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Abstract

We consider the problem of which primitive directed graphs can be k-colored to yield a
k-primitive directed graph. If such a k-coloring exists, then certainly such a graph must have
at least k cycles. We prove that any primitive directed graph admits a 2-coloring that is 2-
primitive. By contrast, for each k > 4, we construct examples of primitive directed graphs
having k cycles for which no k-coloring is k-primitive. We also give some partial results for
the case that k = 3.
© 2003 Published by Elsevier Inc.
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1. Introduction and preliminaries

Suppose that G is a simple directed graph on at least two vertices, possibly with
loops. G is primitive if there is some r € N such that for any pair of vertices u, v of
G, there is a walk from u to v of length r. It is well-known (see [1], for example) that
G is primitive if and only if it is strongly connected and the greatest common divisor
of its cycle lengths is 1. Observe that the directed graph consisting of a loop at a
single vertex can also be thought of as ‘primitive’. However, in this paper it will be
terminologically convenient to exclude that graph from consideration as primitive;
that convention will help to avoid some trivialities in our discussion.
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A k-coloring of G is a k-tuple of spanning subgraphs (G1, ..., Gi) such that the
subgraphs G1, ..., G partition the arcs of G into k (nonempty) subsets. We think
of each G, as containing the arcs given color i in the directed graph G. In parallel
with the notion of primitivity for G, we say that the k-coloring (G, Ga, ..., G¢) is
k-primitive if there is a k-tuple of positive integers (r1, 2, . . . , rr) such that between
any pair of vertices u, v of G, there is a walk from u to v in G having exactly r; arcs
in G; foreach i, i =1, ..., k (equivalently, that walk has exactly r; arcs of color i
foreachi =1,...,k).

Evidently the case k = 1 corresponds to the definition of primitivity given above.
Further, it is clear that if there is a k-coloring of G that is k-primitive, then G itself
must be a primitive directed graph. In this paper we deal with the following natural
question: Given a primitive directed graph G, under what circumstances is there a
k-coloring of G that is k-primitive?

Fortunately, there is a matrix theoretic technique that enables one to determine
whether a specific k-coloring is k-primitive. Suppose that we have a directed graph
G with k-coloring (G, ..., Gi). Label the cycles of G by Cy, ..., C;, and construct
the k x [ matrix M = [m; ;], where m; ; denotes the number of arcs on cycle j
having color i. The following result, found in [2], shows how M can be used to
determine whether or not the coloring is k-primitive.

Theorem 1.1 [2]. Let G be a directed graph, and suppose that (Gy, ..., Gy) is a
k-coloring of G. Then G is k-primitive if and only if the k x k minors of M are
relatively prime.

From Theorem 1.1 we see that if G admits a k-primitive k-coloring, then necessarily
G must have at least k cycles. In this paper, we show any primitive directed graph
admits a 2-primitive 2-coloring. Further, for each k > 4, we provide an example of a
primitive directed graph having exactly k cycles, but which cannot be k-colored to be
k-primitive. Finally, we present a few partial results dealing with the case k = 3.

2. Thecasek =2

Lemma 2.1. Let G be a directed graph with two cycles labeled C| and Cy whose
lengths are 11 and 1>, respectively. Suppose that I > 11 + 1, and let a and b be the
smallest positive integers such that alo — bl = £ gcd(ly, [2). There is a coloring of
C1 and Cy which colors a arcs of Cy color 1, b arcs of C color 1, and the remaining
arcs of these two cycles color 2.

Proof. Letq; =1;/gcd(ly,/2) and g» = I/gcd(ly, [2), and note that agy — bg; =
+1. We claim that a < ¢1. To see the claim, suppose to the contrary thata > g1 + 1.
Then we have bqi =aqgx» F1 >2aqx—1 2 qiqo+g2— 1 > q1g92 + 1, the last
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inequality since g» > 2. Thus we find that b > g2 4+ 1/q1 > ¢». Since b and g, are
integers, we see that b > g, + 1. But then letting a’ =a — ¢ and b’ = b — ¢o,
we have a’'qp — b'q) = %1, sothata’ly — b'ly = £ ged(ly, [), contradicting the fact
a and b were chosen as the smallest positive integers such that al, — bl; = 4 ged(l,
l»). Consequently we have a < g1, as claimed.

