follows. The nodes of T will be labeled either ``empty'' or by
a pattern. The root is labeled ``empty.'' The children of any node in the tree (and

102 CASE ET AL.

their labels) are defined as follows. Suppose the node, v, is at distance n from the
root. Let Q denote the set of patterns formed by collecting the labels on the path
from root to v (ignoring the ``empty'' labels). Children of v are defined as follows:

(a) If sn # L(Q), then v has only one child with label ``empty.''

(b) If sn � L(Q) and |Q|=k, then v has no children.

(c) If sn � L(Q) and |Q|<k, then v has children with labels ?, where
sn # L(?).

Note that the number of children is equal to the number of patterns ? such that
sn # L(?).

Suppose Un=[Q | (_v at a distance n+1 from root)[Q=the set of patterns
formed by collecting the labels on the path from root to v (ignoring the ``empty''
labels)]]. Then it is easy to verify using induction that Sn=[Q # Un | (\Q$ # Un)
[Q$/3 Q]].

Since the number of nonempty labels on any path of the tree is bounded by k,
using Ko� nig's lemma we have that the number of nodes with nonempty label must
be finite. Thus the sequence U0 , U1 , ... converges. Hence, the sequence S0=
Club(T +

0 , k), S1=Club(T +
1 , k), ... converges, to say S. Now, for all Q # S, for all

n, T +
n �L(Q). Therefore, for all Q # S, L�L(Q). Also, for all Q # S and Q$/Q,

for all but finitely many n, T+
n �3 L(Q$). Thus for all Q # S and Q$/Q, L�3 L(Q$).

It follows that S=Club(L, k), and hence, assertion (2) of Lemma 4 is proved.
Q.E.D.

Theorem 13. For all k�1, PAT (k) # TxtItEx.

Proof. Let can(}), be some computable bijection from finite classes of finite sets
of patterns onto N. Let pad be a 1�1 padding function such that, for all x, y # N,
Wpad(x, y)=Wx . For a finite class S of sets of patterns, let g(S) denote a grammar
obtained, effectively from S, for �Q # S L(Q).

Let L # PAT(k), and let T=(sj)j # N # text(L). The desired IIM M is defined as
follows: We set M0(T)=M(s0)=pad(g(Club(T +

0 , k)), can(Club(T +
0 , k)), and for

all n>0, let

Mn+1(T)=M(Mn(T), sn+1)

=pad(g(Club(T +
n+1 , k)), can(Club(T +

n+1 , k))).

Using Lemma 4 it is easy to verify that Mn+1(T)=M(Mn(T), sn+1) can be
obtained effectively from Mn(T) and sn+1 . Thus, M TxtItEx-identifies PAT(k).

Q.E.D.

3.5. Further Comparisons

Finally, we turn our attention to the differences and similarities between Defini-
tion 4 and a variant of k-bounded example-memory inference that has been
considered in the literature. The following learning type, called k-memory bounded
inference, goes back to Fulk et al. (1994) and is a slight modification of k-memory
limited learning defined in Osherson et al. (1986), where the learner could just

103INCREMENTAL CONCEPT LEARNING

memorize the latest k data items received. It has been thoroughly studied by Fulk
et al. (1994). The main differences to Definition 4 are easily explained. In Defini-
tion 4 the k-bounded example-memory learner is exclusively allowed to use its last
conjecture, the new data item coming in, and up to k data items its has already seen
for computing the new hypothesis and the possibly new data item to be memorized.
In contrast, Definition 7 below allows using the whole initial segment provided so
far to decide whether or not it will store the latest data item received. Moreover, the
actual hypothesis computed is allowed to depend on the previous conjecture, the
new data item coming in, and the newly stored elements.

We continue with the formal definition. Subsequently, let * denote the empty
sequence.

