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Abstract

We propose the “competing salesmen problem” (CSP), a two-player competitive version of
the classical traveling salesman problem. This problem arises when considering two competing
salesmen instead of just one. The concern for a shortest tour is replaced by the necessity to
reach any of the customers before the opponent does.

In particular, we consider the situation where players take turns, moving along one edge at
a time within a graph G = (V; E). The set of customers is given by a subset VC ⊆ V of the
vertices. At any given time, both players know of their opponent’s position. A player wins if
he is able to reach a majority of the vertices in VC before the opponent does.

We prove that the CSP is PSPACE-complete, even if the graph is bipartite, and both players
start at distance 2 from each other. Furthermore, we show that the starting player may not be
able to avoid losing the game, even if both players start from the same vertex. However, for the
case of bipartite graphs, we show that the starting player always can avoid a loss. On the other
hand, we show that the second player can avoid to lose by more than one customer, when play
takes place on a graph that is a tree T , and VC consists of leaves of T . It is unclear whether a
polynomial strategy exists for any of the two players to force this outcome. For the case where
T is a star (i.e., a tree with only one vertex of degree higher than two) and VC consists of n
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leaves of T , we give a simple and fast strategy which is optimal for both players. If VC consists
not only of leaves, we point out that the situation is more involved.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the classical traveling salesman problem (TSP), we are given a (weighted) graph
G=(V; E) and the task to Fnd a shortest roundtrip that visits every vertex precisely
once. This reGects the situation where a salesman has to visit a set of customers and
return to his initial position.
However, a salesman may be confronted with competitors who are eager to sign up

the same clientele—giving a new twist to the old motto “Frst come, Frst serve”.
This situation motivates the “competitive salesmen problem” (CSP).
We are given a (directed or undirected) road system, i.e., a graph G=(V; E) and

the locations of the customers, i.e., a subset VC ⊆V of the vertices. There are two
players, I and II, with starting positions vI and vII, and an initial score of zero. Starting
with I, both players take turns moving by changing from the current location to an
adjacent vertex. Depending on the scenario, players may or may not be allowed to
pass. At any given time, both players know of their own and their opponent’s position
as well as about all the remaining vertices with customers. If a player reaches a vertex
with a customer, his score is increased by one, and the vertex is removed from the
set VC of still available customers, but not removed from V . The game ends when no
further customers can be captured, i.e., when VC = ∅ or when no player has a path to
an uncaptured customer. Whoever has a higher score at the end of the play, wins. If
both players end up with the same score, the game is tied.
An immediate generalization is to consider two competing teams of salesmen; in the

CSP(h; k), a move of player I consists of moving one of his h pieces, while player II
has the choice between one of his k pieces.

2. Preliminaries

The CSP is a combinatorial game. See [2,6] for classical references on this well-
studied area, and [3–5,7] for other related papers. Here we just note an important
distinction for the outcome of games that are not won by either player.
A game that is won neither by I nor by II is called

• tied, if it ends with both players having the same score,
• drawn, if it does not end.
Throughout this paper, we mostly concentrate on the case of an undirected graph.

Some of the results include the directed case, but we do point out some additional
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diKculties in one interesting case. Throughout the paper, there are a number of illus-
trations; in these Fgures, the set VC ⊆V is indicated by circled dots. Without loss of
generality, we assume that a start vertex never belongs to VC; in several cases, a start
vertex is indicated by a hexagon.
The rest of this paper is organized as follows. In Section 3, we show that the CSP is

PSPACE-complete, even for the case of bipartite undirected graphs, with both players
starting at distance 2 from each other. In Section 4, we discuss the situation in which
both players start from the same vertex. We show that even in this case, player I may
not be able to avoid a loss, and that there may be draws. We also show that in the
case of bipartite graphs, player I can avoid a loss. We also show that this result does
not apply to directed graphs. In Section 5, we give some results and open problems
for the special case of trees, and Section 6 considers the further restriction to trees
with only one vertex of degree higher than two.

3. Complexity

While the TSP on directed or undirected graphs is merely NP-complete, the
two-player competitive game CSP turns out to be PSPACE-complete.

