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Abstract

We describe the compact sets of any asymmetric normed linear space. After that, we focus our
attention in finite dimensional asymmetric normed linear spaces. In this case we establish the equiv-
alence betweef®; separation axiom and normable spaces. It is proved an asymmetric version of the
Riesz Theorem about the compactness of the unit ball. We also prove that the Heine—Borel Theorem
characterizes finite dimensional asymmetric normed linear spaces that satisfigséparation ax-
iom. Finally we focus our attention on tlfg separation axiom and results that are related to the dual
p-complexity spaces.
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1. Introduction

Let E be alinear space on the set of real numiergve say that a function: E — R*
(whereR™ is the set of nonnegative real numbers) issagmmetric nornon E if for all
x,ye€E anda e RT:
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(i) g(x) =g(—x)=0ifand only ifx = 0.
(i) g(ax)=aqx).
(i) gx+y)<gx)+qO»).

Asymmetric norms are called quasi-norms in [4,1,9].

The functiong—1: E — R defined byg ~1(x) := ¢(—x) is also an asymmetric norm.
The functiong® : E — R* given by the formulag® (x) := maxg(x), ¢ 1(x)} is a norm
OnE.

An asymmetric norng induces a quasi-metrif;, by mean of the formula

dg(x,y)=¢q(y—x), x,y€E.

If d, is a bicomplete quasi-metric di, then(E, ¢) is called a biBanach space [10]. Each
quasi-metricd on E generates dp topologyz,, on E, for which the basic open sets are
the ballsB;(x,r) = {y € E: d(x,y) < r}. Hence ifq is an asymmetric norm of, the
sets

B:(0) := {x eE:gx) <£}, e>0,

form a fundamental system of neighborhoods of zero for the topology generatgd oy
the same way the translations of these #&13) := y + B, (0), define a fundamental sys-
tem of neighborhoods of for all y € E. Note from the definition thaB. (y) = By, (y, ¢).

We denote by, (0) the sets
B:(0) := {x eFE:qx)< 8}, e>0.

When necessary, we will indicate the space as a subscript, together with the radius
separated by one coma, and the used asymmetric norm as a superscript.

The pair(E, ¢) is called anasymmetric normed linear space

The complexity (quasi-metric) space was introduced by Schellekens [12] in order to
develop a topological foundation for the complexity analysis of programs and algorithms,
based on the notion of a “complexity distance”, i.e., a quasi-metric which intuitively mea-
sures relative improvements in the complexity of programs and algorithms. The complexity
space accepts, among others, many important kinds of exponential time algorithms. In par-
ticular, some applications of this theory to the complexity analysis of Divide and Conquer
algorithms were given in [12].

Later on, it was introduced in [11] the so-called dual complexity (quasi-metric) space,
to discuss in a more handy context several quasi-metric properties of the complexity space
which are interesting from a computational point of view. In fact, while the complexity
space cannot be modelled as a quasi-normed cone, the dual space admits a structure of
guasi-normed (asymmetric normed, in our terminology) semilinear space [10] (in our con-
text, a semilinear space is a cone in the sense of Keimel and Roth [8]) and, by other hand,
it can be directly used for the complexity analysis of certain algorithms, where the running
time of computing is the complexity measure (compare [12, Section 4] and [11, p. 313]).

Motivated by the fact that, in this dual context, the complexity analysis of algorithms
with running timeO(2"/n"), 0 < r < 1, cannot be performed via the dual complexity
space, the authors have recently introduced [6] the so-callegpde@inplexity spacép >
1), which provides, forp > 1, an appropriate framework to discuss complexity functions
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generating this kind of algorithms. In particular, it was shown that the gt@mplexity
space is an asymmetric normed semilinear space which is isometrically isomorphic to the
positive cone of(/,,, ||-l+,) (see Section 2 in [6] for definitions and details). In order to
obtain a general theory of dual complexity it was introduced in [6] the following class of
spaces. For each € [1, c0) setB;j ={f eR® Y 227" f(n))’ < oo}, wherew are
the nonnegative integers numbers. If for gty € 5}, anda € R we definef + g anda - f
in the usual pointwise way, then it easily follows thi&t;, +, -) is a linear space.

Now denote byg,, the nonnegative real valued function defined8n by ¢, (f) =
2 027" f(m)T)P)V/P, where f(n)* are the nonnegative valugg (n) v 0). Then
(B3, qp) is abiBanach space. In Corollary 4 of [6] itis shown thia, g,,) and (. [|-[|+ ),
with [[x]l4+, = (02 o(x;))P)Y/P, are isometrically isomorphic. For eaghe [1, co) let
C,=1{f €By: f(n) > 0foralln € »}. Following [6], the asymmetric normed semilinear
space(C}, ) will be called the duap-complexity space, where the restrictiongf to
C;, is also denoted by, . If we denote by;; the positive cone of,, in [6] is proved that
(€. qp) and(l;, |I-l+p) are isometrically isomorphic.