Definition 6 (Fulk et al., 1994). Let X be a learning domain, and let k # N;
then

(a) mem: SEQ � SEQ is a k-memory function iff, mem(*)=*, and, for all sequen-
ces _ # SEQ and all x # X, content(mem(_ h x))�content(_ h x), |mem(_ h x)|�k
and content(mem(_ h x))�content(mem(_)) _ [x].

(b) An IIM M is said to be k-memory bounded iff there is a recursive k-memory
function mem such that, (_, {)(\x # X)[[M |_|(_)=M |{| ({) 7 mem(_ h x)=
mem({ h x)] O [M |_|+1(_ h x)=M |{| +1({ h x)]].

Definition 7 (Fulk et al., 1994). Let k # N; then we set TxtMbkEx=
[C�^(X) | there exists a k-memory bounded machine M TxtEx-inferring C)].

Our next theorem shows that, for every k, 1-memory bounded inference may
outperform k-bounded example-memory identification.

Theorem 14. TxtMb1Ex"TxtBemk Ex{< for all k # N.

Proof. Assume any k # N. Let L1=[(i, x) | x # N, i�k] and for all m0 , ..., mk

N let Lm0 , ..., mk
k =[(0, x) | x<m0] _ } } } _ [(k, x) | x<mk] _ [(k+1, x) | x # N].

Furthermore, let Lk be the collection of L1 and all Lm0 , ..., mk
k , m0 , ..., mk # N. Now,

one easily shows that Lk � TxtBemkEx using the same ideas as in Fulk et al. (1994).
On the other hand, Lk # TxtMb1Ex. The crucial point here is that the 1-memory

function mem can be applied to encode, if necessary, the appropriate m0 , ..., mk by
using the elements from [(k+1, x) | x # N] that appear in the text.

We proceed formally. Let pad be a 1�1 recursive function such that, for all
m0 , ..., mk , Wpad(0, ..., 0)=L1 and W(m0+1, m1 , ..., mk)=Lm0 , ..., mk

k . Furthermore, assume
any recursive function g that satisfies, for all m0 , ..., mk , g(x)=(m0 , ..., mk) for
infinitely many x.

M, and its associated memory function mem, witnessing that L # TxtMb1Ex is
defined as follows. M's output will be of the form, pad(m$0 , ..., m$k). Let L # L, let
T=(sj) j # N # text(L), and let z # N.

On input Tz , mem is computed as follows. We set mem(T0)=s0 , and proceed
inductively for all z>0. Let y=mem(Tz&1); if y=(k+1, x) for some x and g(x)
=(m0 , ..., mk) with mi=max[m$ | (i, m$) # T +

z] for all i�k then mem(Tz)= y.
Otherwise, let mem(Tz)=sz .

104 CASE ET AL.

Next, we formally define the desired 1-memory bounded learner M. Suppose
s0=(j, x). If j{k+1, then let M(s0)=pad(0, ..., 0). Otherwise, let M(s0)=
pad(1, 0, ..., 0).

For z>0 we define M
*

(Tz) as follows. Let q=M
*

(Tz&1), then we set:

M
*

(Tz)

1. Suppose sz=(j, x) , and q=pad(m$0 , ..., m$k).

2. If m$0=0 and j{k+1, then let m$0= } } } =m$k=0.

3. Otherwise, let (j $, x$) =mem(Tz) and g(x$)=(m0 , ..., mk) . Set m$0=
m0+1, m$1=m1 , ..., and m$k=mk .

4. Output pad(m$0 , ..., m$k).

End

Clearly, if the target language L equals L1 , M always outputs a correct
hypothesis. Otherwise, L equals Lm0 , ..., mk

k for some m0 , ..., mk . Since |L & [(i, x) | i
�k, x # N]|<�, and by the choice of g, M must receive an element (k+1, x)
with g(x)=(m0 , ..., mk) after all k+1 elements (i, mi) , i�k, appeared in the text
T. By definition, M outputs a correct guess in this and every subsequent learning
step, and thus M TxtMb1Ex-infers every language in L. Q.E.D.