Theorem 1. The decision problem whether player I can win in CSP(1; 1) is PSPACE-
complete, even for the special case of bipartite graphs, with both players starting at
distance 2 from each other.

Proof. A position in CSP(h; k) is a quintuple (
; G; V ′
C; uI; uII), where 
 ∈ {I; II} indi-

cates whether Player I or Player II moves from the position, G=(V; E) is the (di-)graph
on which the game is played, V ′

C is the current set of uncaptured customers; and uI
and uII are the vertices on which players I and II reside. A draw can be declared after
a position is repeated, that is, when a new position is encountered which is identical
to a previous one. Identical positions can be detected by sequentially storing all the
positions from the position at which V ′

C was last diminished until it decreases again,
beginning with the original VC. If there are h and k salesmen for the two sides, at
most O(nh+k) positions have to be stored between any two consecutive changes of V ′

C,
where n= |V |. If h and k are Fxed, this is of polynomial size in the input size, in
particular, if h= k =1. Therefore, for Fxed h and k, CSP(h; k)∈PSPACE.

To see that CSP(1; 1) is PSPACE-hard, we describe a reduction from quantiFed
3SAT (Q3SAT), where the Boolean formula F , containing m clauses and n variables,
is in conjunctive normal form with three literals per clause.
For technical reasons, and without loss of generality, we shall make the following

assumptions.
(1) The number n of variables is even; because otherwise we may postFx F with

∀xn+1 ∃ xn+2∀xn+3 (xn+1 + Nxn+1 + xn+2)(Nxn+2 + xn+3 + Nxn+3).
(2) There is a clause which contains a true literal and a false literal for every truth

assignment of the variables; because if such a clause does not exist, then we can
postFx F with ∃ xn+1∀xn+2 (xn+1 + Nxn+1 + xn+2)(xn+1 + xn+2 + Nxn+2).
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Fig. 1. The variable gadget: player I chooses a truth setting for the odd variables by running from vI to
un−1; B, while player II chooses a truth setting for the even variables by running from vII to un; B.

From a given instance of Q3SAT, we construct an instance of CSP(1; 1) by speci-
fying the graph G=(V; E) on which it is played. For simplicity and clearer drawings,
we Frst construct a graph that contains some odd cycles in the subgraphs representing
the clauses. It is straightforward to turn this graph into a bipartite one, by subdividing
all the original edges, in eOect doubling all distances.
We proceed to describe G by listing all vertices and edges of the construction. In

the following, we use B := n2=2 for simpler notation. DiOerent parts of the construction
are shown in Fig. 1 for the variable gadget, in Fig. 2 for the m clause gadgets, and in
Fig. 3 for a cache gadget.

V = {xi; Nxi: 16 i 6 n}
∪{vI; vII}

∪{ui;h: −16 i 6 n− 2; 16 h6 2n}

∪{ui;h: n− 16 i 6 n; 16 h6 B}

∪{vj; aj; bj; cj; y1
j ; y

2
j ; y

3
j : 16 j 6 m}
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Fig. 2. A clause gadget: player II picks up two customers at aj and bj , while player I collects two of the
customers at ykj , leaving the third ykj to player II. The outcome of the game is decided by the possibility
of picking up an extra customer on a variable, after traveling back to the variable gadget along a feedback
path.

∪{v0}

∪{pkj;h: 16 k 6 3; 16 j 6 m; 16 h6 B− n}

∪{qi;h: 06 i 6 2n; 16 h6 n3}

∪{di: 06 i 6 5m+ n− 6}:
E = {(vI; vII); (vI; u−1;1); (vII; u0;1)}

∪{(ui;h; ui;h+1): −16 i 6 n− 2; 16 h6 2n}

∪{(ui;h; ui;h+1): n− 16 i 6 n; 16 h6 B}

∪{(ui;2n; xi+2); (ui;2n; Nxi+2): −16 i 6 n− 2}

∪{(xi; ui;1); ( Nxi; ui;1): 16 i 6 n}

∪{(u2i+1;h; u2i+2;h): −16 i 6 n=2 − 1; 16 h6 2n}

∪{(un−1;h; un;h): 16 h6 B}

∪{(un−1;B; v0)}

∪{(un;B; aj); (v0; vj); (aj; bj); (bj; cj): 16 j 6 m}

∪{(y1
j ; y

2
j ); (y

1
j ; y

3
j ); (y

2
j ; y

3
j ): 16 j 6 m}
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(total number: 5m+n-5)
customer vertices

