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Abstract

We consider the problem of which primitive directed graphs can be k-colored to yield a
k-primitive directed graph. If such a k-coloring exists, then certainly such a graph must have
at least k cycles. We prove that any primitive directed graph admits a 2-coloring that is 2-
primitive. By contrast, for each k � 4, we construct examples of primitive directed graphs
having k cycles for which no k-coloring is k-primitive. We also give some partial results for
the case that k = 3.
© 2003 Published by Elsevier Inc.
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1. Introduction and preliminaries

Suppose that G is a simple directed graph on at least two vertices, possibly with
loops. G is primitive if there is some r ∈ N such that for any pair of vertices u, v of
G, there is a walk from u to v of length r . It is well-known (see [1], for example) that
G is primitive if and only if it is strongly connected and the greatest common divisor
of its cycle lengths is 1. Observe that the directed graph consisting of a loop at a
single vertex can also be thought of as ‘primitive’. However, in this paper it will be
terminologically convenient to exclude that graph from consideration as primitive;
that convention will help to avoid some trivialities in our discussion.
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A k-coloring of G is a k-tuple of spanning subgraphs (G1, . . . , Gk) such that the
subgraphs G1, . . . , Gk partition the arcs of G into k (nonempty) subsets. We think
of each Gi as containing the arcs given color i in the directed graph G. In parallel
with the notion of primitivity for G, we say that the k-coloring (G1, G2, . . . , Gk) is
k-primitive if there is a k-tuple of positive integers (r1, r2, . . . , rk) such that between
any pair of vertices u, v of G, there is a walk from u to v in G having exactly ri arcs
in Gi for each i, i = 1, . . . , k (equivalently, that walk has exactly ri arcs of color i

for each i = 1, . . . , k).
Evidently the case k = 1 corresponds to the definition of primitivity given above.

Further, it is clear that if there is a k-coloring of G that is k-primitive, then G itself
must be a primitive directed graph. In this paper we deal with the following natural
question: Given a primitive directed graph G, under what circumstances is there a
k-coloring of G that is k-primitive?

Fortunately, there is a matrix theoretic technique that enables one to determine
whether a specific k-coloring is k-primitive. Suppose that we have a directed graph
G with k-coloring (G1, . . . , Gk). Label the cycles of G by C1, . . . , Cl , and construct
the k × l matrix M = [mi,j ], where mi,j denotes the number of arcs on cycle j

having color i. The following result, found in [2], shows how M can be used to
determine whether or not the coloring is k-primitive.

Theorem 1.1 [2]. Let G be a directed graph, and suppose that (G1, . . . , Gk) is a
k-coloring of G. Then G is k-primitive if and only if the k × k minors of M are
relatively prime.

From Theorem 1.1 we see that ifG admits a k-primitive k-coloring, then necessarily
G must have at least k cycles. In this paper, we show any primitive directed graph
admits a 2-primitive 2-coloring. Further, for each k � 4, we provide an example of a
primitive directed graph having exactly k cycles, but which cannot be k-colored to be
k-primitive. Finally, we present a few partial results dealing with the case k = 3.

2. The case k = 2

Lemma 2.1. Let G be a directed graph with two cycles labeled C1 and C2 whose
lengths are l1 and l2, respectively. Suppose that l2 � l1 + 1, and let a and b be the
smallest positive integers such that al2 − bl1 = ± gcd(l1, l2). There is a coloring of
C1 and C2 which colors a arcs of C1 color 1, b arcs of C2 color 1, and the remaining
arcs of these two cycles color 2.

Proof. Let q1 = l1/gcd(l1, l2) and q2 = l2/gcd(l1, l2), and note that aq2 − bq1 =
±1. We claim that a � q1. To see the claim, suppose to the contrary that a � q1 + 1.
Then we have bq1 = aq2 ∓ 1 � aq2 − 1 � q1q2 + q2 − 1 � q1q2 + 1, the last
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inequality since q2 � 2. Thus we find that b � q2 + 1/q1 > q2. Since b and q2 are
integers, we see that b � q2 + 1. But then letting a′ = a − q1 and b′ = b − q2,
we have a′q2 − b′q1 = ±1, so that a′l2 − b′l1 = ± gcd(l1, l2), contradicting the fact
a and b were chosen as the smallest positive integers such that al2 − bl1 = ± gcd(l1,

l2). Consequently we have a � q1, as claimed.
Next we claim that a � b. To see the claim, suppose to the contrary that a �

b + 1. Then we have aq2 − bq1 � (b + 1)(q1 + 1) − bq1 = b + q1 + 1 > 1, which
contradicts the fact that aq2 − bq1 = ±1. We thus conclude that a � b, as claimed.

