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Abstract

We describe the compact sets of any asymmetric normed linear space. After that, we fo
attention in finite dimensional asymmetric normed linear spaces. In this case we establish the
alence betweenT1 separation axiom and normable spaces. It is proved an asymmetric version
Riesz Theorem about the compactness of the unit ball. We also prove that the Heine–Borel T
characterizes finite dimensional asymmetric normed linear spaces that satisfies theT2 separation ax
iom. Finally we focus our attention on theT0 separation axiom and results that are related to the
p-complexity spaces.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let E be a linear space on the set of real numbersR. We say that a functionq :E → R
+

(whereR
+ is the set of nonnegative real numbers) is anasymmetric normon E if for all

x, y ∈ E anda ∈ R
+:
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(i) q(x) = q(−x) = 0 if and only ifx = 0.
(ii) q(ax) = aq(x).

(iii) q(x + y) � q(x) + q(y).

Asymmetric norms are called quasi-norms in [4,1,9].
The functionq−1 :E → R

+ defined byq−1(x) := q(−x) is also an asymmetric norm
The functionqs :E → R

+ given by the formulaqs(x) := max{q(x), q−1(x)} is a norm
onE.

An asymmetric normq induces a quasi-metricdq by mean of the formula

dq(x, y) = q(y − x), x, y ∈ E.

If dq is a bicomplete quasi-metric onE, then(E,q) is called a biBanach space [10]. Ea
quasi-metricd on E generates aT0 topologyτdq on E, for which the basic open sets a
the ballsBd(x, r) = {y ∈ E: d(x, y) < r}. Hence ifq is an asymmetric norm onE, the
sets

Bε(0) := {
x ∈ E: q(x) < ε

}
, ε > 0,

form a fundamental system of neighborhoods of zero for the topology generated bydq . In
the same way the translations of these setsBε(y) := y + Bε(0), define a fundamental sys
tem of neighborhoods ofy for all y ∈ E. Note from the definition thatBε(y) = Bdq (y, ε).

We denote by�Bε(0) the sets

�Bε(0) := {
x ∈ E: q(x) � ε

}
, ε > 0.

When necessary, we will indicate the space as a subscript, together with the
separated by one coma, and the used asymmetric norm as a superscript.

The pair(E,q) is called anasymmetric normed linear space.
The complexity (quasi-metric) space was introduced by Schellekens [12] in ord

develop a topological foundation for the complexity analysis of programs and algori
based on the notion of a “complexity distance”, i.e., a quasi-metric which intuitively m
sures relative improvements in the complexity of programs and algorithms. The comp
space accepts, among others, many important kinds of exponential time algorithms.
ticular, some applications of this theory to the complexity analysis of Divide and Con
algorithms were given in [12].

Later on, it was introduced in [11] the so-called dual complexity (quasi-metric) sp
to discuss in a more handy context several quasi-metric properties of the complexity
which are interesting from a computational point of view. In fact, while the comple
space cannot be modelled as a quasi-normed cone, the dual space admits a stru
quasi-normed (asymmetric normed, in our terminology) semilinear space [10] (in ou
text, a semilinear space is a cone in the sense of Keimel and Roth [8]) and, by othe
it can be directly used for the complexity analysis of certain algorithms, where the ru
time of computing is the complexity measure (compare [12, Section 4] and [11, p. 3

Motivated by the fact that, in this dual context, the complexity analysis of algorit
with running timeO(2n/nr), 0 < r � 1, cannot be performed via the dual complex
space, the authors have recently introduced [6] the so-called dualp-complexity space(p �
1), which provides, forp > 1, an appropriate framework to discuss complexity functi
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generating this kind of algorithms. In particular, it was shown that the dualp-complexity
space is an asymmetric normed semilinear space which is isometrically isomorphic
positive cone of(lp,‖·‖+p) (see Section 2 in [6] for definitions and details). In orde
obtain a general theory of dual complexity it was introduced in [6] the following clas
spaces. For eachp ∈ [1,∞) setB∗

p := {f ∈ R
ω:

∑∞
n=0(2

−n|f (n)|)p < ∞}, whereω are
the nonnegative integers numbers. If for anyf,g ∈ B∗

p anda ∈ R we definef +g anda ·f
in the usual pointwise way, then it easily follows that(B∗

p,+, ·) is a linear space.
Now denote byqp the nonnegative real valued function defined onB∗

p by qp(f ) =
(
∑∞

n=0(2
−nf (n)+)p)1/p, where f (n)+ are the nonnegative values(f (n) ∨ 0). Then

(B∗
p, qp) is a biBanach space. In Corollary 4 of [6] it is shown that(B∗

p, qp) and(lp,‖·‖+p),

with ‖x‖+p = (
∑∞

n=0(x
+
n )p)1/p, are isometrically isomorphic. For eachp ∈ [1,∞) let

C∗
p = {f ∈ B∗

p: f (n) � 0 for all n ∈ ω}. Following [6], the asymmetric normed semiline
space(C∗

p, qp) will be called the dualp-complexity space, where the restriction ofqp to
C∗

p is also denoted byqp. If we denote byl+p the positive cone oflp, in [6] is proved that
(C∗

p, qp) and(l+p ,‖·‖+p) are isometrically isomorphic.
Observe that the quasi-metricdqp induced onC∗

p by qp is given by

dqp (f, g) =
( ∞∑

n=0

2−pn
((

g(n) − f (n)
) ∨ 0

)p

)1/p

.

In particular(C∗
1, dq1) is exactly the dual complexity space as defined in [11].

The computational interpretation [11] of the complexity distancedq1 remains valid for
each quasi-metricdqp [6]. Thus, the fact thatdqp (f, g) = 0, with f �= g, can be interprete
asg is more efficient thanf . Furthermoreqp(f ) measures relative progress made in lo
ering complexity by replacingf by the “optimal” complexity function 0, assuming th
the complexity measure is the running time of computing.

On the other hand, there is in the last years a renewed interest in automata of
objects due to their intimate relation with temporal and modal logics of programs.
Emerson and Jutla [3] have successfully applied complexity of tree automata to
optimal deterministic exponential time algorithms in some important modal logics of
grams, where by an exponential time algorithm we mean an algorithm with running
O(2P(n)), such thatP(n) is a polynomial withP(n) > 0 for all n. This running time cor-
responds to the functionf given byf (n) = 2P(n) for all n, which does not belong to an
dualp-complexity space wheneverP(n) � n. The authors have introduced [7] the noti
of the supP(n)-complexity space in order to discuss complexity functions generating
kind of algorithms. In this case we work with the Banach space(l∞,‖·‖∞) wherel∞ is
the bounded sequences space and we define the usual multiplicative operation b
sequences froml∞.

For each polynomialP(n), with P(n) > 0 for all n ∈ ω, we defineB∗
P(n),∞ := {f ∈

R
ω: sup{2−P(n)|f (n)|: n ∈ ω} < ∞}. It easily follows thatB∗

P(n),∞ is a linear space fo
the usual pointwise operations.

The functionqP(n),∞ defines onB∗
P(n),∞ asqP(n),∞(f ) = sup{2−P(n)f (n)+: n ∈ ω} is

an asymmetric norm.
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For each polynomialP(n), with P(n) > 0 for all n ∈ ω, consider the biBanach spa
(B∗

P(n),∞, qP (n),∞) and let

C∗
P(n),∞ := {

f ∈ B∗
P(n),∞: f (n) � 0 for all n ∈ ω

}
.

Let qP(n),∞ the restriction of the asymmetric normqP(n),∞ defined onB∗
P(n),∞ to

C∗
P(n),∞. Then,C∗

P(n),∞ is an asymmetric normed semilinear space.

Observe that in any case, the unit ball�B1(0) of these spaces is not a bounded set for
norm, in particular, they are unbounded sets for the correspondingqp or qP(n).

The aim of this paper is to extend the results about compact sets on finite dimen
normed spaces to the case of asymmetric normed linear spaces. In Section 2 we in
the set theoretical arguments that allows to a general description of compact set
asymmetric normed linear space. In Section 3, we focus our attention in the finite d
sional case to reproduce the classical results of the normed spaces theory. In partic
prove that aT1 asymmetric normed linear space(E,q) is finite dimensional if and only i
the unit ball�Bq

1 (0) is compact for the topology generated by the asymmetric norm (

orem 13). This will be done via the compactness of�Bqs

1 (0) in the supremum normqs . In
fact, we will prove the equivalence betweenT1 and normability of the spaces in the case
finite dimension and thus betweenT1 andT2 separation axioms. TheT2 separation axiom
in the general case of asymmetric normed linear spaces has been studied in [5]. W
prove that the Heine–Borel Theorem characterizes finite dimensional asymmetric n
linear spaces that satisfiesT2 axiom (Theorem 15).