other vertices

d0

qi,1

d
5m+n-6

d1

qi,n3

variable vertices

Cache gadget

cache paths

Fig. 3. The cache gadget: A set of 5m + n − 6 customers very far from the rest of the graph, allowing
a player to claim the victory if he has collected enough customers on the main part of the graph. The
additional node d0 breaks a tie in favor of player I iO player I wins the corresponding instance of Q3SAT.

∪{(vj; ykj ); (cj; ykj ): 16 k 6 3; 16 j 6 m}

∪{(ykj ; pkj;1): 16 k 6 3; 16 j 6 m}

∪{(pkj;h; pkj;h+1): 16 k 6 3; 16 j 6 m; 16 h6 B− n}

∪{(pkj;B−n; xi): iO cj contains xi as literal k;

16 k 6 3; 16 i 6 n; 16 j 6 m}

∪{(pkj;B−n; Nxi): iO cj contains Nxi as literal k;

16 k 6 3; 16 i 6 n; 16 j 6 m}

∪{(xi; q2i;1); ( Nxi; q2i−1;1); (xi; d0); ( Nxi; d0): 16 i 6 n}

∪{(qi;h; qi;h+1): 06 i 6 2n; 16 h6 n3 − 1}
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∪{(d0; q0;1)}

∪{(qi;n3 ; d1): 06 i 6 2n}

∪{(dh; dh+1): 16 h6 5m+ n− 6}:
We single out the subset of V on which customers reside:

VC = {xi; Nxi: 16 i 6 n}

∪{aj; bj; y1
j ; y

2
j ; y

3
j : 16 j 6 m}

∪{ui;h: −16 i 6 n− 2; 16 h6 2n}

∪{ui;h: n− 16 i 6 n; 16 h6 B}

∪{di: 06 i 6 5m+ n− 6}:
The initial vertices for players I and II are vI and vII, respectively. Note that |V |=2n+
2+2n2+2B+7m+1+3m(B−n)+2n4+5m+n−5=2n4+3mn2=2+3n2−3mn+12m+
3n− 4, |VC|=2n+5m+2n2 + 2B+5m+ n− 5=3n2 + 10m+3n− 5. The construction
is clearly polynomial. An example with n=4 is depicted in Fig. 1. (Note that this
yields 2n=8= n2=2=B.) A clause gadget is shown in Fig. 2. To avoid cluttering
the Fgure, some of the edges connecting the diamonds (the subgraphs induced by
(ui−2;2n; xi; Nxi; ui;1)) with other parts of the construction are only shown symbolically.
Fig. 3 shows the structure of the remaining part. The vertices pkj; h induce a collection
of feedback paths that connect the triangles (y1

j ; y
2
j ; y

3
j ) in the gadget representing

clause j to the variable representations of the literals y1
j , y

2
j , and y3

j .
It will be useful to designate the subgraph of G induced by q0;1; : : : ; q2n; n3 , d0; d1; : : : ;

d5m+n−6 as the cache part G2 = (V2; E2) of G, and the subgraph of G induced by
V\V2 as the main part G1 = (V1; E1).

Remark. (a) We have |VC ∩V2|=5m + n − 6, |VC ∩V1|=3n2 + 5m + 2n + 1, and a
player wins by collecting at least 3n2=2 + 5m+ 3n=2 − 2 customers.
(b) Moving from the main part to the cache part takes longer than visiting all vertices

of the main part.
(c) In the proof, we shall see that in every play on G, all the customers are captured.

