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SUMMARY

The Cmr complex is the multisubunit effector com-
plex of the type III-B clustered regularly interspaced
short palindromic repeats (CRISPR)-Cas immune
system. The Cmr complex recognizes a target RNA
through base pairing with the integral CRISPR RNA
(crRNA) and cleaves the target at multiple regularly
spaced locations within the complementary region.
To understand the molecular basis of the function
of this complex, we have assembled information
from electron microscopic and X-ray crystallo-
graphic structural studies and mutagenesis of a
complete Pyrococcus furiosus Cmr complex. Our
findings reveal that four helically packed Cmr4 sub-
units, which make up the backbone of the Cmr com-
plex, act as a platform to support crRNA binding
and target RNA cleavage. Interestingly, we found a
hook-like structural feature associated with Cmr4
that is likely the site of target RNA binding and cleav-
age. Our results also elucidate analogies in themech-
anisms of crRNA and target molecule binding by
the distinct Cmr type III-A and Cascade type I-E
complexes.

INTRODUCTION

The clustered regularly interspaced short palindromic repeats

(CRISPR)-CRISPR-associated proteins (Cas) system is a

recently described adaptive immune system in prokaryotes

that targets invading phages and plasmids using short RNA as

guides (Barrangou and Marraffini, 2014; Terns and Terns,

2011; van der Oost et al., 2014). Three types of CRISPR-Cas sys-

tems carry out the target interference process (Makarova et al.,

2011a), in which a transcribed and fully processed CRISPR

RNA (crRNA) is assembled with a surveillance/effector protein

or protein complex (CRISPR ribonucleoproteins [crRNPs]).

Nucleic acid targets are captured by the crRNA through base

pairing and cleaved via the effector protein(s) or factors associ-
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ated with the surveillance complex. The target interference com-

plexes of types I, II, and III differ in their RNA and protein compo-

sition (Makarova et al., 2011a). Whereas type II complexes are

comprised of a single effector protein (Gasiunas et al., 2012; Ji-

nek et al., 2012), those of types I and III contain multiple protein

subunits (Brouns et al., 2008; Hale et al., 2009; Hatoum-Aslan

et al., 2014; Sinkunas et al., 2013; Wiedenheft et al., 2011a).

The multicomponent type I and III crRNPs contain members of

the large subunit (Cas8 for type I and Cas10 for type III), the small

subunit, Cas5, and Cas7 superfamilies of proteins (Hale et al.,

2009; Hatoum-Aslan et al., 2014; Rouillon et al., 2013; Spilman

et al., 2013; Staals et al., 2013). Cas10 proteins contain an ad-

enylyl-cyclase-like domain that is often fused with an amino ter-

minal histidine-aspartate (HD) domain related to those found in

DNA-cleaving enzymes (Makarova et al., 2013). Cas8 and

Cas10 proteins are large in size but do not share sequence ho-

mology. Cas5 and Cas7 are both repeat-associated mysterious

proteins (RAMPs) characterized by the presence of the ferre-

doxin-like fold (Makarova et al., 2011b). Recently, important

structural insights were gained from 3D electron microscopy

(3DEM) (Rouillon et al., 2013; Spilman et al., 2013; Staals et al.,

2013; Wiedenheft et al., 2011a), X-ray crystallographic (Jackson

et al., 2014; Mulepati et al., 2014; Zhao et al., 2014), and

modeling (Benda et al., 2014) studies of type I-E (Cascade) and

type III-A (Csm) and III-B (Cmr) crRNPs. Despite their distant

phylogeny, the type I and III crRNPs share a similar helical archi-

tecture and structural homology in individual subunits, particu-

larly Cas5 and Cas7. High-resolution structures of the type I-E

Cascade show that both Cas5 and Cas7 form a set of regularly

spaced clamps that secure the bound cRNA (Jackson et al.,

2014; Mulepati et al., 2014; Zhao et al., 2014). The guide:target

heteroduplex stabilized in this manner deviates drastically from

the standard forms and is unwound every sixth base pair, which

is believed to facilitate segmented target binding (Mulepati et al.,

2014). In contrast to the detailed mechanism of the type I

crRNPs, the mechanism of nucleic acid binding for the type III

crRNPs remains unknown.

