Available online at www.sciencedirect.com

LINEAR ALGEBRA

AND ITS

A note on k-primitive directed graphs

LeRoy B. Beasley ${ }^{\text {a }}$, Steve Kirkland ${ }^{\text {b,*, }}$
${ }^{\text {a }}$ Department of Mathematics, Utah State University, Logan, UT 84322-3900, USA
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2

Received 19 April 2002; accepted 3 September 2002
Submitted by B. Shader

Abstract

We consider the problem of which primitive directed graphs can be k-colored to yield a k-primitive directed graph. If such a k-coloring exists, then certainly such a graph must have at least k cycles. We prove that any primitive directed graph admits a 2 -coloring that is 2 primitive. By contrast, for each $k \geqslant 4$, we construct examples of primitive directed graphs having k cycles for which no k-coloring is k-primitive. We also give some partial results for the case that $k=3$. © 2003 Published by Elsevier Inc.

Keywords: Directed graph; k-primitive; k-coloring

1. Introduction and preliminaries

Suppose that G is a simple directed graph on at least two vertices, possibly with loops. G is primitive if there is some $r \in \mathbb{N}$ such that for any pair of vertices u, v of G, there is a walk from u to v of length r. It is well-known (see [1], for example) that G is primitive if and only if it is strongly connected and the greatest common divisor of its cycle lengths is 1 . Observe that the directed graph consisting of a loop at a single vertex can also be thought of as 'primitive'. However, in this paper it will be terminologically convenient to exclude that graph from consideration as primitive; that convention will help to avoid some trivialities in our discussion.

[^0]A k-coloring of G is a k-tuple of spanning subgraphs $\left(G_{1}, \ldots, G_{k}\right)$ such that the subgraphs G_{1}, \ldots, G_{k} partition the arcs of G into k (nonempty) subsets. We think of each G_{i} as containing the arcs given color i in the directed graph G. In parallel with the notion of primitivity for G, we say that the k-coloring $\left(G_{1}, G_{2}, \ldots, G_{k}\right)$ is k-primitive if there is a k-tuple of positive integers $\left(r_{1}, r_{2}, \ldots, r_{k}\right)$ such that between any pair of vertices u, v of G, there is a walk from u to v in G having exactly r_{i} arcs in G_{i} for each $i, i=1, \ldots, k$ (equivalently, that walk has exactly r_{i} arcs of color i for each $i=1, \ldots, k)$.

Evidently the case $k=1$ corresponds to the definition of primitivity given above. Further, it is clear that if there is a k-coloring of G that is k-primitive, then G itself must be a primitive directed graph. In this paper we deal with the following natural question: Given a primitive directed graph G, under what circumstances is there a k-coloring of G that is k-primitive?

Fortunately, there is a matrix theoretic technique that enables one to determine whether a specific k-coloring is k-primitive. Suppose that we have a directed graph G with k-coloring $\left(G_{1}, \ldots, G_{k}\right)$. Label the cycles of G by C_{1}, \ldots, C_{l}, and construct the $k \times l$ matrix $M=\left[m_{i, j}\right]$, where $m_{i, j}$ denotes the number of arcs on cycle j having color i. The following result, found in [2], shows how M can be used to determine whether or not the coloring is k-primitive.

Theorem 1.1 [2]. Let G be a directed graph, and suppose that $\left(G_{1}, \ldots, G_{k}\right)$ is a k-coloring of G. Then G is k-primitive if and only if the $k \times k$ minors of M are relatively prime.

From Theorem 1.1 we see that if G admits a k-primitive k-coloring, then necessarily G must have at least k cycles. In this paper, we show any primitive directed graph admits a 2 -primitive 2 -coloring. Further, for each $k \geqslant 4$, we provide an example of a primitive directed graph having exactly k cycles, but which cannot be k-colored to be k-primitive. Finally, we present a few partial results dealing with the case $k=3$.

2. The case $k=2$

Lemma 2.1. Let G be a directed graph with two cycles labeled C_{1} and C_{2} whose lengths are l_{1} and l_{2}, respectively. Suppose that $l_{2} \geqslant l_{1}+1$, and let a and b be the smallest positive integers such that al $l_{2}-b l_{1}= \pm \operatorname{gcd}\left(l_{1}, l_{2}\right)$. There is a coloring of C_{1} and C_{2} which colors a arcs of C_{1} color $1, b$ arcs of C_{2} color 1 , and the remaining arcs of these two cycles color 2 .