Only after capturing at least 3n2=2 + n=2 + 4 customers in the main part can a player
win by moving to the cache part. For by (a), (3n2=2+ n=2+4)+5m+ n− 6=3n2=2+
5m+ 3n=2 − 2= �|VC=2|� + 1. Thus, a player who captured precisely 3n2=2 + n=2 + 4
customers in the main part and then goes for the cache part before the opponent starts
to do so wins by at least one customer.

Here is the “regular” play on G. We shall see later that “small” deviations are
compatible with regular play, but “large” deviations lead to the defeat of the
deviator.
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The players move down their respective sides of the “ladders” formed by the ui; h, and
traverse the diamonds according to their chosen truth assignments in the given instance
of Q3SAT, i.e., traversing xi if xi =1, otherwise traversing Nxi. In this manner, player I
gets to assign the “odd”, i.e., existentially quantiFed, variables, while II gets to assign
the “even”, i.e., all-quantiFed, variables. After this stage, I makes the move (un−1; B; v0).
Player II now selects a clause cj by moving from xn to aj. This is matched by the move
(v0; vj) of I. While II traverses bj; cj, player I selects the literal within cj to which II
should move. Player I enforces this by capturing the other two of the customers in the
triangle Tj =(y1

j ; y
2
j ; y

3
j ). Then II captures the remaining yk3j . Following the feedback

path incident to yk2j , I takes B − n moves to get to a suitable literal, say zi2 , on one
of the diamonds, and II takes the same number of moves from yk3j along its feedback
path to a literal, say zi3 , on a diamond.
At this stage, each of the players has captured 3n2=2 customers along the ladders,

and n=2 customers on the diamonds; I has also captured two customers on the triangle
Tj, and possibly a customer on zi2 . Thus, I has captured 3n2=2 + n=2 plus 2 or plus 3
customers. Player II has captured two customers on aj; bj and one on Tj, possibly also
one on zi3 . Thus, II has now captured 3n2 + n=2 plus 3 or plus 4 customers.
Suppose Frst that II can win in the given instance of Q3SAT. This means that for any

truth assignment of the variables of player I, player II can assign truth values so that at
least one clause cj is false, i.e., all the literals in cj have value 0. In terms of regular
play, this means that II captured a customer on zi3 . Thus, II captured 3n2=2 + n=2
plus 4 customers, at least one more than player I. At this point I moves next. If I
chooses to move straight to the cache part, player I will capture a total of at most
3n2=2+ n=2+3+5m+ n− 6 = 3n2=2+5m+3n=2− 3 ¡ |VC|=2. By restricting himself
to the main part, II can capture all the rest, namely 3n2=2+ 5m+3n=2− 2, so II wins
by precisely one customer. Therefore, player I will make some other move, e.g., the
move (zi2 ; d0). Then II responds by moving to the cache part. By Remark (c), II thus
wins in the constructed instance of CSP(1; 1) by precisely one customer.

Secondly, suppose that player I can win in the given instance of Q3SAT. This
implies that player I can assign truth values such that for any truth assignment of
II, every clause contains at least one true literal. In terms of regular play on the
constructed instance of CSP(1; 1), this means that player I can arrange that zi3 will
already have been captured during the initial diamond traversal, so II will have captured
only 3n2=2 + n=2 + 3 customers up to and including the feedback edge traversal. We
consider two cases.

(i) The clause cj selected by II contains a false literal, say zi‘ . Then I continues
according to regular play, playing in the triangle Tj such that II is “forced” to
move to zik , and I himself moves to zi‘ . Then player I will have captured 3n2=2+
n=2 + 3 customers, the same as II. It is now the turn of I. As above it is seen
that if I moves immediately to the cache part, he loses by one customer. A better
move for I is (zi‘ ; d0). Now II cannot aOord to let I take the cache, so II has to
move (zik ; qik ;1). This allows I to take a remaining customer on a literal vertex,
maintaining a distance of n3 to the cache. Player II still has to guard the cache
by limiting his distance from d1 to at most n3 − 1, and is thus forced to move
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(qik ;1; qik ;2). Eventually, I picks up all remaining literal customers by going via d0.
In a similar manner, I can collect all remaining customers in the main part: First,
I picks up all remaining customers at vertices ykj , which have distance n3 +B− n
from the cache. This is possible without exceeding this distance; at the same time,
II cannot aOord to move to the same distance from the cache, as this would leave
the cache unguarded. Next, I can move on to collecting the vertices bj (which
have distance n3 + B− n+ 2 from the cache) one by one, and Fnally collect the
vertices aj, which have distance n3 + B − n + 3. At this point, I has won the
game.