The latter theorem immediately allows the following corollary.

Corollary 15. TxtBemkEx/TxtMbk Ex for all k # N.

Proof. TxtBemk Ex�TxtMbkEx for all k # N, since the k-memory bounded
learner may easily simulate the k-bounded example memory machine while com-
puting the actual mem(Tx) for every text T and x # N. Thus, the corollary follows
by Theorem 14. Q.E.D.

But there is more. The following theorem nicely contrasts Theorem 7 and puts
the condition to use mem(Tz) in computing M

*
(Tz) in k-memory bounded iden-

tification as defined in Fulk et al. (1994) into the right perspective.

Theorem 16. TxtFb1 Ex/TxtMb1Ex.

Proof. It suffices to show that TxtFb1Ex�TxtMb1 Ex, since TxtMb1 Ex"
TxtFb1Ex{< follows immediately from Theorem 8 and Corollary 15.

Let M, together with the query asking function Q, witness that C # TxtFb1Ex.
The desired IIM M$, and its associated memory function mem, witnessing that
C # TxtMb1Ex are defined as follows: Let c # C, let T=(sj) j # N # text(c), and let
z # N.

On input Tz , mem is computed as follows: We set mem(T0)=s0 and proceed
inductively for all z>0. Let q=M(Tz&1). If Q(q, sz) # content(Tz), then mem(Tz)
=sz . Otherwise, mem(Tz)=*. Recall that * stands for the empty sequence.

Next, we formally define the desired 1-memory bounded learner M. For z=0 let
M$(s0)=M(s0).

105INCREMENTAL CONCEPT LEARNING

For z>0 we define M$(Tz) as follows. Let q=M$(Tz&1); we set:

M(Tz)

1. If mem(Tz)=sz then output M(q, 1, sz).

2. Otherwise, output M(q, 0, sz).
End

Now, one immediately sees that M$, when fed T, outputs the same sequences of
hypotheses as the feedback learner M would do. Hence, M$ learns every c # C as
required. Q.E.D

Though k-memory bounded inference is more powerful than k-bounded example-
memory inference, it has the serious disadvantage that all data are needed for
computing the sequence to be memorized. This is somehow counterintuitive to the
idea of incremental learning. It may be, however, an option, provided the computa-
tion of the memory function mem(Tz) can be done in roughly the same time as the
computation of M on input M(Tz&1), sz , and mem(Tz&1).

A further variation is obtained by modifying Definition 6 as follows. Instead of
allowing mem to depend on the whole initial segment Tz , it is only allowed to
depend on mem(Tz&1), sz , and M(Tz&1). Then the only remaining difference to
Definition 4 is that one can still memorize the order of particular elements in
accordance with their presentation. On the one hand, it is currently open whether
or not this information may increase the resulting learning power. On the other
hand, all relevant theorems remain valid if TxtBemkExa and TxtBemkFexa are
replaced by the new resulting learning type.

4. CONCLUSIONS AND FUTURE DIRECTIONS

We studied refinements of concept learning in the limit from positive data that
are considerably restricting the accessibility of input data. Our research derived its
motivation from the rapidly emerging field of data mining. Here, huge data sets are
around, and any practical learning system has to deal with the limitations of space
available. Given this, a systematic study of incremental learning is important for
gaining a better understanding of how different restrictions to the accessibility of
input data do affect the resulting inference capabilities of the corresponding learning
models. The study undertaken extends previous work done by Osherson et al.
(1986), Fulk et al. (1994), and Lange and Zeugmann (1996a) in various directions.

First, the class of all unions of at most k pattern languages has been shown to
be simultaneously both iteratively and consistently learnable. Moreover, we proved
redundancy in the hypothesis space to be a resource extending the learning power
of iterative learners in fairly concrete contexts. As a matter of fact, the hypothesis
space used in showing Theorem 13 is highly redundant, too. Moreover, we proved
this redundancy to be necessary; i.e., no iterative and consistent learner can identify
all unions of at most k pattern languages with respect to a 1�1 hypothesis space.
It remains, however, open whether or not there exists an inconsistent iterative learner
inferring PAT(k) with respect to a nonredundant hypothesis space.