Observe that the quasi-metdg, induced orCj, by g,, is given by

00 1/p
dg,(f, 8) = (ZT”"((g(n) — fm) v 0)”) )

n=0

In particular(Cj, d4,) is exactly the dual complexity space as defined in [11].

The computational interpretation [11] of the complexity distarigeremains valid for
each quasi-metrig,, [6]. Thus, the fact thad,, (f, g) =0, with f # g, can be interpreted
asg is more efficient thary. Furthermorey, (/) measures relative progress made in low-
ering complexity by replacing’ by the “optimal” complexity function 0, assuming that
the complexity measure is the running time of computing.

On the other hand, there is in the last years a renewed interest in automata of infinite
objects due to their intimate relation with temporal and modal logics of programs. Thus,
Emerson and Jutla [3] have successfully applied complexity of tree automata to obtain
optimal deterministic exponential time algorithms in some important modal logics of pro-
grams, where by an exponential time algorithm we mean an algorithm with running time
O(2P™), such thatP (n) is a polynomial withP (n) > 0 for all n. This running time cor-
responds to the functiogi given by £ (n) = 2™ for all n, which does not belong to any
dual p-complexity space whenevét(n) > n. The authors have introduced [7] the notion
of the sup,,,,-complexity space in order to discuss complexity functions generating this
kind of algorithms. In this case we work with the Banach spdgg || lc0) Wherely, is
the bounded sequences space and we define the usual multiplicative operation between
sequences from,.

For each polynomiaP (n), with P(n) > O for all n € w, we definelS’}f,(n)’OO ={f €
R?: sug2~ ™| f(n)|: n € w} < oc}. It easily follows thatB}, , . is a linear space for

the usual pointwise operations.
The fUﬂCti(-)an(n),oo defines o3}, ) ., @Sqp@m),co(f) = sup2=F®™ f(m)*t: n e w}is
an asymmetric norm.
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For each polynomiaP (n), with P(n) > O for all n € w, consider the biBanach space
(B;(n)’o(ﬂ qP(n),oo) and Iet

C?’(n),oo = {f € B;(n),oo: f(m)>=0forallne a)}

Let gp@m), the restriction of the asymmetric norgy )~ defined onB};(n)‘oo to
C}*,(n)’oo. Then,C;ﬁ,(n)’Oo is an asymmetric normed semilinear space.

Observe that in any case, the unit b&Ji(0) of these spaces is not a bounded set for any
norm, in particular, they are unbounded sets for the correspogdiogqp ).

The aim of this paper is to extend the results about compact sets on finite dimensional
normed spaces to the case of asymmetric normed linear spaces. In Section 2 we introduce
the set theoretical arguments that allows to a general description of compact sets of an
asymmetric normed linear space. In Section 3, we focus our attention in the finite dimen-
sional case to reproduce the classical results of the normed spaces theory. In particular, we
prove that &1 asymmetric normed linear spacg, ¢) is finite dimensional if and only if
the unit baIIE{’ (0) is compact for the topology generated by the asymmetric norm (The-

orem 13). This will be done via the compactnesa?@?(O) in the supremum norm*. In
fact, we will prove the equivalence betweEnand normability of the spaces in the case of
finite dimension and thus betweé&h and 7, separation axioms. ThE separation axiom
in the general case of asymmetric normed linear spaces has been studied in [5]. We also
prove that the Heine—Borel Theorem characterizes finite dimensional asymmetric normed
linear spaces that satisfi&s axiom (Theorem 15).
In this Section 3, we pay also attentionTigspaces and, in particular several properties
in relation with the duap-complexity spaces are discussed.
Basic references about quasi-metrics and asymmetric norms are [13,1,9,4,11].
Definitions and basic results on general topology can be found in [2].

2. Compact setsin asymmetric normed linear spaces

In this section we describe the compact sets of any asymmetric normed linear space.
In particular, given a compact set (i, ¢*), we give a way to construct compact sets in
(E, q) for the topology induced by.

Definition 1. Let (E, ¢) be an asymmetric normed linear space arelE. We define the
setf(x) as:

0(x) = {z €L dy(x,2)=q(z—x) = 0}.
In particular

0(0)={z € E: dy(0,2) =q(z) =0}.

Observe thal (x) is the closure ofx} in (E, ¢~ ).