Let r denote the number of arcs common to C1 and C2 (here we admit the possi-
bility that r = 0). If r < a, then we can obtain the desired coloring as follows: color
the r shared arcs color 1, the a − r unshared arcs of C1 color 1, the b − r unshared
arcs of C2 color 1, and all other arcs color 2.

Suppose now that r � a. We claim that l2 − l1 + 1 � b − a. To see the claim,
note that aq2 − bq1 � −1, so that a(q2 − q1) � (b − a)q1 − 1, which yields q2 −
q1 � (b − a)(q1/a) − (1/a) � b − a − 1, the last inequality following from the fact
that 1 � a � q1. If we have q2 − q1 � b − a, then certainly l2 − l1 + 1 > q2 − q1 �
b − a. On the other hand, if q2 − q1 = b − a − 1, then note that ±1 = aq2 − bq1 =
a(q1 + b − a − 1) − bq1 = (a − b)(q1 − a) − a. Since a � q1 and a � b, we thus
have aq2 − bq1 = ±1 = (a − b)(q1 − a) − a � −a. Evidently this is possible only
if a = 1 and aq2 − bq1 = −1. Solving that last equation for b yields b = (q2 + 1)/q1.
But then we have l2 − l1 + 1 � q2 − q1 + 1 � (q2 − q1 + 1)/q1 = b − a. In either
case, we see that l2 − l1 + 1 � b − a, as claimed.

From the claim, we see that since r � l1 − 1, we have b − a � l2 − r . We can
now obtain the desired coloring as follows: color a of the shared arcs color 1, b − a

of the unshared arcs of C2 color 1 (this is possible to do since b − a � l2 − r), and
all other arcs color 2.

Thus we see that in either case, it is possible to produce a coloring of C1 and C2
with the desired properties. �

Remark 2.1. The coloring produced in Lemma 2.1 does indeed use both colors. To
see this fact, first note that since both a and b are positive, at least one arc in the
graph is given color 1. Further, there are l1 − a arcs of C1 given color 2, and l2 − b

arcs of C2 given color 2. If l1 − a is positive, then at least one arc is given color 2,
and so both colors are used.

If l1 − a is 0, then q1 must be 1, since it is a factor of aq2 − bq1, so that l1 =
gcd(l1, l2). Thus the equation aq2 − bq1 = ±1 yields b = bq1 = aq2 ∓ 1 = l1q2 ∓
1 = gcd(l1, l2)q2 ∓ 1 = l2 ∓ 1. Since b is the smallest positive integer satisfying
al2 − bl1 = ∓gcd(l1, l2), we conclude that b = l2 − 1. But then l2 − b is positive,
and again, both colors are used.

Theorem 2.1. If G is a primitive directed graph, then there is a 2-coloring of G

that is 2-primitive.



70 L.B. Beasley, S. Kirkland / Linear Algebra and its Applications 373 (2003) 67–74

Proof. Suppose that G has k cycles C1, . . . , Ck, say of lengths l1, . . . , lk . Since G

is primitive, we have gcd(l1, . . . , lk) = 1. In particular, there are at least two distinct
cycle lengths. We assume that those cycles are C1 and C2, with lengths l1 and l2,
respectively; without loss of generality, we take l2 � l1 + 1.

Select the smallest positive integers a and b such that |al2 − bl1| = gcd(l1, l2) ≡
g. Applying Lemma 2.1 to C1 and C2, we find that there is a coloring of those
two cycles such that a arcs of C1 have color 1, b arcs of C2 have color 1, and the
remaining arcs on C1 and C2 have color 2. We complete the coloring of G with
colors 1 and 2 by letting any remaining arcs be colored arbitrarily.

That coloring leads us to the following matrix:

M =
[

a b c3 · · · ck

l1 − a l2 − b l3 − c3 · · · lk − ck

]
,

where c3, . . . , ck denote the numbers of arcs of color 1 on the cycles C3, . . . , Ck ,
respectively.