The type III-B Cmr complex targets RNA for destruction

(Benda et al., 2014; Hale et al., 2009, 2012; Staals et al., 2013;

Zhang et al., 2012) and generally contains six Cmr proteins,

Cmr1–Cmr6. Cmr1, Cmr4, and Cmr6 belong to the Cas7
hors
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Figure 1. Overview of Pyrococcus furiosus cmr Gene Arrangement, Activity of the Cmr Complex EM Specimens, EM Structure of the Cmr

Complex, and Crystal Structure of the Cmr4 Subunit
(A) The arrangement of cmr genes in relationship to CRISPR repeats (R) and spacers (S).

(B) Target RNA cleavage activity of the full-length Cmr complex used for EM studies. Diagrammed is the crRNA with 8 nt 50 tag (black) and 37 nt guide (orange)

duplexed with the 37 nt complementary target RNA (gray) with additional 30-labeled nucleotide indicated (white square). The cleavage sites observed and

corresponding products of cleavage of 50- and 30-radiolabeled target RNAs are indicated with colored and numbered arrows.

(C) EM structures of the holo Cmr complex with 45 nt crRNA and 37 nt target RNA. Colors represent density segmentations of the Cmr1–Cmr6 complex

highlighting individual subunits. Three different views are shown, and densities for each of the subunits are resolved and are labeled.

(D) Crystal structure of Cmr4. Secondary structural elements are labeled numerically for the core ferredoxin-like fold and alphabetically for insertion elements.

Insertion segments are named IA, IB, and IC and their locations indicated by dashed boxes in the topology diagram (Figure S2). Disordered regions are indicated

by dashed curves.
superfamily, Cmr3 belongs to the Cas5 superfamily, and Cmr2

and Cmr5 are the large (Cas10) and small subunit, respectively

(Makarova et al., 2011a; Figure 1A). Studies with Pyrococcus

furiosus (Pf) and Thermus thermophilus (Tt) Cmr complexes

showed that the Cmr complex is associated with predominantly

two forms of the crRNA that differ by six nucleotides in length

(Hale et al., 2009; Staals et al., 2013) and, interestingly, cleaves

the target RNA at multiple sites (without a requirement for an

exogenous nuclease), also with a six-nucleotide spacing (Hale

et al., 2014; Staals et al., 2013; Figure 1B). The Sulfolobus solfa-

taricus Cmr complex contains an additional Cmr7 protein and

has significantly different RNA cleavage properties than the Pf

and Tt Cmr complexes (Zhang et al., 2012).

Previously determined 3DEM structures of an in vivo isolated

Tt Cmr complex and of a reconstituted Pf Cmr complex lacking

the HD domain at the amino terminus of its Cmr2 subunit found

that Cmr4 comprises the central backbone of the Cmr complex

but has different stoichiometries in the two Cmr complexes (Spil-

man et al., 2013; Staals et al., 2013). On the other hand, a recent

modeling study of the Pf Cmr complex, in which crystal struc-

tures of the six subunits were docked to the 3DEM density of

the Pf Cmr complex lacking the HD domain, suggested that

the Pf and the Tt Cmr complexes have the same Cmr4 stoichi-

ometry (Benda et al., 2014). Cmr4 is known to be present along

the length of the guide region of the crRNA, where target interac-
Cell Re
tion and cleavage occurs (Spilman et al., 2013); however, the

molecular basis of Cmr4 interaction with the crRNA or the target

RNA remains unknown.

In this work, we have purified and reconstituted the Pf Cmr

complex using the full-length Cmr2 (full-length Cmr complex

herein) and obtained an electron microscopy (EM) structure us-

ing single-particle reconstruction. Furthermore, we obtained a

crystal structure of Pf Cmr4 at 2.8 Å resolution that recapitulates

the arrangement and interactions of the central backbone of the

full-length complex. The combined EM and X-ray crystallo-

graphic studies resulted in a consistent model of the Pf Cmr

complex at an atomic resolution and revealed Cmr4-associated

features suggestive of RNA cleavage centers. Mutagenesis

studies identified structural elements of Cmr4 essential for

crRNA binding as well as target RNA cleavage. Comparison of

the Cmr complex structure to the crystal structure of the

Cascade complex showed an analogous mechanism of crRNA

and target RNA binding between the two different types of

crRNPs.