(ii) The clause cj selected by II contains no false literal. Then I deviates slightly from
regular play, by moving to a clause, say c‘, which does contain a false literal zif .
Such a clause exists by assumption (3) above. After I captures two customers in
T‘, I moves to zif , having thus far captured (3n2=2 + n=2) + 3 customers. Then
player I continues as in the case (i), winning. Note that the three paths leading
out from cj to the diamonds all end in literals whose customers have already been
captured, and that I wins independently of whether II captures one, two or three
customers in Tj.

We have shown that if the players stick to regular play, then player I can win in
Q3SAT if and only if player I can win in CSP(1; 1). It remains to check non-regular
play.
First of all, not proceeding down a ladder (say, to collect a customer at d0 or at

an additional literal vertex) takes at least two moves per additional customer. This
lets the other player change over to the deviator’s side of the ladder, continue in a
zig-zagging fashion back and forth between both sides of and down the ladder, and
thus continue to collect one customer per move. Therefore, the violator loses in the
balance, compared to regular play. Furthermore, remark (c) above implies that if either
player goes for the cache part at any point during the diamond traversal before having
traversed a feedback edge, then that player loses, since a minimum of 3n2=2+ n=2+ 4
captures have to be made by a winning player in the main part prior collecting the
cache.
If II loses in CSP(1; 1), II can possibly use a feedback edge leading back to a literal

zi‘ whose customer has not been captured during the diamond traversal, by using a
vertex of Tj whose customer was already captured by I. But then the balance of
customers captured by II up to the capture at zi‘ is unchanged, and I still wins.

Conversely, if II wins in CSP(1; 1), player I might traverse a feedback edge after
having captured only one customer on a triangle Tj′ (possibly j′ �= j), hoping to cap-
ture enough customers during a second traversal of the diamonds, before II will have
captured enough. An easy accounting argument, left to the reader, shows that player I
cannot muster a suKcient supply of customers with this maneuver.

It is not hard to see that the above construction can be modiFed to establish a
proof of the PSPACE-completeness of the CSP on bipartite directed graphs without
antiparallel edges. Furthermore, it can be modiFed to cover the scenario in which both
players move simultaneously: after scaling edge lengths by a factor of two, give Player
I a headstart of one move.
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4. Identical starting point

The result in the previous section shows that deciding the outcome of a CSP instance
is quite diKcult, even when both players start very close to each other, and the graph
is bipartite. In this section, we concentrate on the natural special case in which both
players start from the same vertex. As it turns out, this scenario is quite diOerent.

Theorem 2. For the CSP on bipartite graphs with both players starting at the same
point, player I can avoid a loss.

Proof. By way of contradiction, suppose player II has a winning strategy, and both
players start from vertex v0. Now suppose I moves to vertex vI1, and II can counter
this move by vII1 . In the following, let I visit any sequence of vertices vI1; v

I
2; v

I
3; : : : By

assumption, II has a winning strategy, so there is a sequence of moves vII1 ; v
II
2 ; v

II
3 ; : : :

that ends with II capturing an absolute majority of customers. Note that each vIIi is de-
termined by the sequence vI1; v

I
2; v

I
3; : : : ; v

I
i ; by induction, we can write vIIi (v

I
i) to indicate

that I’s move to vIi was successfully countered by II by moving to vIIi .
Now consider, for any sequence uII1 ; u

II
2 ; u

II
3 ; : : : of moves by II, the following sequence

of moves for I:

vI1; v0; v
II
1 (u

II
1 ); v

II
2 (u

II
2 ); v

II
3 (u

II
3 ); : : : :

This means that player I gives up two moves by moving to any neighbor vI1 and back
to v0, thereby giving player II a head start of 1 1