In this Section 3, we pay also attention toT0 spaces and, in particular several proper
in relation with the dualp-complexity spaces are discussed.

Basic references about quasi-metrics and asymmetric norms are [13,1,9,4,11].
Definitions and basic results on general topology can be found in [2].

2. Compact sets in asymmetric normed linear spaces

In this section we describe the compact sets of any asymmetric normed linear
In particular, given a compact set in(E,qs), we give a way to construct compact sets
(E,q) for the topology induced byq.

Definition 1. Let (E,q) be an asymmetric normed linear space andx ∈ E. We define the
setθ(x) as:

θ(x) = {
z ∈ E: dq(x, z) = q(z − x) = 0

}
.

In particular

θ(0) = {
z ∈ E: dq(0, z) = q(z) = 0

}
.

Observe thatθ(x) is the closure of{x} in (E,q−1).

Lemma 2. Given a setA ⊂ E of an asymmetric normed linear space(E,q), we have that⋃
θ(x) = A + θ(0),
x∈A



848 L.M. García-Raffi / Topology and its Applications 153 (2005) 844–853

n

t

ed
where

A + θ(0) = {
z ∈ E: z = x + y, x ∈ A andy ∈ θ(0)

}
.

Proof. Let z ∈ ⋃
x∈A θ(x). Then there exists anx ∈ A such thatq(z−x) = 0. This implies

that z − x = y, y ∈ θ(0) and then we can expressz as z = x + y. Thus
⋃

x∈A θ(x) ⊂
A + θ(0).

Conversely, letw ∈ A + θ(0). There exists anx ∈ A and an elementy ∈ θ(0) such
that w = x + y and alsow − x = y. Thenq(w − x) = q(y) = 0 sow ∈ θ(x) andw ∈⋃

x∈A θ(x). This implies thatA + θ(0) ⊂ ⋃
x∈A θ(x). �

Lemma 3. Let (E,q) be an asymmetric normed linear space andx ∈ E. Then

Bε(x) = Bε(x) + θ(0).

Proof. Bε(x) ⊂ Bε(x) + θ(0) since 0∈ θ(0) and everyx ∈ Bε(x) can be written asx =
x + 0.

Let z ∈ Bε(x)+ θ(0). Then there exists any ∈ Bε(x) andw ∈ θ(0) such thatz = y +w.
Then

q(z − x) = q(y + w − x) � q(y − x) + q(w) < ε + 0= ε.

As a consequence,z ∈ Bε(x) andBε(x) + θ(0) ⊂ Bε(x). �
Lemma 4. Let (E,q) be an asymmetric normed linear space andA ⊂ E an open set. The

A = A + θ(0).

Proof. It is obvious thatA ⊂ A + θ(0).
Let z ∈ A+θ(0). Then we can expressz asz = x+y wherex is inA andy is an elemen

of θ(0). ButA is an open set. Consequently, there exists anε > 0 such thatBε(x) ⊂ A. Tak-
ing into account thatBε(x) = Bε(x) + θ(0) by the preceding lemma, it can be conclud
thatz is in A. �
Lemma 5. Given a family{Ai : i ∈ I } of sets in(E,q), then⋃

i∈I

(
Ai + θ(0)

) =
(⋃

i∈I

Ai

)
+ θ(0).

Proof. If x ∈ ⋃
i∈I (Ai + θ(0)) that means that there exists somei satisfying thatx ∈ Ai +

θ(0) such thatx can be written asx = xi + z with xi ∈ Ai andz ∈ θ(0). Thenxi ∈ ⋃
i∈I Ai

andx = xi + z is in (
⋃

i∈I Ai) + θ(0).
If x ∈ (

⋃
i∈I Ai) + θ(0) there exists anxi ∈ Ai andz ∈ θ(0) such thatx = xi + z and

thenx is in
⋃

i∈I (Ai + θ(0)). �
Proposition 6. Let (E,q) be an asymmetric normed linear space andK ⊂ E. Then K is
compact respect to the topology induced by the asymmetric normτdq if and only ifK +θ(0)

is compact for the same topology.
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Proof. (⇒) Let {Ai : i ∈ I } an open cover ofK . By Lemma 4 we have that

Ai = Ai + θ(0).

Then by Lemma 5

K + θ(0) ⊂
⋃
i∈I

Ai + θ(0).