Next we claim that a < b. To see the claim, suppose to the contrary that a >
b + 1. Then we have agy — bgy > (b+ 1)(q1 + 1) —bgq1 = b + g1 + 1 > 1, which
contradicts the fact that agy — bg; = £1. We thus conclude that a < b, as claimed.

Let r denote the number of arcs common to C; and C; (here we admit the possi-
bility that » = 0). If < a, then we can obtain the desired coloring as follows: color
the r shared arcs color 1, the @ — r unshared arcs of C; color 1, the » — r unshared
arcs of C» color 1, and all other arcs color 2.

Suppose now that r > a. We claim that [, —I; + 1 > b — a. To see the claim,
note that agy — bg; > —1, so that a(qa — q1) = (b — a)q; — 1, which yields g2 —
q1 = (b—a)(qi/a) — (1/a) = b — a — 1, the last inequality following from the fact
that 1 <a < ¢g1.Ifwehavegy — g1 > b —a, thencertainlylr, — 1 +1 > g2 — q1 >
b — a. On the other hand, if g0 — g1 = b — a — 1, then note that £1 = aqy — bq1 =
a(gqi +b—a—1)—bg; = (a —b)(q1 —a) —a. Since a < g1 and a < b, we thus
have aqgs — bgqy = £1 = (a — b)(q1 — a) — a < —a. Evidently this is possible only
ifa = 1 and ag> — bg; = —1. Solving that last equation for b yields b = (q2 + 1) /q1.
Butthenwehave b — 1+ 12 g2 —q1+1 = (g2 —q1 + 1)/q1 = b — a. In either
case, we see thatlp —[; +1 > b — a, as claimed.

From the claim, we see that since r < /; — 1, we have b —a < I, — r. We can
now obtain the desired coloring as follows: color a of the shared arcs color 1, b — a
of the unshared arcs of C; color 1 (this is possible to do since b —a < I —r), and
all other arcs color 2.

Thus we see that in either case, it is possible to produce a coloring of C; and C»
with the desired properties. [

Remark 2.1. The coloring produced in Lemma 2.1 does indeed use both colors. To
see this fact, first note that since both a and b are positive, at least one arc in the
graph is given color 1. Further, there are /; — a arcs of C; given color 2, and I» — b
arcs of C given color 2. If [} — a is positive, then at least one arc is given color 2,
and so both colors are used.

If 1 —a is 0, then g1 must be 1, since it is a factor of agy — bq1, so that [} =
gcd(ly, [). Thus the equation aqa — bqy = £1 yieldsb = bgy = aqx F1 =l1q2 F
1 =gcd(l1,l)ga F1 =1, F 1. Since b is the smallest positive integer satisfying
al, — bly = Fged(ly, 1), we conclude that b = [, — 1. But then [, — b is positive,
and again, both colors are used.

Theorem 2.1. If G is a primitive directed graph, then there is a 2-coloring of G
that is 2-primitive.
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Proof. Suppose that G has k cycles Cy, ..., Ck, say of lengths [, ..., . Since G
is primitive, we have gcd(/y, ..., [x) = 1. In particular, there are at least two distinct
cycle lengths. We assume that those cycles are Cy and C;, with lengths /1 and />,
respectively; without loss of generality, we take I, > [1 + 1.

Select the smallest positive integers a and b such that |al, — bl{| = ged(ly, ) =
g. Applying Lemma 2.1 to C; and C, we find that there is a coloring of those
two cycles such that a arcs of C; have color 1, b arcs of C, have color 1, and the
remaining arcs on Cp and C; have color 2. We complete the coloring of G with
colors 1 and 2 by letting any remaining arcs be colored arbitrarily.

That coloring leads us to the following matrix:

_ a b c3 Ck
M_|:ll—a L—b Iz—c3 --- lk—cki|’

where cs3, ..., c; denote the numbers of arcs of color 1 on the cycles Cs, ..., C,
respectively.