106 CASE ET AL.

Clearly, once the principal learnability has been established, complexity becomes
a central issue. Thus, further research should address the problem of designing time
efficient iterative learners for PAT(k). This problem is even unsolved for k=1. On
the one hand, Lange and Wiehagen (1991) designed an iterative pattern learner
having polynomial update time. Nevertheless, the expected total learning time, i.e.,
the overall time needed until convergence is exponential in the number of different
variables occurring in the target pattern for inputs drawn with respect to a large
class of probability distributions (cf. Zeugmann, 1995, 1998; and Rossmanith and
Zeugmann, 1998).

Second, we considerably generalized the model of feedback inference introduced
in Lange and Zeugmann (1996a) by allowing the feedback learner to ask simulta-
neously k queries. Though at first glance it may seem that asking simultaneously for
k elements and memorizing k carefully selected data items may be traded one to
another, we rigorously proved the resulting learning types to be advantageous in
very different scenarios (cf. Theorems 7 and 8). Consequently, there is no unique
way to design superior incremental learning algorithms. Therefore, the comparison
of k-feedback learning and k-bounded example-memory inference deserves special
interest, and future research should address the problem under what circumstances
which model is preferable. Characterizations may serve as a suitable tool for accom-
plishing this goal (cf., e.g., Angluin, 1980b; Blum and Blum, 1975; Zeugmann et al.,
1995).

Additionally, feed-back identification and k-bounded example-memory inference
have been considered in the general context of classes of recursively enumerable
concepts rather than uniformly recursive ones as done in Lange and Zeugmann
(1996a). As our Theorem 5 shows, there are subtle differences. Furthermore, a
closer look at the proof of Theorem 5 directly yields the interesting problem whether
or not allowing a learner to ask simultaneously k questions, instead of querying one
data item per time, may speed up the learning process.

A further generalization can be obtained by allowing a k-feedback learner to ask
its queries sequentially, i.e., the next query is additionally allowed to depend on the
answers to its previous questions. Interestingly, our theorems hold in this case, too.
It is, however, currently open whether or not sequentially querying the database
does have any advantage at all.

Next, we discuss possible extensions of the incremental learning models considered.
A natural relaxation of the constraint to fix k a priori can be obtained by using the
notion of constructive ordinals as done by Freivalds and Smith (1993) for mind
changes. Intuitively, the parameter k is now specified to be a constructive ordinal,
and the k-bounded example-memory learner, as well as a feedback machine, can
change their mind of how many data items to store and to ask for, respectively,
in dependence on k. Furthermore, future research should examine a hybrid
model which permits both memorizing k1 items from the database and k2 queries
of the database, where again, k1 and k2 may be specified as constructive
ordinals.

Moreover, it would also be interesting to extend this and the topics of the present
paper to probabilistic learning machines. This branch of learning theory has
recently seen a variety of surprising results (cf., e.g., Jain and Sharma, 1995; Meyer,

107INCREMENTAL CONCEPT LEARNING

1995, 1997), and thus, one may expect further interesting insight into the power of
probabilism by combining it with incremental learning.

Finally, while the research presented in the present paper clarified what the strength
and limitations of incremental learning are, further investigations are necessary
to deal with the impact of incremental inference to the complexity of the resulting
learner. First results along this line are established in Wiehagen and Zeugmann
(1994), and we shall see what the future brings concerning this interesting topic.

ACKNOWLEDGMENT

We heartily thank the anonymous referees for their careful reading and comments which improved the
paper considerably.