Lemma 2. Given a setd C E of an asymmetric normed linear spacg, q), we have that
Jox) =4+000,

xeA
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where
A+60(0)={zeE:z=x+y, xc Aandy c6(0)}.

Proof. Letz € |J, .40 (x). Then there exists ane A such thaty(z —x) = 0. This implies
thatz —x =y, y € 9(0) and then we can expressasz = x + y. Thus(J,.,0(x) C
A+6(0).

Conversely, letw € A + 6(0). There exists anr € A and an elemeng € 6(0) such
thatw = x + y and alsow — x = y. Theng(w — x) = ¢(y) =0 sow € 6(x) andw €
Uyea 0(x). Thisimplies thatd +6(0) C J,c4 0(x). O

xeA

Lemma 3. Let (E, ¢) be an asymmetric normed linear space and E. Then
B (x) = B:(x) +6(0).

Proof. B.(x) C B:(x) + 6(0) since Oc #(0) and everyx € B.(x) can be written ag =
x +0.

Letz € B.(x) +6(0). Then there exists ane B, (x) andw € #(0) such that = y + w.
Then

gz—x)=q(y+tw—-x)<q(y—x)+qw) <e+0=e¢.
As a consequence,c B;(x) andB.(x) +0(0) C B.(x). O

Lemmad4. Let(E, ¢g) be an asymmetric normed linear space ahd: E an open set. Then
A=A+06(0).

Proof. Itis obvious thatA C A + 6(0).

Letz € A+6(0). Thenwe can expressasz = x +y wherex isin A andy is an element
of 6(0). But A is an open set. Consequently, there exists arD such thaB, (x) C A. Tak-
ing into account thaB, (x) = B.(x) + 6(0) by the preceding lemma, it can be concluded
thatzisin A. O

Lemmab. Given a family{A;: i € I} of sets in(E, ¢g), then

J(Ai +60) = <UAi) +6(0).

iel iel

Proof. If x € |J;c;(A; +6(0)) that means that there exists soirgatisfying thatc € A; +
6(0) such thatc can be written as = x; + z with x; € A; andz € 6(0). Thenx; € J;; A
andx =x; +zisin (U;c; Ai) +6(0).

If x € (U;e; Ai) +0(0) there exists am; € A; andz € 6(0) such thatx = x; + z and
thenx isin|J;.;(Ai +6(0). O

Proposition 6. Let (E, ¢) be an asymmetric normed linear space aidc E. Then K is
compact respect to the topology induced by the asymmetric ngrifrand only if K +6(0)
is compact for the same topology.
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Proof. (=) Let{A;: i € I'} an open cover oK. By Lemma 4 we have that
A; =A; +6(0).
Then by Lemma 5

K+60) c| JAi+6(0).
iel

But K is compact and there exists a finit subcovekoffA;: j € J C I} such thatk C
Ujej Aj;. Then applying the same Lemma 5 we obtain tkiat 6 (0) C UjEJ(Aj +6(0)).
This implies thatk 4 6(0) admits a finit subcovefA; +6(0): j e J C I} andK +6(0)
is a compact set.

(<) If K +6(0) is compact, given an open cover of the &t{A;: i € I}, the fam-
ily {A; +6(0): i € I}is an open cover oK + 6(0) and this set admits a finit subcover
{A; +0(0): jeJ CI}. Then by Lemma & + 6(0) C UJ.EJ A; + 6(0) that implies
K Cljc Ajandthen(A;: j e J CI}is asubcover ok obtained from the open cover
{A;: i € I}. Thus,K is compact. O

Corallary 7. Given aKg C K + 6(0), if K + 6(0) is a compact set an&g + 6(0) =
K +6(0) thenKj is also compact.

Note that ifK is a compact set ofE, ¢*), thenK + 6(0) is a compact set afE, g).

3. Finitedimensional asymmetric normed linear spaces

Let (£, ¢) an asymmetric normed linear space endowed with the topalgggtefined
above. A setM C E is said to be compact if it is compact considered as a subspage of
with the induced topology, that isM, ¢) is compact with respect to the topolo@y, |-

A set M of E is compact if every sequence M has a convergent subsequence whose
limitisin M.

Lemma8. Let (e, ||-||) be a finite dimensional normed linear space, with bageeo, ...,
en}. Then, a sequendey )ien in E convergesta = Aje1+Azea+-- -+ Aye, if and only if
the i-co-ordinate sequence 0f; )y converges ta.;, with respect to the Euclidean norm,
i=1..., n.

We generalize this classical result to asymmetric normed linear spaces as follows.