Proof. Let $q_{1}=l_{1} / \operatorname{gcd}\left(l_{1}, l_{2}\right)$ and $q_{2}=l_{2} / \operatorname{gcd}\left(l_{1}, l_{2}\right)$, and note that $a q_{2}-b q_{1}=$ ± 1. We claim that $a \leqslant q_{1}$. To see the claim, suppose to the contrary that $a \geqslant q_{1}+1$. Then we have $b q_{1}=a q_{2} \mp 1 \geqslant a q_{2}-1 \geqslant q_{1} q_{2}+q_{2}-1 \geqslant q_{1} q_{2}+1$, the last
inequality since $q_{2} \geqslant 2$. Thus we find that $b \geqslant q_{2}+1 / q_{1}>q_{2}$. Since b and q_{2} are integers, we see that $b \geqslant q_{2}+1$. But then letting $a^{\prime}=a-q_{1}$ and $b^{\prime}=b-q_{2}$, we have $a^{\prime} q_{2}-b^{\prime} q_{1}= \pm 1$, so that $a^{\prime} l_{2}-b^{\prime} l_{1}= \pm \operatorname{gcd}\left(l_{1}, l_{2}\right)$, contradicting the fact a and b were chosen as the smallest positive integers such that $a l_{2}-b l_{1}= \pm \operatorname{gcd}\left(l_{1}\right.$, l_{2}). Consequently we have $a \leqslant q_{1}$, as claimed.

Next we claim that $a \leqslant b$. To see the claim, suppose to the contrary that $a \geqslant$ $b+1$. Then we have $a q_{2}-b q_{1} \geqslant(b+1)\left(q_{1}+1\right)-b q_{1}=b+q_{1}+1>1$, which contradicts the fact that $a q_{2}-b q_{1}= \pm 1$. We thus conclude that $a \leqslant b$, as claimed.

Let r denote the number of arcs common to C_{1} and C_{2} (here we admit the possibility that $r=0$). If $r<a$, then we can obtain the desired coloring as follows: color the r shared arcs color 1 , the $a-r$ unshared arcs of C_{1} color 1 , the $b-r$ unshared arcs of C_{2} color 1, and all other arcs color 2.

Suppose now that $r \geqslant a$. We claim that $l_{2}-l_{1}+1 \geqslant b-a$. To see the claim, note that $a q_{2}-b q_{1} \geqslant-1$, so that $a\left(q_{2}-q_{1}\right) \geqslant(b-a) q_{1}-1$, which yields $q_{2}-$ $q_{1} \geqslant(b-a)\left(q_{1} / a\right)-(1 / a) \geqslant b-a-1$, the last inequality following from the fact that $1 \leqslant a \leqslant q_{1}$. If we have $q_{2}-q_{1} \geqslant b-a$, then certainly $l_{2}-l_{1}+1>q_{2}-q_{1} \geqslant$ $b-a$. On the other hand, if $q_{2}-q_{1}=b-a-1$, then note that $\pm 1=a q_{2}-b q_{1}=$ $a\left(q_{1}+b-a-1\right)-b q_{1}=(a-b)\left(q_{1}-a\right)-a$. Since $a \leqslant q_{1}$ and $a \leqslant b$, we thus have $a q_{2}-b q_{1}= \pm 1=(a-b)\left(q_{1}-a\right)-a \leqslant-a$. Evidently this is possible only if $a=1$ and $a q_{2}-b q_{1}=-1$. Solving that last equation for b yields $b=\left(q_{2}+1\right) / q_{1}$. But then we have $l_{2}-l_{1}+1 \geqslant q_{2}-q_{1}+1 \geqslant\left(q_{2}-q_{1}+1\right) / q_{1}=b-a$. In either case, we see that $l_{2}-l_{1}+1 \geqslant b-a$, as claimed.

From the claim, we see that since $r \leqslant l_{1}-1$, we have $b-a \leqslant l_{2}-r$. We can now obtain the desired coloring as follows: color a of the shared arcs color $1, b-a$ of the unshared arcs of C_{2} color 1 (this is possible to do since $b-a \leqslant l_{2}-r$), and all other arcs color 2 .

Thus we see that in either case, it is possible to produce a coloring of C_{1} and C_{2} with the desired properties.

Remark 2.1. The coloring produced in Lemma 2.1 does indeed use both colors. To see this fact, first note that since both a and b are positive, at least one arc in the graph is given color 1. Further, there are $l_{1}-a$ arcs of C_{1} given color 2, and $l_{2}-b$ arcs of C_{2} given color 2. If $l_{1}-a$ is positive, then at least one arc is given color 2, and so both colors are used.