Received October 8, 1997; final manuscript received November 6, 1998

REFERENCES

Angluin, D. (1980a), Finding patterns common to a set of strings, J. Comput. System Sci. 21, 46�62.

Angluin, D. (1980b), Inductive inference of formal languages from positive data, Inform. and Control 45,
117�135.

Arikawa, S., Shinohara, T., and Yamamoto, A. (1992), Learning elementary formal systems, Theoret.
Comput. Sci. 95, 97�113.

Arimura, H., and Shinohara, T. (1994), Inductive inference of Prolog programs with linear data
dependency from positive data, in ``Proceedings Information Modeling and Knowledge Bases V,''
pp. 365�375, IOS Press, Burke, VA.

Blum, M. (1967), A machine independent theory of the complexity of recursive functions, J. Assoc.
Comput. Mach. 14, 322�336.

Blum, L., and Blum, M. (1975), Toward a mathematical theory of inductive inference, Inform. and
Control 28, 122�155.

Brachman, R., and Anand, T. (1996), The process of knowledge discovery in databases: A human
centered approach, in ``Advances in Knowledge Discovery and Data Mining'' (U. M. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds.), pp. 37�58, AAAI Press, Menlo Park, CA.

Case, J. (1974), Periodicity in generation of automata, Math. Systems Theory 8, 15�32.

Case, J. (1988), The power of vacillation, in ``Proceedings of the 1st Workshop on Computational Learning
Theory'' (D. Haussler and L. Pitt, Eds.), pp. 196�205, Morgan Kaufmann, San Mateo, CA.

Case, J. (1994), Infinitary self-reference in learning theory, J. Experimental H Theoretical Artificial
Intelligence 6, 3�16.

Case, J. (1996), ``The Power of Vacillation in Language Learning,'' Technical Report LP-96-08, Logic,
Philosophy and Linguistics Series of the Institute for Logic, Language and Computation, University
of Amsterdam, The Netherlands.

Case, J., and Smith, C. H. (1983), Comparison of identification criteria for machine inductive inference,
Theoret. Comput. Sci. 25, 193�220.

Fayyad, U. M., Djorgovski, S. G., and Weir, N. (1996a), Automating the analysis and cataloging of sky
surveys, in ``Advances in Knowledge Discovery and Data Mining'' (U. M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, Eds.), pp. 471�494, AAAI Press, Menlo Park, CA.

Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P. (1996b), From data mining to knowledge
discovery: An overview, in ``Advances in Knowledge Discovery and Data Mining'' (U. M. Fayyad,
G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Eds.), pp. 1�34, AAAI Press, Menlo Park, CA.

File� , G. (1988), The relation of two patterns with comparable languages, in ``Proceedings of the 5th
Annual Symposium on Theoretical Aspects of Computer Science'' (R. Cori and M. Wirsing, Eds.),
Lecture Notes in Computer Science, Vol. 294, pp. 184�192, Springer-Verlag, Berlin.

108 CASE ET AL.

Freivalds, R., and Smith, C. H. (1993), On the role of procrastination for machine learning, Inform. and
Comput. 107, 237�271.

Fulk, M., Jain, S., and Osherson, D. N. (1994), Open problems in systems that learn, J. Comput. System
Sci. 49, 589�604.

Gold, M. E. (1967), Language identification in the limit, Inform. and Control 10, 447�474.

Hopcroft, J. E., and Ullman, J. D. (1969), ``Formal Languages and their Relation to Automata,''
Addison-Wesley, Reading, MA.

Jain, S., and Sharma, A. (1994), On monotonic strategies for learning r.e. languages, in ``Proceedings of
the 5th International Workshop on Algorithmic Learning Theory'' (K. P. Jantke and S. Arikawa,
Eds.), Lecture Notes in Artificial Intelligence, Vol. 872, pp. 349�364, Springer-Verlag, Berlin.