Let di,j = det M[1, 2 | i, j ] and let z = gcd{di,j | 1 � i < j � k}. Then z | d1,2 so
that z | l1 and z | l2 since d1,2 = |al2 − bl1| = g. Also, for any i � 3, z | d1,i so that
z | ali − ci l1. It follows that z | ali for all i. Further, z | d2,i for all i � 3 so that z | bli
for all i. Suppose that z /= 1, and let p be a prime divisor of z. Since the cycle lengths
are relatively prime, there is some j such that p � lj . It follows that p | a and p | b. But
then, p | (a(l2/g) − b(l1/g)) and since a(l2/g) − b(l1/g) = ±1, we have p = 1. We
conclude that z must be 1. Thus we see that the collection of 2 × 2 minors of M has
greatest common divisor 1, and so by Theorem 1.1, we see that our 2-coloring of G

is 2-primitive. �

Example 2.1. We illustrate the coloring technique of Theorem 2.1 on the graph
constructed as follows: begin with a directed path on 15 vertices, say i → i + 1, i =
1, . . . , 14, then add in the arcs 15 → 1, 10 → 1 and 6 → 1. The resulting graph G

has three cycles: a 6-cycle on vertices 1, . . . , 6, a 10-cycle on vertices 1, . . . , 10, and
a Hamilton cycle.

Consider the 6-cycle and the 10-cycle. The greatest common divisor of their
lengths is 2, and in the notation on Lemma 2.1, we have a = 1 and b = 2. Color the
arcs 1 → 2 and 9 → 10 with color 1, and color the arcs i → i + 1, i = 2, . . . , 8,

6 → 1 and 10 → 1 all with color 2. Finally, of the remaining arcs i → i + 1, i =
10, . . . , 14 and 15 → 1, fix some j between 0 and 6, and color j of them with color
1 and the rest with color 2.

This coloring leads us to the matrix

M =
[

1 2 j + 2
5 8 13 − j

]
,

whose minors are −2, 3 − 6j and 10 − 10j . Since the first two minors are mutually
prime, we find that our coloring of G is indeed 2-primitive.
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Fig. 1.

3. Examples and discussion for the case k ��� 3

By way of contrast with Theorem 2.1, in this section we give some examples to
show that for each k � 4, there are primitive directed graphs having k cycles for
which no k-coloring is k-primitive.

Our first example deals with the case k = 4.

Example 3.1. Consider the directed graph G shown in Fig. 1. Evidently G has
exactly four cycles, of lengths 4, 5, 5, and 6. In particular G is primitive. Ob-
serve also that each arc of G is either contained in just two cycles, or in all four
of the cycles. Suppose that we have a 4-coloring of G, say (G1, . . . , G4), and
form the corresponding 4 × 4 matrix M of Theorem 1.1. From that result, the 4-
coloring (G1, . . . , G4) is 4-primitive if and only if det(M) = ±1. Since adding
columns together does not affect the determinant, we see that if M̃ is the matrix
formed from M by replacing its first column by the vector of row sums of M ,
then det(M) = det(M̃). For each arc a of G, let na denote the number of cy-
cles in which a is contained. Letting ri denote the ith row sum of M , we find
that for each i = 1, . . . , 4, ri = ∑

a∈Gi
na. In particular, since each na is even,

we see that each entry in the first column of M̃ is divisible by 2. Consequently,
det(M) is divisible by 2, from which we conclude that the 4-coloring of G is not
4-primitive.

Next, we use Example 3.1 to help in discussing the case k � 5.

Example 3.2. In this example, we use G of Fig. 1 to construct, for each k � 5, a
primitive directed graph having k cycles for which no k-coloring is k-primitive. To
do so, start with G, and at one of the vertices of degree 2, say v, attach k − 4 2-cycles
each having v as a vertex. The resulting graph H has k cycles, and k + 2 vertices.
Label the cycles of H that are inherited from G by C1, . . . , C4, and note that each
arc of H which is inherited from G is contained in either two or four of the cycles
C1, . . . , C4.

Suppose now that we have a k-coloring of H , and construct the k × k matrix M

of Theorem 1.1. Let M̃ be formed from M by replacing its first column by the sum
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of its first four columns (which correspond to the cycles C1, . . . , C4). As in Example
3.1, we find that each entry in the first column of M̃ is divisible by 2, so that det(M̃)

is also divisible by 2. Since det(M) = det(M̃), we find from Theorem 1.1 that the
k-coloring of H cannot be k-primitive.

Our last example provides a different kind of construction from that used above.