If $l_{1}-a$ is 0 , then q_{1} must be 1 , since it is a factor of $a q_{2}-b q_{1}$, so that $l_{1}=$ $\operatorname{gcd}\left(l_{1}, l_{2}\right)$. Thus the equation $a q_{2}-b q_{1}= \pm 1$ yields $b=b q_{1}=a q_{2} \mp 1=l_{1} q_{2} \mp$ $1=\operatorname{gcd}\left(l_{1}, l_{2}\right) q_{2} \mp 1=l_{2} \mp 1$. Since b is the smallest positive integer satisfying $a l_{2}-b l_{1}=\mp \operatorname{gcd}\left(l_{1}, l_{2}\right)$, we conclude that $b=l_{2}-1$. But then $l_{2}-b$ is positive, and again, both colors are used.

Theorem 2.1. If G is a primitive directed graph, then there is a 2-coloring of G that is 2-primitive.

Proof. Suppose that G has k cycles C_{1}, \ldots, C_{k}, say of lengths l_{1}, \ldots, l_{k}. Since G is primitive, we have $\operatorname{gcd}\left(l_{1}, \ldots, l_{k}\right)=1$. In particular, there are at least two distinct cycle lengths. We assume that those cycles are C_{1} and C_{2}, with lengths l_{1} and l_{2}, respectively; without loss of generality, we take $l_{2} \geqslant l_{1}+1$.

Select the smallest positive integers a and b such that $\left|a l_{2}-b l_{1}\right|=\operatorname{gcd}\left(l_{1}, l_{2}\right) \equiv$ g. Applying Lemma 2.1 to C_{1} and C_{2}, we find that there is a coloring of those two cycles such that a arcs of C_{1} have color $1, b$ arcs of C_{2} have color 1, and the remaining arcs on C_{1} and C_{2} have color 2 . We complete the coloring of G with colors 1 and 2 by letting any remaining arcs be colored arbitrarily.

That coloring leads us to the following matrix:

$$
M=\left[\begin{array}{ccccc}
a & b & c_{3} & \cdots & c_{k} \\
l_{1}-a & l_{2}-b & l_{3}-c_{3} & \cdots & l_{k}-c_{k}
\end{array}\right]
$$

where c_{3}, \ldots, c_{k} denote the numbers of arcs of color 1 on the cycles C_{3}, \ldots, C_{k}, respectively.

Let $d_{i, j}=\operatorname{det} M[1,2 \mid i, j]$ and let $z=\operatorname{gcd}\left\{d_{i, j} \mid 1 \leqslant i<j \leqslant k\right\}$. Then $z \mid d_{1,2}$ so that $z \mid l_{1}$ and $z \mid l_{2}$ since $d_{1,2}=\left|a l_{2}-b l_{1}\right|=g$. Also, for any $i \geqslant 3, z \mid d_{1, i}$ so that $z \mid a l_{i}-c_{i} l_{1}$. It follows that $z \mid a l_{i}$ for all i. Further, $z \mid d_{2, i}$ for all $i \geqslant 3$ so that $z \mid b l_{i}$ for all i. Suppose that $z \neq 1$, and let p be a prime divisor of z. Since the cycle lengths are relatively prime, there is some j such that $p \nmid l_{j}$. It follows that $p \mid a$ and $p \mid b$. But then, $p \mid\left(a\left(l_{2} / g\right)-b\left(l_{1} / g\right)\right)$ and since $a\left(l_{2} / g\right)-b\left(l_{1} / g\right)= \pm 1$, we have $p=1$. We conclude that z must be 1 . Thus we see that the collection of 2×2 minors of M has greatest common divisor 1, and so by Theorem 1.1, we see that our 2-coloring of G is 2-primitive.

Example 2.1. We illustrate the coloring technique of Theorem 2.1 on the graph constructed as follows: begin with a directed path on 15 vertices, say $i \rightarrow i+1, i=$ $1, \ldots, 14$, then add in the arcs $15 \rightarrow 1,10 \rightarrow 1$ and $6 \rightarrow 1$. The resulting graph G has three cycles: a 6 -cycle on vertices $1, \ldots, 6$, a 10 -cycle on vertices $1, \ldots, 10$, and a Hamilton cycle.

Consider the 6 -cycle and the 10 -cycle. The greatest common divisor of their lengths is 2 , and in the notation on Lemma 2.1, we have $a=1$ and $b=2$. Color the arcs $1 \rightarrow 2$ and $9 \rightarrow 10$ with color 1 , and color the arcs $i \rightarrow i+1, i=2, \ldots, 8$, $6 \rightarrow 1$ and $10 \rightarrow 1$ all with color 2 . Finally, of the remaining arcs $i \rightarrow i+1, i=$ $10, \ldots, 14$ and $15 \rightarrow 1$, fix some j between 0 and 6 , and color j of them with color 1 and the rest with color 2.