Jain, S., and Sharma, A. (1995), On identification by teams and probabilistic machines, in ``Algorithmic
Learning for Knowledge-Based Systems'' (K. P. Jantke and S. Lange, Eds.), Lecture Notes in Artificial
Intelligence, Vol. 961, pp. 108�145, Springer-Verlag, Berlin.

Jiang, T., Salomaa, A., Salomaa, K., and Yu, S. (1993), Inclusion is undecidable for pattern languages,
in ``Proceedings 20th International Colloquium on Automata, Languages and Programming'' (A. Lingas,
R. Karlsson, and S. Carlsson, Eds.), Lecture Notes in Computer Science, Vol. 700, pp. 301�312,
Springer-Verlag, Berlin.

Kloesgen, W. (1995), Efficient discovery of interesting statements in databases, J. Intell. Inform. Systems
4, 53�69.

Krishna Rao, M. R. K. (1996), A class of Prolog programs inferable from positive data, in ``Proceedings
of the 7th International Workshop on Algorithmic Learning Theory'' (S. Arikawa and A. K. Sharma,
Eds.), Lecture Notes in Artificial Intelligence, Vol. 1160, pp. 272�284, Springer-Verlag, Berlin.

Lange, S., and Wiehagen, R. (1991), Polynomial-time inference of arbitrary pattern languages, New
Generation Computing 8, 361�370.

Lange, S., and Zeugmann, T. (1993a), Language learning in dependence on the space of hypotheses, in
``Proceedings of the 6th Annual ACM Conference on Computational Learning Theory'' (L. Pitt, Ed.),
pp. 127�136, ACM Press, New York.

Lange, S., and Zeugmann, T. (1993b), Learning recursive languages with bounded mind changes,
International Journal of Foundations of Computer Science 4, 157�178.

Lange, S., and Zeugmann, T. (1993c), Monotonic versus non-monotonic language learning, in
``Proceedings 2nd International Workshop on Nonmonotonic and Inductive Logic'' (G. Brewka,
K. P. Jantke, and P. H. Schmitt, Eds.), Lecture Notes in Artificial Intelligence, Vol. 659, pp. 254�269,
Springer-Verlag, Berlin.

Lange, S., and Zeugmann, T. (1996a), Incremental learning from positive data, J. Comput. System Sci.
53, 88�103.

Lange, S., and Zeugmann, T. (1996b), Set-driven and rearrangement-independent learning of recursive
languages, Math. Systems Theory 29, 599�634.

Matheus, C. J., Piatetsky-Shapiro, G., and McNeil, D. (1996), Selecting and reporting what is interest-
ing, in ``Advances in Knowledge Discovery and Data Mining'' (U. M. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy, Eds.), pp. 495�515, AAAI Press, Menlo Park, CA.

Meyer, L. (1995), Probabilistic language learning under monotonicity constraints, in ``Proceedings 6th Inter-
national Workshop on Algorithmic Learning Theory'' (K. P. Jantke, T. Shinohara, and T. Zeugmann,
Eds.), Lecture Notes in Artificial Intelligence, Vol. 997, pp. 169�184, Springer-Verlag, Berlin.

Meyer, L. (1997), Monotonic and dual monotonic probabilistic language learning of indexed families
with high probability, in ``Proceedings 3rd European Conference on Computational Learning
Theory'' (S. Ben-David, Ed.), Lecture Notes in Artificial Intelligence, Vol. 1208, pp. 66�78, Springer-
Verlag, Berlin.

Nix, R. P. (1983), ``Editing by Examples,'' Yale University, Dept. Computer Science, Technical Report 280.

Osherson, D. N., Stob, M., and Weinstein, S. (1986), ``Systems that Learn, An Introduction to Learning
Theory for Cognitive and Computer Scientists,'' MIT Press, Cambridge, MA.