Theorem 9. Let (E, g) be a finite dimensional}; asymmetric normed linear space, with
baseley, eo, ..., e,}. Then, asequendey)ien iN E converges ta = Aje1+Azea+ -+
Anen With respect tgy if and only if the i-co-ordinate sequence(@f, )<y converges ta.;,
with respect to the Euclidean norin=1, ..., n.
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Proof. First suppose that theco-ordinate sequence afy)rcn converges to.;, with re-
spect to the Euclidean norm=1, ..., n. Given a positive real numbe¢ > 0 and an?
there is ak)) such that whet > k{ then

()i — Ai| < ﬁ

Let bekg=maxkh, i =1,...,n}. Then, ifk > ko,

n n n
g0 —x) <Y q((i — 1) <Y g’ (i —hi) <Y M|Ga)i — A <,
i=1 i=1 i=1
where we have used the fact thgtis a norm and equivalent to the Euclidean norm with
constantM.

Suppose now thaty )ren IS @ sequence il that converges to 0 with respectdga(if
(xr)ken CONVerges ta respect tqy, the sequencer; — x)xen converges to 0), but for some
no € 1,...,n the co-ordinate sequen¢éix),,)keN IS NOt convergent to O with respect to
the Euclidean norm, where

Xk = (Agp)1er + (Ap)2e2 + - - + (Ar)nen

for eachk e N.

We may assume that thereris- 0 such that(i),,| > r for all k € N.

For eachk € N put M, = maxX|(Ax);l, i =1,...,n}. Define a sequencey)ren by
vk = xi/ My Yk € N. Then

q(xx) - q(xx)
M;, r
for all k € N, so(yx)ren cOnverges to 0 with respect 4o

Now observe that there exists a co-ordinate sequencg. bf-n that has a co-ordinate
subsequence which consist only of termis or 1. Denote this subsequence@y; )m) jen
wherem € {1, ...,n}. Consider the corresponding subseque(r)@g)jeN of (yi)ken and
its first co-ordinate sequen¢éix; )1) jen. Then((Ak;)1) jen has a convergent subsequence.
Continuing this process to theth co-ordinate sequence, we obtain a subsequenpe:n
of (yt)reny Which has each co-ordinate sequence convergent buttiheo-ordinate sub-
sequence consist only of termsl or 1. So by the preceding lemnis,);eny converges
to a pointy # 0 with respect to the normp®. Sinceq(y) < q(y — yx,) +q(yr) VI €N, it
follows thatg (y) =0 soy = 0, a contradiction.

We conclude that each co-ordinate sequdiieg);)xen converges for =1,..., n.

Finally, if the sequencéx;)rcy converges toc with respect tag, then the sequence
(xx — x)ren converges to 0 with respect tp So thei-co-ordinate sequenc@xy); —
(x)i)ren converges to 0. Hence thieco-ordinate sequencéxy);)ren CONverges to the
i-co-ordinate(x);. This concludes the proof.0

q(yk) =

)

Definition 10. An asymmetric normed linear spacg, ¢) is called normable if there is
anorm|-|| on the linear spacé such that the topologiesy, andzy,, coincide onk'

Corollary 11. Let(E, g) be a finite dimensiondl; asymmetric normed linear space. Then
(E, g) is normable by the norm?.
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Proof. Let (x;)ren be a sequence iff that converges to a pointwith respect to &. By
Theorem 9 and Lemma 8y )N CONverges ta with respect to the normp*. O

In particular observe that, because of Corollary Ti,separation axiom implie3»
separation axiom in the finite dimensional case.

Lemma 12. Let(E, g) be an asymmetric normed linear space apgdthe topology gener-
ated by the quasi-metri¢;. Thenz,, is 71 if and only if¢ (y) # O, for eachy € E\{0}.

Theorem 13. The unit balll_?i’(O) of aTy asymmetric normed linear spacg, ¢) is com-
pact if and only if it is finite dimensional.

Proof. Suppose firstly thaﬁi’ (0) is a compact set ofE, g). Then Fi’ (0) is compact in
(E, ¢*) by the preceding corollary. Sinde_‘f (0) C B{(0) andBfé (0) is closed in(E, ¢*)
it follows that BZ‘Y (0) is compact in(E, ¢%). Hence(E, ¢*), and thus(E, ¢), are finite

dimensional.
Conversely, lete1, ea, ..., e,} be a base ofE, g). For eachx € E set

x =A1(x)er+A2(x)e2+ -+ Ap(x)ey.

Thus we have defined functionsi; : E — R, which are clearly linear functions af.
By Theorem 9, each; is continuous fromE, ¢) to R endowed with the Euclidean
norm, so there exists constants\f; > 0, M; e R, i =1, ..., n, such that

L) < Mig(x), i=1,...,n, Vx€E.