This coloring leads us to the matrix

$$
M=\left[\begin{array}{ccc}
1 & 2 & j+2 \\
5 & 8 & 13-j
\end{array}\right]
$$

whose minors are $-2,3-6 j$ and $10-10 j$. Since the first two minors are mutually prime, we find that our coloring of G is indeed 2-primitive.

3. Examples and discussion for the case $k \geqslant 3$

By way of contrast with Theorem 2.1, in this section we give some examples to show that for each $k \geqslant 4$, there are primitive directed graphs having k cycles for which no k-coloring is k-primitive.

Our first example deals with the case $k=4$.
Example 3.1. Consider the directed graph G shown in Fig. 1. Evidently G has exactly four cycles, of lengths $4,5,5$, and 6 . In particular G is primitive. Observe also that each arc of G is either contained in just two cycles, or in all four of the cycles. Suppose that we have a 4-coloring of G, say $\left(G_{1}, \ldots, G_{4}\right)$, and form the corresponding 4×4 matrix M of Theorem 1.1. From that result, the 4coloring $\left(G_{1}, \ldots, G_{4}\right)$ is 4-primitive if and only if $\operatorname{det}(M)= \pm 1$. Since adding columns together does not affect the determinant, we see that if \tilde{M} is the matrix formed from M by replacing its first column by the vector of row sums of M, then $\operatorname{det}(M)=\operatorname{det}(\tilde{M})$. For each arc a of G, let n_{a} denote the number of cycles in which a is contained. Letting r_{i} denote the i th row sum of M, we find that for each $i=1, \ldots, 4, r_{i}=\sum_{a \in G_{i}} n_{a}$. In particular, since each n_{a} is even, we see that each entry in the first column of \tilde{M} is divisible by 2 . Consequently, $\operatorname{det}(M)$ is divisible by 2 , from which we conclude that the 4 -coloring of G is not 4-primitive.

Next, we use Example 3.1 to help in discussing the case $k \geqslant 5$.

Example 3.2. In this example, we use G of Fig. 1 to construct, for each $k \geqslant 5$, a primitive directed graph having k cycles for which no k-coloring is k-primitive. To do so, start with G, and at one of the vertices of degree 2 , say v, attach $k-42$-cycles each having v as a vertex. The resulting graph H has k cycles, and $k+2$ vertices. Label the cycles of H that are inherited from G by C_{1}, \ldots, C_{4}, and note that each arc of H which is inherited from G is contained in either two or four of the cycles C_{1}, \ldots, C_{4}.

Suppose now that we have a k-coloring of H, and construct the $k \times k$ matrix M of Theorem 1.1. Let \tilde{M} be formed from M by replacing its first column by the sum
of its first four columns (which correspond to the cycles C_{1}, \ldots, C_{4}). As in Example 3.1, we find that each entry in the first column of \tilde{M} is divisible by 2 , so that $\operatorname{det}(\tilde{M})$ is also divisible by 2 . Since $\operatorname{det}(M)=\operatorname{det}(\tilde{M})$, we find from Theorem 1.1 that the k-coloring of H cannot be k-primitive.

Our last example provides a different kind of construction from that used above.
Example 3.3. Suppose that $n \geqslant 3$ is an odd integer and consider the directed graph D on n vertices labeled $1, \ldots, n$, with $\operatorname{arcs} i \rightarrow i+1(\bmod n)$ and $i \rightarrow i-1(\bmod n)$, for $i=1, \ldots, n$. Then we find that D has two cycles of length n and n cycles of length 2 , for a total of $n+2$ cycles. Note that D is primitive (since n and 2 are mutually prime) and that each arc of D is contained in exactly two cycles. It follows as in Example 3.1 that for any $n+2$-coloring of D, the corresponding matrix M has each row sum divisible by 2 . (Indeed the sum of row i is twice the number of arcs with color i.) We thus conclude that no $n+2$-coloring of D is $n+2$-primitive.

Next, we give a few partial results on the problem of determining which primitive directed graphs having at least three cycles can be 3-colored to yield a 3-primitive graph.

Theorem 3.1. Suppose that G is a primitive directed graph having at least three cycles. Suppose that there is a nonempty subset of arcs of G, say A, such that $G^{\prime} \equiv$ $G \backslash A$ can be written as the union of a primitive directed graph and a (possibly empty) collection of isolated vertices. Then G admits a 3-coloring that is 3-primitive.