109INCREMENTAL CONCEPT LEARNING

Rogers, H. (1967), ``Theory of Recursive Functions and Effective Computability,'' McGraw Hill, New
York, 1967. [Reprinted, MIT Press, Cambridge, MA, 1987]

Rossmanith, P., and Zeugmann, T. (1998), Learning k-variable pattern languages efficiently stochastically
finite on average from positive data, in ``Proceedings 4th International Colloquium on Grammatical
Inference - ICGI'98'' (V. Honavar and G. Slutzki, Eds.), Lecture Notes in Artificial Intelligence,
Vol. 1433, pp. 13�24, Springer-Verlag, Berlin.

Salomaa, A. (1994a), Patterns (The formal language theory column), EATCS Bull. 54, 46�62.

Salomaa, A. (1994b), Return to patterns (The formal language theory column), EATCS Bull. 55,
144�157.

Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S., and Arikawa, S. (1994),
Knowledge acquisition from amino acid sequences by machine learning system BONSAI, Trans.
Inform. Process. Soc. Jpn. 35, 2009�2018.

Shinohara, T. (1983), Inferring unions of two pattern languages, Bull. Inform. Cybern. 20, 83�88.

Shinohara, T. (1991), Inductive inference of monotonic formal systems from positive data, New Generation
Computing 8, 371�384.

Shinohara, T., and Arikawa, S. (1995), Pattern inference, in ``Algorithmic Learning for Knowledge-Based
Systems'' (K. P. Jantke and S. Lange, Eds.), Lecture Notes in Artificial Intelligence, Vol. 961,
pp. 259�291, Springer-Verlag, Berlin.

Shinohara, T., and Arimura, H. (1996), Inductive inference of unbounded unions of pattern languages
from positive data, in ``Proceedings 7th International Workshop on Algorithmic Learning Theory''
(S. Arikawa and A. K. Sharma, Eds.), Lecture Notes in Artificial Intelligence, Vol. 1160, pp. 256�271,
Springer-Verlag, Berlin.

Smullyan, R. (1961), ``Theory of Formal Systems,'' Annals of Mathematical Studies, Vol. 47, Princeton
Univ. Press, Princeton, NJ.

Wiehagen, R. (1976), Limes-Erkennung rekursiver Funktionen durch spezielle Strategien, Journal of
Information Processing and Cybernetics (EIK) 12, 93�99.

Wiehagen, R., and Zeugmann, T. (1994), Ignoring data may be the only way to learn efficiently, Journal
of Experimental H Theoretical Artificial Intelligence 6, 131�144.

Wright, K. (1989), Identification of unions of languages drawn from an identifiable class, in
``Proceedings of the 2nd Workshop on Computational Learning Theory'' (R. Rivest, D. Haussler, and
M. Warmuth, Eds.), pp. 328�333, Morgan Kaufmann, San Mateo, CA.

Zeugmann, T. (1995), ``Lange and Wiehagen's Pattern Language Learning Algorithm: An Average-Case
Analysis with Respect to its Total Learning Time,'' RIFIS Technical Report RIFIS-TR-CS-111,
RIFIS, Kyushu University.

Zeugmann, T. (1998), Lange and Wiehagen's pattern language learning algorithm: An average-case
analysis with respect to its total learning time, Annals of Mathematics and Artificial Intelligence 23,
117�145.

Zeugmann, T., and Lange, S. (1995), A guided tour across the boundaries of learning recursive
languages, in ``Algorithmic Learning for Knowledge-Based Systems'' (K. P. Jantke and S. Lange,
Eds.), Lecture Notes in Artificial Intelligence, Vol. 961, pp. 190�258, Springer-Verlag, Berlin.

Zeugmann, T., Lange, S., and Kapur, S. (1995), Characterizations of monotonic and dual monotonic
language learning, Inform. and Comput. 120, 155�173.

110 CASE ET AL.

	1. INTRODUCTION
	2. PRELIMINARIES
	3. RESULTS
	4. CONCLUSIONS AND FUTURE DIRECTIONS
	ACKNOWLEDGMENT
	REFERENCES