Letd; j = det M[1,2]i, jlandletz = ged{d; ; |1 <i < j < k}. Thenz|di 2 so
that z |/ and z |2 since dj 2 = |aly — bli| = g. Also, for any i > 3, z|d;; so that
z|al; — c;ly. It follows that z | al; for all i. Further, z | da ; for alli > 3 so that z | bl;
for all i. Suppose that z # 1, and let p be a prime divisor of z. Since the cycle lengths
are relatively prime, there is some j such that p {/;. It follows that p | a and p | b. But
then, p | (a(lr/g) — b(l1/g)) and since a(lp/g) — b(l1/g) = £1,wehave p = 1. We
conclude that z must be 1. Thus we see that the collection of 2 x 2 minors of M has
greatest common divisor 1, and so by Theorem 1.1, we see that our 2-coloring of G
is 2-primitive. [

Example 2.1. We illustrate the coloring technique of Theorem 2.1 on the graph
constructed as follows: begin with a directed path on 15 vertices, sayi — i + 1,7 =
1, ..., 14, then add in the arcs 15 — 1,10 — 1 and 6 — 1. The resulting graph G
has three cycles: a 6-cycle on vertices 1, ..., 6, a 10-cycle on vertices 1, ..., 10, and
a Hamilton cycle.

Consider the 6-cycle and the 10-cycle. The greatest common divisor of their
lengths is 2, and in the notation on Lemma 2.1, we have a = 1 and b = 2. Color the

arcs 1 — 2 and 9 — 10 with color 1, and color the arcs i — i+ 1,i=2,...,8,
6 — 1 and 10 — 1 all with color 2. Finally, of the remaining arcs i — i + 1,i =
10, ..., 14 and 15 — 1, fix some j between 0 and 6, and color j of them with color

1 and the rest with color 2.
This coloring leads us to the matrix

M2 j+2
M—[s 8 13—ji|’

whose minors are —2,3 — 6 and 10 — 10;. Since the first two minors are mutually
prime, we find that our coloring of G is indeed 2-primitive.
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Fig. 1.

3. Examples and discussion for the case k > 3

By way of contrast with Theorem 2.1, in this section we give some examples to
show that for each k > 4, there are primitive directed graphs having k cycles for
which no k-coloring is k-primitive.

Our first example deals with the case k = 4.

Example 3.1. Consider the directed graph G shown in Fig. 1. Evidently G has
exactly four cycles, of lengths 4, 5, 5, and 6. In particular G is primitive. Ob-
serve also that each arc of G is either contained in just two cycles, or in all four
of the cycles. Suppose that we have a 4-coloring of G, say (G, ..., Gy), and
form the corresponding 4 x 4 matrix M of Theorem 1.1. From that result, the 4-
coloring (G1, ..., G4) is 4-primitive if and only if det(M) = £1. Since adding
columns together does not affect the determinant, we see that if M is the matrix
formed from M by replacing its first column by the vector of row sums of M,
then det(M) = det(M). For each arc a of G, let n, denote the number of cy-
cles in which a is contained. Letting r; denote the ith row sum of M, we find
that for each i =1,...,4,r;, = ZaeGi ng. In particular, since each n, is even,

we see that each entry in the first column of M is divisible by 2. Consequently,
det(M) is divisible by 2, from which we conclude that the 4-coloring of G is not
4-primitive.

Next, we use Example 3.1 to help in discussing the case k > 5.

Example 3.2. In this example, we use G of Fig. 1 to construct, for each k > 5, a
primitive directed graph having k cycles for which no k-coloring is k-primitive. To
do so, start with G, and at one of the vertices of degree 2, say v, attach k — 4 2-cycles
each having v as a vertex. The resulting graph H has k cycles, and k + 2 vertices.
Label the cycles of H that are inherited from G by Cq, ..., C4, and note that each
arc of H which is inherited from G is contained in either two or four of the cycles
Ci,...,Cq4.

Suppose now that we have a k-coloring of H, and construct the k x k matrix M
of Theorem 1.1. Let M be formed from M by replacing its first column by the sum
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of its first four columns (which correspond to the cycles Cy, ..., C4). As in Example
3.1, we find that each entry in the first column of M is divisible by 2, so that det(M )
is also divisible by 2. Since det(M) = det(M), we find from Theorem 1.1 that the
k-coloring of H cannot be k-primitive.

Our last example provides a different kind of construction from that used above.