RESULTS

Overview of the Full-Length Cmr Complex Structure
Reconstituted and functional full-length Cmr complexes (Figures

S1A and 1B) were subjected to 3DEM analysis. To ensure
ports 9, 1610–1617, December 11, 2014 ª2014 The Authors 1611



Figure 2. Fitting of Cmr4 Crystal Structure

to EM Densities and Detailed View of a1

Hooks

(A) The Cmr4 filament generated by crystallo-

graphic and noncrystallographic symmetries.

Cmr4 monomers (red, yellow, cyan, and blue) are

related by an 8-fold rotation and a 23 Å translation.

The disordered b-hairpin (whose equivalent in

Cascade is termed thumb) is indicated by dashed

lines. The dashed lines also indicate that the

thumb of the preceding Cmr4 likely interacts with

the a1 helix of the following Cmr4.

(B) Rigid-body fit of four packed Cmr4 molecules

to the density of the central body of the 3DEM

structure of the full-length Cmr complex (45tCmr1–

Cmr6) and that of the high-resolution structure of

the Cmr4–Cmr5 filament (Cmr4–Cmr5), where the

density belonging to Cmr5 was removed for

clarity. Inset shows a close up of Cmr4 crystal

structure fitting to the density of the Cmr4–Cmr5

filament. The protruding EM density near a1 (a1

hook) is unaccounted for by the crystal structure

but may accommodate the loop L1, which

correspondingly is found in a position in the

crystal structure lacking EM density.

(C) Two different views of the full-length Cmr

complex density reveal the arrangement of the a1

hooks. Note that the a1 hook of Cmr4a connects

to the D2 domain of Cmr2 whereas those of

Cmr4b, Cmr4c, and Cmr4d connect to Cmr5

subunits.
accurate subunit assignment and detect conformational

changes, negative stain EM data sets were collected for each

of the three Cmr complex samples: Cmr1–Cmr6 with 45 nucleo-

tide crRNA and target RNA (45tCmr1–Cmr6), Cmr1–Cmr6 with 45

nucleotide crRNA alone (45Cmr1–Cmr6), and Cmr2–Cmr6 with

45 nucleotide crRNA (45Cmr2–Cmr6; Figure S1C). In addition, a

cryoEM data set was collected for isolated Cmr4–Cmr5 protein

filament (Figure S1C). The three data sets of full Cmr complexes

were reconstructed in three dimensions using single-particle

refinement to better than 15 Å resolution, and that of the

Cmr4–Cmr5 filament was refined to better than 12 Å by helical

reconstruction (Figure S1C; Table S1; Supplemental Experi-

mental Procedures).

The full-length Cmr complex bound with the 45 nt crRNA and

the target RNA resulted in clear density features for segmenta-

tion (Figure 1C). Subunits could be unambiguously assigned to

segments by a combination of difference map and crystal-struc-

ture-fitting methods (Figures S1C and S3; Supplemental Exper-

imental Procedures). In addition, the helically reconstructed

Cmr4–Cmr5 filament clearly matches the central repeats of the

intact complex (Figure 2). The final stoichiometry of the full-

length Cmr complex assembled with 45 nt crRNA and a comple-

mentary target is Cmr11:Cmr21:Cmr31:Cmr44:Cmr53:Cmr61:

crRNA1 (Figure 1C). The new density unobserved in the trun-

cated Cmr2 crystal structure was assigned to the HD domain

of Cmr2 (Figure S1C).
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An Atomic Resolution View of the Central Body
The central backbone structure of the Cmr complex was further