But K is compact and there exists a finit subcover ofK , {Aj : j ∈ J ⊂ I } such thatK ⊂⋃
j∈J Aj . Then applying the same Lemma 5 we obtain thatK + θ(0) ⊂ ⋃

j∈J (Aj + θ(0)).
This implies thatK + θ(0) admits a finit subcover{Aj + θ(0): j ∈ J ⊂ I } andK + θ(0)

is a compact set.
(⇐) If K + θ(0) is compact, given an open cover of the setK , {Ai : i ∈ I }, the fam-

ily {Ai + θ(0): i ∈ I } is an open cover ofK + θ(0) and this set admits a finit subcov
{Aj + θ(0): j ∈ J ⊂ I }. Then by Lemma 5K + θ(0) ⊂ ⋃

j∈J Aj + θ(0) that implies
K ⊂ ⋃

j∈J Aj and then{Aj : j ∈ J ⊂ I } is a subcover ofK obtained from the open cove
{Ai : i ∈ I }. Thus,K is compact. �
Corollary 7. Given aK0 ⊂ K + θ(0), if K + θ(0) is a compact set andK0 + θ(0) =
K + θ(0) thenK0 is also compact.

Note that ifK is a compact set of(E,qs), thenK + θ(0) is a compact set of(E,q).

3. Finite dimensional asymmetric normed linear spaces

Let (E,q) an asymmetric normed linear space endowed with the topologyτdq defined
above. A setM ⊂ E is said to be compact if it is compact considered as a subspaceE

with the induced topology, that is,(M,q) is compact with respect to the topologyτdq |M .
A set M of E is compact if every sequence inM has a convergent subsequence wh
limit is in M .

Lemma 8. Let (e,‖·‖) be a finite dimensional normed linear space, with base{e1, e2, . . . ,

en}. Then, a sequence(xk)k∈N in E converges tox = λ1e1+λ2e2+· · ·+λnen if and only if
the i-co-ordinate sequence of(xk)k∈N converges toλi , with respect to the Euclidean norm
i = 1, . . . , n.

We generalize this classical result to asymmetric normed linear spaces as follows

Theorem 9. Let (E,q) be a finite dimensionalT1 asymmetric normed linear space, wi
base{e1, e2, . . . , en}. Then, a sequence(xk)k∈N in E converges tox = λ1e1 +λ2e2 +· · ·+
λnen with respect toq if and only if the i-co-ordinate sequence of(xk)k∈N converges toλi ,
with respect to the Euclidean norm,i = 1, . . . , n.
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Proof. First suppose that thei-co-ordinate sequence of(xk)k∈N converges toλi , with re-
spect to the Euclidean norm,i = 1, . . . , n. Given a positive real numberM > 0 and anε

n

there is aki
0 such that whenk � ki

0 then∣∣(xk)i − λi

∣∣ <
ε

nM
.

Let bek0 = max{ki
0, i = 1, . . . , n}. Then, ifk � k0,

q(xk − x) �
n∑

i=1

q
(
(xk)i − λi

)
�

n∑
i=1

qs
(
(xk)i − λi

)
�

n∑
i=1

M
∣∣(xk)i − λi

∣∣ � ε,

where we have used the fact thatqs is a norm and equivalent to the Euclidean norm w
constantM .

Suppose now that(xk)k∈N is a sequence inE that converges to 0 with respect toq (if
(xk)k∈N converges tox respect toq, the sequence(xk −x)k∈N converges to 0), but for som
n0 ∈ 1, . . . , n the co-ordinate sequence((λk)n0)k∈N is not convergent to 0 with respect
the Euclidean norm, where

xk = (λk)1e1 + (λk)2e2 + · · · + (λk)nen

for eachk ∈ N.
We may assume that there isr > 0 such that|(λk)n0| > r for all k ∈ N.
For eachk ∈ N put Mk = max{|(λk)i |, i = 1, . . . , n}. Define a sequence(yk)k∈N by

yk = xk/Mk ∀k ∈ N. Then

q(yk) = q(xk)

Mk

<
q(xk)

r
,

for all k ∈ N, so(yk)k∈N converges to 0 with respect toq.
Now observe that there exists a co-ordinate sequence of(yk)k∈N that has a co-ordinat

subsequence which consist only of terms−1 or 1. Denote this subsequence by((λkj
)m)j∈N

wherem ∈ {1, . . . , n}. Consider the corresponding subsequence(ykj
)j∈N of (yk)k∈N and

its first co-ordinate sequence((λkj
)1)j∈N. Then((λkj

)1)j∈N has a convergent subsequen
Continuing this process to thenth co-ordinate sequence, we obtain a subsequence(ykl