Now let (xx)ren be a sequence iEZ(O). Then|r(xx)| < M;,i=1,...,n, keN.
Hence, the first co-ordinate sequenize(xx))ren has a convergent subsequence. The cor-
responding co-ordinate sequenize(x;))ren has also a convergent subsequence. Continu-
ing this process, we obtain a subseque(av;‘(fe)jeN of (xi)ren, Which has each co-ordinate
sequence convergent. Therefdrg,) jen converges to some € E with respect to the
normg® by Theorem 9. Sincg(xx;) <1 andq(y) —q(xx;) < q(y —xx;) Vj € N, it fol-
lows thatg (y) < 1. We conclude thaﬁf (0) is a compact set of the normed spdék ¢*)
and by the preceding corollary it is a compact set®fg). O

Remark 14. The above proof is doing following the customary scheme but there is an
straightforward argument to deduce the result from classical theorems. This comes from the
observation that all asymmetric norms offafinite dimensional linear space are equiva-
lent. Lemma 12 shows that an asymmetric normed linear sp&dgefiand only if g (x) £ 0

for all x € E\{0}. Let (E, q) be a finite dimensional asymmetric normed linear space and
q° the supremum norm as usual. Then the restrictiop @f {x € E: ¢*(x) = 1} does not

attain zero becausgis a continuous function iGE, ¢*). Thus, it is bounded below, and

soq andg® are equivalent.

Theorem 15. Let (E, ¢) afinite dimensional asymmetric normed linear space. Tli&1g)
is normable if and only if each compact set is closed.
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Proof. Suppose thatE, ¢) is not normable. Then it is not Hausdorff by Corollary 11, so
there exist a sequence, ),y in E and two pointse, y € E with x # y such thaty, — x
andx, — y with respect to the topology;, . SinceK = {x} U {x,: n € N} is compact in

(E,q) andy € K — K, K cannot be closed.
The converse is well known. O

Note that, in a finite dimensional linear space, every compact set is bounded and hence
this theorem provides a version of the Heine—Borel Theorem for asymmetric normed linear
spaces.

Definition 16. Let (X, g) be an asymmetric normed linear space. We say Ef&O) is
right-bounded if there exists a real constant 0, such that

rBL(0) C BY (0) +6(0).

Proposition 17. Let (E, ¢) be a finite dimensional asymmetric normed linear space such
that B{ (0) is right-bounded . TheB? (0) is compact.

Proof. ij (0) is the unit ball of the normed spadé&, ¢*). Since E is finite dimen-
sionaI,BTZA (0) is compact. Let{A;, i € I} be an open cover ot_?f(O) in z4,. Since
E;’S ) C Eif (0) + 6(0) C B{(0), then{EZ‘q (0) N A;, i €I} is an open cover OBTZS (0)

in 74, There exists a finite subcovc{at_?f O NAj;, j=1,...,n} of l_?ZS(O) in

By (0
T, 'EZ‘Y (- Then E;f 0) +6(0) C U’}Zl(E;f 0N A)+60) cUj1A;+6(0). But
B{(0) is right-bounded, s@B] (0) C Jj_y A; +6(0) C J}_; A; by Lemma 4. Then
rl?j (0) is compact. Taking into account that the functiftx) = rx is continuous for the
topologyg, , it is obvious thatEf (0) is compact. O

Lemma 18. BY (0) +6(0) C BY(0).

Proof. Letg e EZS (0) + 6(0). Then we can writg = f1 + f» such thatf; € Ef (0) and
f2€6(0). Theng(g) < q(f1) +q(f2) =q(f1) <q¢°(f1) <1.Theng € B{(0). O

Lemma 19. Consider the asymmetric normed linear spacé, q,) for every p €

K
_qp

[1, +00). ThenEggl(O) C By} 1(0) +6/(0).

Proof. Let f € ng 1(0). Then we can splif asaf = (f v0)+ (f A0). Itis easy to see
P )
thatqj,(f v 0)=qg,(f) <1andg,(f A0) =0 that implies that f v 0) € Egi’ ,1(0) and
o p’
(f A0) €6(0). Thus,f € B,? ;(0)+6(0). O
i

Corollary 20. B4 (0) is right-bounded and3 ;! (0) = EZ% (0) + 6(0).
14 P 14
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Proof. The proof is a direct consequence of Lemmas 18 and 19.

These results can be extended to the asymmetric normed linear Soos
qPn).00) @and P(n) > 0 for all n, taking into account that, in finite dimensional case, all
asymmetric norms are equivalent.
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