Example 3.3. Suppose that n > 3 is an odd integer and consider the directed graph
D onn vertices labeled 1, . .., n,witharcsi — i + 1 (modn)andi — i — 1 (modn),
fori = 1,...,n. Then we find that D has two cycles of length n and n cycles of
length 2, for a total of n + 2 cycles. Note that D is primitive (since n and 2 are
mutually prime) and that each arc of D is contained in exactly two cycles. It follows
as in Example 3.1 that for any n 4 2-coloring of D, the corresponding matrix M has
each row sum divisible by 2. (Indeed the sum of row i is twice the number of arcs
with color i.) We thus conclude that no n + 2-coloring of D is n 4 2-primitive.

Next, we give a few partial results on the problem of determining which primitive
directed graphs having at least three cycles can be 3-colored to yield a 3-primitive
graph.

Theorem 3.1. Suppose that G is a primitive directed graph having at least three
cycles. Suppose that there is a nonempty subset of arcs of G, say A, such that G' =
G \ A can be written as the union of a primitive directed graph and a (possibly
empty) collection of isolated vertices. Then G admits a 3-coloring that is 3-primitive.

Proof. Denote the primitive component of G’ by H (possibly they are equal). By
Theorem 2.1, there is a 2-coloring of H, say using colors 1 and 2, that is 2-primitive.
We now complete this to a 3-coloring of G by selecting a single arc e € A and giving
it color 3, while coloring the arcs of A \ e arbitrarily with colors 1 and 2.

We claim that this 3-coloring of G is 3-primitive. To see this, form the matrix M of
Theorem 1.1 for the coloring of G. Let My denote the corresponding matrix arising
from our 2-coloring of H. Observe that M contains a submatrix of the following
form:

M H X
S = [0 ... 0 1] ’
where the last column corresponds to a cycle containing the arc e. Observe that each
2 x 2 minor of My is equal to a 3 x 3 minor of S, and since those 2 x 2 minors

are relatively prime, we conclude that the 3 x 3 minors of S (and hence of M) are
relatively prime. Thus our coloring is 3-primitive. [J

The following result is similar in spirit to that above.

Theorem 3.2. Let G be a primitive directed graph with at least three cycles. Sup-
pose that there are two cycles Cy, Cy with lengths 11, I, respectively, such that 1y
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and I are relatively prime, and such that there is at least one arc of G not contained
in C1 U Ca. Then G admits a 3-coloring that is 3-primitive.

Proof. Let a and b be the smallest positive integers such that aly — bl; = 1. By
Lemma 2.1 there is a coloring of C1 U C; that gives a arcs of Cy and b arcs of C;
color 1, and the rest color 2. Since there is an arc e of G (say on cycle C3) that is
not contained in C; U C», we can give e color 3, and color the remaining arcs of
G arbitrarily with colors 1, 2 and 3. As in Theorem 3.1, we find that the matrix M
corresponding to our coloring has a 3 x 3 submatrix of the following form:

a b c
S=|li—a bL—-—b Iz—c—1
0 0 1

Since det(S) = %1, we conclude that our 3-coloring is 3-primitive. [l

Example 3.4. Observe that neither Theorem 3.1 nor Theorem 3.2 applies to the
graph G of Example 2.1, since that graph has no primitive subgraphs, and every pair
of cycle lengths has a proper divisor. Nevertheless, we can produce a 3-coloring of
G that is 3-primitive. For example, give the arc 9 — 10 color 1, give the arcs 6 — 1,
10 — 1, 14 — 15 and 15 — 1 color 2, and give all remaining arcs color 3. The
resulting matrix M of Theorem 1.1 is

0 1 1
M=|1 1 2
5 8 12

Since det(M) = 1, we see that the coloring is 3-primitive.

Informed by our work in Section 2, and by Example 3.4, we formulate the fol-
lowing.

Conjecture 3.1. Suppose that G is a primitive directed graph with cycles Cy, C
and C3 whose lengths are 11, I and 13, respectively. Let the greatest common divisor
of 11,1l and I3 be g. Then there is a 3-coloring of G with corresponding matrix M
such that

a b c
M[1,2,3]1,2,3] = X y z
ll—a—x lz—b—y l3—C—Z

has determinant £g.
Evidently the confirmation of this conjecture would be a key step in proving that

every primitive directed graph with at least three cycles admits a 3-coloring that is
3-primitive.
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