)l∈N

of (yk)k∈N which has each co-ordinate sequence convergent but themth co-ordinate sub
sequence consist only of terms−1 or 1. So by the preceding lemma(ykl

)l∈N converges
to a pointy �= 0 with respect to the normqs . Sinceq(y) � q(y − ykl

) + q(ykl
) ∀l ∈ N, it

follows thatq(y) = 0 soy = 0, a contradiction.
We conclude that each co-ordinate sequence((λk)i)k∈N converges fori = 1, . . . , n.
Finally, if the sequence(xk)k∈N converges tox with respect toq, then the sequenc

(xk − x)k∈N converges to 0 with respect toq. So thei-co-ordinate sequence((xk)i −
(x)i)k∈N converges to 0. Hence thei-co-ordinate sequence((xk)i)k∈N converges to the
i-co-ordinate(x)i . This concludes the proof.�
Definition 10. An asymmetric normed linear space(E,q) is called normable if there i
a norm‖·‖ on the linear spaceE such that the topologiesτdq andτd‖·‖ coincide onE.

Corollary 11. Let (E,q) be a finite dimensionalT1 asymmetric normed linear space. Th
(E,q) is normable by the normqs .



L.M. García-Raffi / Topology and its Applications 153 (2005) 844–853 851

-

n

cor-
inu-
te

is an
om the
a-

and

d

Proof. Let (xk)k∈N be a sequence inE that converges to a pointx with respect to aq. By
Theorem 9 and Lemma 8,(xk)k∈N converges tox with respect to the normqs . �

In particular observe that, because of Corollary 11,T1 separation axiom impliesT2
separation axiom in the finite dimensional case.

Lemma 12. Let (E,q) be an asymmetric normed linear space andτdq the topology gener
ated by the quasi-metricdq . Thenτdq is T1 if and only ifq(y) �= 0, for eachy ∈ E\{0}.

Theorem 13. The unit ball�Bq

1 (0) of a T1 asymmetric normed linear space(E,q) is com-
pact if and only if it is finite dimensional.

Proof. Suppose firstly that�Bq

1 (0) is a compact set of(E,q). Then �Bq

1 (0) is compact in

(E,qs) by the preceding corollary. SinceBqs

1 (0) ⊂ �Bq

1 (0) andB
qs

1 (0) is closed in(E,qs)

it follows that Bqs

1 (0) is compact in(E,qs). Hence(E,qs), and thus(E,q), are finite
dimensional.

Conversely, let{e1, e2, . . . , en} be a base of(E,q). For eachx ∈ E set

x = λ1(x)e1 + λ2(x)e2 + · · · + λn(x)en.

Thus we have definedn functionsλi :E → R, which are clearly linear functions onE.
By Theorem 9, eachλi is continuous from(E,q) to R endowed with the Euclidea

norm, so there existsn constantsMi > 0, Mi ∈ R, i = 1, . . . , n, such that∣∣λi(x)
∣∣ � Miq(x), i = 1, . . . , n, ∀x ∈ E.

Now let (xk)k∈N be a sequence in�Bq

1 (0). Then |λi(xk)| � Mi , i = 1, . . . , n, k ∈ N.
Hence, the first co-ordinate sequence(λ1(xk))k∈N has a convergent subsequence. The
responding co-ordinate sequence(λ2(xk))k∈N has also a convergent subsequence. Cont
ing this process, we obtain a subsequence(xkj

)j∈N of (xk)k∈N, which has each co-ordina
sequence convergent. Therefore(xkj

)j∈N converges to somey ∈ E with respect to the
normqs by Theorem 9. Sinceq(xkj

) � 1 andq(y) − q(xkj
) � q(y − xkj

) ∀j ∈ N, it fol-
lows thatq(y) � 1. We conclude that�Bq

1 (0) is a compact set of the normed space(E,qs)

and by the preceding corollary it is a compact set of(E,q). �
Remark 14. The above proof is doing following the customary scheme but there
straightforward argument to deduce the result from classical theorems. This comes fr
observation that all asymmetric norms on aT1 finite dimensional linear space are equiv
lent. Lemma 12 shows that an asymmetric normed linear space isT1 if and only if q(x) �= 0
for all x ∈ E\{0}. Let (E,q) be a finite dimensional asymmetric normed linear space
qs the supremum norm as usual. Then the restriction ofq to {x ∈ E: qs(x) = 1} does not
attain zero becauseq is a continuous function in(E,qs). Thus, it is bounded below, an
soq andqs are equivalent.