Proof. Denote the primitive component of G^{\prime} by H (possibly they are equal). By Theorem 2.1, there is a 2 -coloring of H, say using colors 1 and 2 , that is 2-primitive. We now complete this to a 3-coloring of G by selecting a single arc $e \in A$ and giving it color 3, while coloring the arcs of $A \backslash e$ arbitrarily with colors 1 and 2 .

We claim that this 3-coloring of G is 3-primitive. To see this, form the matrix M of Theorem 1.1 for the coloring of G. Let M_{H} denote the corresponding matrix arising from our 2-coloring of H. Observe that M contains a submatrix of the following form:

$$
S=\left[\begin{array}{ccc|c}
& M_{H} & & x \\
\hline 0 & \ldots & 0 & 1
\end{array}\right],
$$

where the last column corresponds to a cycle containing the arc e. Observe that each 2×2 minor of M_{H} is equal to a 3×3 minor of S, and since those 2×2 minors are relatively prime, we conclude that the 3×3 minors of S (and hence of M) are relatively prime. Thus our coloring is 3 -primitive.

The following result is similar in spirit to that above.
Theorem 3.2. Let G be a primitive directed graph with at least three cycles. Suppose that there are two cycles C_{1}, C_{2} with lengths l_{1}, l_{2}, respectively, such that l_{1}
and l_{2} are relatively prime, and such that there is at least one arc of G not contained in $C_{1} \cup C_{2}$. Then G admits a 3-coloring that is 3-primitive.

Proof. Let a and b be the smallest positive integers such that $a l_{2}-b l_{1}= \pm 1$. By Lemma 2.1 there is a coloring of $C_{1} \cup C_{2}$ that gives a arcs of C_{1} and b arcs of C_{2} color 1 , and the rest color 2 . Since there is an arc e of G (say on cycle C_{3}) that is not contained in $C_{1} \cup C_{2}$, we can give e color 3, and color the remaining arcs of G arbitrarily with colors 1,2 and 3. As in Theorem 3.1, we find that the matrix M corresponding to our coloring has a 3×3 submatrix of the following form:

$$
S=\left[\begin{array}{ccc}
a & b & c \\
l_{1}-a & l_{2}-b & l_{3}-c-1 \\
0 & 0 & 1
\end{array}\right]
$$

Since $\operatorname{det}(S)= \pm 1$, we conclude that our 3-coloring is 3-primitive.
Example 3.4. Observe that neither Theorem 3.1 nor Theorem 3.2 applies to the graph G of Example 2.1, since that graph has no primitive subgraphs, and every pair of cycle lengths has a proper divisor. Nevertheless, we can produce a 3-coloring of G that is 3-primitive. For example, give the arc $9 \rightarrow 10$ color 1, give the $\operatorname{arcs} 6 \rightarrow 1$, $10 \rightarrow 1,14 \rightarrow 15$ and $15 \rightarrow 1$ color 2 , and give all remaining arcs color 3 . The resulting matrix M of Theorem 1.1 is

$$
M=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & 1 & 2 \\
5 & 8 & 12
\end{array}\right]
$$

Since $\operatorname{det}(M)=1$, we see that the coloring is 3-primitive.
Informed by our work in Section 2, and by Example 3.4, we formulate the following.

Conjecture 3.1. Suppose that G is a primitive directed graph with cycles C_{1}, C_{2} and C_{3} whose lengths are l_{1}, l_{2} and l_{3}, respectively. Let the greatest common divisor of l_{1}, l_{2} and l_{3} be g. Then there is a 3 -coloring of G with corresponding matrix M such that

$$
M[1,2,3 \mid 1,2,3]=\left[\begin{array}{ccc}
a & b & c \\
x & y & z \\
l_{1}-a-x & l_{2}-b-y & l_{3}-c-z
\end{array}\right]
$$

has determinant $\pm g$.
Evidently the confirmation of this conjecture would be a key step in proving that every primitive directed graph with at least three cycles admits a 3-coloring that is 3-primitive.

References

[1] R. Brualdi, H. Ryser, Combinatorial Matrix Theory, Cambridge University Press, New York, 1991.
[2] D. Olesky, B. Shader, P. van den Driessche, Exponents of tuples of nonnegative matrices, Linear Algebra Appl. 363 (2003) 275-293.

[^0]: * Corresponding author. Tel.: +1-306-585-4352; fax: +1-306-585-4020.

 E-mail address: kirkland@math.uregina.ca (S. Kirkland).
 ${ }^{1}$ NSERC Grant no. OGP0138251.