Example 3.3. Suppose that n � 3 is an odd integer and consider the directed graph
D on n vertices labeled 1, . . . , n, with arcs i → i + 1 (mod n) and i → i − 1 (mod n),
for i = 1, . . . , n. Then we find that D has two cycles of length n and n cycles of
length 2, for a total of n + 2 cycles. Note that D is primitive (since n and 2 are
mutually prime) and that each arc of D is contained in exactly two cycles. It follows
as in Example 3.1 that for any n + 2-coloring of D, the corresponding matrix M has
each row sum divisible by 2. (Indeed the sum of row i is twice the number of arcs
with color i.) We thus conclude that no n + 2-coloring of D is n + 2-primitive.

Next, we give a few partial results on the problem of determining which primitive
directed graphs having at least three cycles can be 3-colored to yield a 3-primitive
graph.

Theorem 3.1. Suppose that G is a primitive directed graph having at least three
cycles. Suppose that there is a nonempty subset of arcs of G, say A, such that G′ ≡
G \ A can be written as the union of a primitive directed graph and a (possibly
empty) collection of isolated vertices. Then G admits a 3-coloring that is 3-primitive.

Proof. Denote the primitive component of G′ by H (possibly they are equal). By
Theorem 2.1, there is a 2-coloring of H , say using colors 1 and 2, that is 2-primitive.
We now complete this to a 3-coloring of G by selecting a single arc e ∈ A and giving
it color 3, while coloring the arcs of A \ e arbitrarily with colors 1 and 2.

We claim that this 3-coloring of G is 3-primitive. To see this, form the matrix M of
Theorem 1.1 for the coloring of G. Let MH denote the corresponding matrix arising
from our 2-coloring of H . Observe that M contains a submatrix of the following
form:

S =
[

MH x

0 . . . 0 1

]
,

where the last column corresponds to a cycle containing the arc e. Observe that each
2 × 2 minor of MH is equal to a 3 × 3 minor of S, and since those 2 × 2 minors
are relatively prime, we conclude that the 3 × 3 minors of S (and hence of M) are
relatively prime. Thus our coloring is 3-primitive. �

The following result is similar in spirit to that above.

Theorem 3.2. Let G be a primitive directed graph with at least three cycles. Sup-
pose that there are two cycles C1, C2 with lengths l1, l2, respectively, such that l1
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and l2 are relatively prime, and such that there is at least one arc of G not contained
in C1 ∪ C2. Then G admits a 3-coloring that is 3-primitive.

Proof. Let a and b be the smallest positive integers such that al2 − bl1 = ±1. By
Lemma 2.1 there is a coloring of C1 ∪ C2 that gives a arcs of C1 and b arcs of C2
color 1, and the rest color 2. Since there is an arc e of G (say on cycle C3) that is
not contained in C1 ∪ C2, we can give e color 3, and color the remaining arcs of
G arbitrarily with colors 1, 2 and 3. As in Theorem 3.1, we find that the matrix M

corresponding to our coloring has a 3 × 3 submatrix of the following form:

S =

 a b c

l1 − a l2 − b l3 − c − 1
0 0 1


 .

Since det(S) = ±1, we conclude that our 3-coloring is 3-primitive. �

Example 3.4. Observe that neither Theorem 3.1 nor Theorem 3.2 applies to the
graph G of Example 2.1, since that graph has no primitive subgraphs, and every pair
of cycle lengths has a proper divisor. Nevertheless, we can produce a 3-coloring of
G that is 3-primitive. For example, give the arc 9 → 10 color 1, give the arcs 6 → 1,

10 → 1, 14 → 15 and 15 → 1 color 2, and give all remaining arcs color 3. The
resulting matrix M of Theorem 1.1 is

M =

0 1 1

1 1 2
5 8 12


 .

Since det(M) = 1, we see that the coloring is 3-primitive.

Informed by our work in Section 2, and by Example 3.4, we formulate the fol-
lowing.

Conjecture 3.1. Suppose that G is a primitive directed graph with cycles C1, C2
and C3 whose lengths are l1, l2 and l3, respectively. Let the greatest common divisor
of l1, l2 and l3 be g. Then there is a 3-coloring of G with corresponding matrix M

such that

M[1, 2, 3 | 1, 2, 3] =

 a b c

x y z

l1 − a − x l2 − b − y l3 − c − z




has determinant ±g.

Evidently the confirmation of this conjecture would be a key step in proving that
every primitive directed graph with at least three cycles admits a 3-coloring that is
3-primitive.
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