Theorem 15. Let(E,q) a finite dimensional asymmetric normed linear space. Then(E,q)

is normable if and only if each compact set is closed.
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Proof. Suppose that(E,q) is not normable. Then it is not Hausdorff by Corollary 11,
there exist a sequence(xn)n∈N in E and two pointsx, y ∈ E with x �= y such thatxn → x

andxn → y with respect to the topologyτdq . SinceK = {x} ∪ {xn: n ∈ N} is compact in
(E,q) andy ∈ K − K , K cannot be closed.

The converse is well known.�
Note that, in a finite dimensional linear space, every compact set is bounded and

this theorem provides a version of the Heine–Borel Theorem for asymmetric normed
spaces.

Definition 16. Let (X,q) be an asymmetric normed linear space. We say that�Bq

1 (0) is
right-bounded if there exists a real constantr > 0, such that

r�Bq

1 (0) ⊂ �Bqs

1 (0) + θ(0).

Proposition 17. Let (E,q) be a finite dimensional asymmetric normed linear space s
that �Bq

1 (0) is right-bounded . Then�Bq

1 (0) is compact.

Proof. �Bqs

1 (0) is the unit ball of the normed space(E,qs). SinceE is finite dimen-

sional, �Bqs

1 (0) is compact. Let{Ai, i ∈ I } be an open cover of�Bq

1 (0) in τdq . Since
�Bqs

1 (0) ⊂ �Bqs

1 (0) + θ(0) ⊂ �Bq

1 (0), then{�Bqs

1 (0) ∩ Ai, i ∈ I } is an open cover of�Bqs

1 (0)

in τdqs |�Bqs

1 (0)
. There exists a finite subcover{�Bqs

1 (0) ∩ Aj , j = 1, . . . , n} of �Bqs

1 (0) in

τdqs |�Bqs

1 (0)
. Then �Bqs

1 (0) + θ(0) ⊂ ⋃n
j=1(

�Bqs

1 (0) ∩ Aj) + θ(0) ⊂ ⋃n
j=1 Aj + θ(0). But

�Bq

1 (0) is right-bounded, sor�Bq

1 (0) ⊂ ⋃n
j=1 Aj + θ(0) ⊂ ⋃n

j=1 Aj by Lemma 4. Then

r�Bq

1 (0) is compact. Taking into account that the functionf (x) = rx is continuous for the
topologyτdq , it is obvious that�Bq

1 (0) is compact. �
Lemma 18. �Bqs

1 (0) + θ(0) ⊂ �Bq

1 (0).

Proof. Let g ∈ �Bqs

1 (0) + θ(0). Then we can writeg = f1 + f2 such thatf1 ∈ �Bqs

1 (0) and
f2 ∈ θ(0). Thenq(g) � q(f1) + q(f2) = q(f1) � qs(f1) � 1. Theng ∈ �Bq

1 (0). �
Lemma 19. Consider the asymmetric normed linear spaces(B∗

p, qp) for every p ∈
[1,+∞). Then�B qp

B∗
p,1(0) ⊂ �B qs

p

B∗
p,1(0) + θ(0).

Proof. Let f ∈ �B qp

B∗
p,1(0). Then we can splitf as af = (f ∨ 0)+ (f ∧ 0). It is easy to see

thatqs
p(f ∨ 0) = qp(f ) � 1 andqp(f ∧ 0) = 0 that implies that(f ∨ 0) ∈ �B qs

p

B∗
p,1(0) and

(f ∧ 0) ∈ θ(0). Thus,f ∈ �B qs
p

B∗
p,1(0) + θ(0). �

Corollary 20. �B qp

B∗ (0) is right-bounded and�B qp

B∗ (0) = �B qs
p

B∗ (0) + θ(0).

p p p



L.M. García-Raffi / Topology and its Applications 153 (2005) 844–853 853

all

ctures,

ut. 29

h. 23

spaces,

he theory

ence al-
Sci. 74

, J. Ap-

logy 3

(1999)

plexity

, Dept.
Proof. The proof is a direct consequence of Lemmas 18 and 19.�
These results can be extended to the asymmetric normed linear spaces(B∗

P(n),∞,

qP (n),∞) andP(n) > 0 for all n, taking into account that, in finite dimensional case,
asymmetric norms are equivalent.
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