2 moves. Then I plays against a
“phantom player” II′ that is one move lagging behind the real player II, i.e., precisely
1
2 move ahead of I, which allows I to “steal” the assumed second player’s strategy
against such a player.
By assumption, the above is a well-deFned sequence of moves for I. Therefore,

player I wins more than half of the customers against II′, but II wins more than half
of the customers against I. Hence, there must be a customer (say, at vertex v∗) that I
reaches before II′, but that II reaches before I. Therefore, I must be moving to vertex
v∗ when II is already there, and just before II′ gets there.
This is a contradiction to the bipartiteness of G: After a move of I, both players

must always occupy vertices of opposite color, so I cannot reach v∗ with II positioned
on that vertex.
Therefore, II cannot have a winning strategy, proving the claim.

Note that the theorem remains valid for directed graphs, if there is a single pair of
anti-parallel edges that allows I to leave and return to v0 in just two moves.

The following example (courtesy of David Wood) shows that the possibility of
moving back to v0 is crucial for the proof: In the absence of an undirected edge at v0,
player I may be limited to winning a single customer.

Theorem 3. There is a family of instances of CSP on directed graphs in which I
cannot win more than 1 out of n customers.
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v i+3 v0

v v
v

ii+1
i+2

Fig. 4. Player I loses by n − 1 customers.

v0

v v

vv

v

v v

1 2
3 v4

5 6

7 8

Fig. 5. Player I loses.

Proof. Consider the graph shown in Fig. 4. The initial vertex for both players is
denoted by v0, the vertex set VC is indicated by the circled vertices.

Suppose I starts by moving to vertex vi; then II responds by moving to vertex vi+2.
Now the rest of the game is determined, and I only wins the customer at vi.

For non-bipartite graphs, I may lose, even on undirected graphs, provided passing is
not allowed.

Theorem 4. There are instances where I cannot avoid a loss, even if both players
start from the same vertex.

Proof. Consider the graph shown in Fig. 5. The initial vertex for both players is
denoted by v0, the vertex set VC is indicated by the three circled vertices.
Player I is in a zugzwang situation: Suppose I starts by moving to vertex v1; then II

moves to vertex v2. If then I moves back to v0, II moves on to v4; it is straightforward
to check that now II will force a win by taking the customer at v6 and at least one



388 S.P. Fekete et al. / Theoretical Computer Science 313 (2004) 377–392

v0

v v

vv

v

v v

1 2
3 v4

5 6

7 8

0v’

Fig. 6. A draw game.

of v3 and v8. Hence, we can assume that I’s second move is to v3. However, this is
answered by II by moving to v4, and I cannot prevent II from taking both v6 and v8.

Therefore, consider the case where I starts by moving to v2; II responds by moving
to v1. As in the previous case, II wins by moving to v3 if I moves back to v0. Hence,
we can assume that I’s second move is to v4, followed by II moving to v3, securing
the Frst customer. Regardless of I’s next move, II can again force a win by taking at
least one of the remaining two customers.
This concludes the proof.

An immediate consequence is the following.

Theorem 5. There are instances where optimal play from both I and II forces a draw,
even if both players start from the same vertex.

Proof. Consider the graph shown in Fig. 6. The initial vertex for both players is
denoted by v0, the vertex set VC is indicated by the three circled vertices.

Suppose player X is the Frst to move to one of the vertices in V = {v1; v2}, while
the other player Y has not left the vertex set {v0; v′0}. Then the analysis of Theorem 4
shows that player Y can force a win by moving to the other vertex in V .

Therefore, neither of the players is willing to leave the set {v0; v′0}, resulting in a
draw.

5. Trees

Our proof of Theorem 2 is purely existential. Furthermore, there is still no proof
that player I cannot just avoid a loss, but also avoid a draw, and end the game with
a win or a tie.

Conjecture 6. For the CSP on trees, one of the players can force a win or a tie.
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Fig. 7. Player I can only win when accepting to trail by a large number.

In particular, this implies that for the case of identical starting point and an odd
number of customers, player I always wins the game.
We have a pretty good idea how to tackle this problem; a constructive argument

may use bookkeeping on subsets of customers, and the number of moves necessary to
collect them and return to a previous position. (This means generalizing the idea of
playing against a phantom player, and arguing that on trees it can only be an advantage
to have extra moves to spare.) We hope to Fnish this argument at a later time. But even
if this works out, the resulting construction is exponential in size and rather awkward.
It would be a lot more satisfying to have a simple strategy that guarantees a win for
player I.
However, there are a number of diKculties that are indicated by the following

observations.

Theorem 7. There are instances of CSP on trees, with both players starting from the
same vertex v0, the number of customers being 2k + 1, and the only way for player
I to win allows II to potentially collect k customers before I reaches even a single
customer.

Proof. Consider the graph shown in Fig. 7. It has k customers at an intermediate
distance from the starting vertex v0, and at twice that distance from each other. Fur-
thermore, there is a cluster of k + 1 customers at a large distance from v0, but at a
small distance from each other.
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Fig. 8. Player I loses when adapting an a priori strategy.

If I starts by taking one of the nearer customers, II collects all the distant customers
and wins. On the other hand, II may take all the near customers before I takes one of
the distant ones.

Theorem 8. Consider instances of CSP on trees, where both players start on the same
vertex v0. In general, player I cannot avoid a loss by adapting an a priori strategy,
i.e., by prioritizing the customers in an appropriate way, and always trying to collect
the customer with the highest priority.

Proof. Consider the graph shown in Fig. 8. It consists of a symmetric tree with nine
customers at the leaves, grouped into three triples.
Without loss of generality, assume that v1 is the Frst customer on I’s list; furthermore,

assume that v4 is the Frst customer on the list that is none of v1, v2, v3. Then it is
straightforward to check that II can collect the customers v5, v6, v7, v8, v9 without any
interference from I, thus winning the game: In order to win, I would be forced to visit
customers from all three diOerent clusters, which takes longer than II needs to collect
all Fve customers.

Finally, player II can limit his losses in a natural special case. A rather involved
argument for the following can be found in the fourth author’s thesis. We omit this
proof, as we believe that there should be a relatively simple argument; in particular, a
proof of Conjecture 6 as described should do the trick.

Theorem 9. Consider an instance of the CSP where the graph G is a tree T and both
players start at the same vertex v0. Suppose all customers are positioned at leaves of
the tree. Then player II can avoid a loss by more than one customer. In particular,
II can avoid a loss when the number of customers is even.
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Fig. 9. Can you give a simple winning strategy for player I, and a short proof that it wins?

6. Stars

It may be easier to come up with a strategy for the class of CSP instances in which
the graph G is a star, i.e., a tree T with at most one vertex of degree higher than
two. Again, we consider both players starting from the same vertex. If customers are
only contained in leaves, it is not hard to see that there is a simple optimal strategy
for both players, by always choosing the nearest free customer when returning to the
central node.
However, it is straightforward to see that the example in Fig. 9 cannot be won using

this approach: If I collects all Fve customers along the longest ray, II gets all customers
along the other two rays. Similarly, it follows that I loses when trying to pick up all
the customers along a single ray. We leave it to the reader as an exercise to work out
a winning strategy for this instance.

7. Conclusions

In this paper, we have introduced the CSP. Many open problems remain. Besides
the ones mentioned directly or indirectly throughout the paper, there are many more.
One of the more interesting scenarios may be a continuous geometric version, in which
customers are points in some space of Fxed dimension, and the players move contin-
uously or in discrete portions along arbitrary paths. Clearly, this introduces additional
diKculties.
As there are innumerable variants of the TSP, due to many diOerent practical con-

straints, requirements, or objective functions, it is quite conceivable that there are many
more related games. One such variant (called the freeze tag problem, FTP) has been
considered in [1], where a set of cooperating players have to awake each other, and
any awake player can awake a sleeping player by moving next to him. In the original
game of freeze tag, there are two competing teams, and one wins if it can freeze all
opposing players, while the second one tries to avoid this permanently.
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