analyzed by a 2.8 Å crystal structure of the Cmr4 subunit

(Table S2). Remarkably, both crystallographic and noncrystal-

lographic packing of Cmr4 generates an infinite filament with

a nearly perfect 8-fold screw symmetry (45� rotation with a

23 Å translational interval along the helical axis) that recapitu-

lates the structure of the central backbone of the Cmr complex

(Figures 2A and 2B). Four head-to-tail-packed Cmr4 molecules

could be readily fit into the density belonging to the central

backbone of the Cmr complex or the Cmr4–Cmr5 filament

with minor adjustments (Figure 2B). The structural model of

the Cmr complex was completed by placing structures of three

helically assembled Cmr5 subunits (Park et al., 2013), the

Cmr2–Cmr3 heterocomplex, and the homologs of Cmr6

(Cmr4) and Cmr1 (afCmr1) into the EM density of the fully

assembled Cmr complex (Figure 2B). Docking the crystal struc-

tures of these Cmr subunits to the previous EM density map

lacking the Cmr2 HD domain led to a similar model (Benda

et al., 2014).

Comparison of the Cmr4 crystal structure with its correspond-

ing EM density in the higher resolution cryoEM structure of iso-

lated Cmr4–Cmr5 filament revealed a protruding density (a1

hook) that emerges from a1 of each Cmr4 and extends across

the major helical groove to Cmr5 (or Cmr2 for Cmr4a; Figure 2C).

The Cmr4-associated a1 hook serves as the front gate of the
hors



Figure 3. Structural Similarity between Subunits of the Cmr and the Cascade Complexes Suggests an RNA-Binding Model

(A) Superimposed Cmr4 and Cas7 (Cas7.6) structures displayed side by side. The crRNA bound to Cas7.6 is shown in red and also modeled with Cmr4. The core

ferredoxin-like fold of each protein is colored in green, and the rest is colored in yellow orange. Numbers indicate residue numbers, and dashed lines mark

disordered regions. The a1 helix from the upper adjoining Cas7 subunit in assembled Cascade or Cmr is schematically shown as a green cylinder. Conserved

residues on loop L1 and a1 helix that play roles in anchoring the crRNA in Cas7 are shown in stick models for both Cas7 and Cmr4.

(B) Superimposed Cmr3 and Cas5 structures displayed side by side. The crRNA bound to Cas7 is modeled with both Cas5 and Cmr3 (shown in red). The core

ferredoxin-like fold of each protein is colored in green, and the rest is colored in yellow orange. Numbers indicate residue numbers, and dashed lines mark

disordered regions.

(C) 3DEM density-fitted atomic structure of the Cmr complex. Crystal structures of Pf Cmr2–Cmr3 (PDB ID: 4H4K), Cmr5 (PDB ID: 4GKF), Cmr4 (PDB ID: 4RDP),

and Archaeoglobus fulgidus Cmr1 (afCmr1) (PDB ID: 4L6U) were fitted into the EM density of the full-length Cmr complex. Cmr6 is approximated using the

structure of Cmr4 (‘‘Cmr6’’). Cmr2 and Cmr3 are shown in gray ribbons, Cmr5 subunits are displayed as surface models, Cmr1 and Cmr6 as simple ribbon

models, and Cmr4 subunits are displayed as cartoons. The a1 helix of each Cmr4 and that of Cmr3 are colored in orange. Lys46 and Asp26 are shown in orange

spheres. The partial crRNA-target model associatedwith Cmr5 andCmr4 (red andmagenta) was generated from that bound to the homologous Cas7 in Cascade

using the symmetry relating Cmr4 subunits. Inset illustrates structural features around the a1 hook density. A cartoon model representing the organization and

crRNA binding of the Cmr complex is displayed using the same coloring scheme as in Figure 1.
Cmr complex and may control access of crRNA and/or target

RNA to the interior of the central helical body.

Homologous Structural Elements Suggest Similar
crRNA and Target-Binding Models for Cmr and Cascade
Complexes
Superimposition of Pf Cmr4 and Pf Cmr5 with the analogous

E. coli type I-E Cascade complex subunits, Cas7 and Cas5,

respectively (Jackson et al., 2014; Mulepati et al., 2014; Zhao

et al., 2014), revealed striking structural homology that suggests

a similar RNA-binding mechanism (Figures 3A and 3B). In

Cascade, Cas7 uses a characteristic b-hairpin (thumb) to form

a clamp with the a1 helix (palm) of its neighboring Cas7 subunit

to secure the crRNA in a sequence-independent manner (Fig-

ure 3A). The Cas5 and the Cas7.6 subunit (closest to Cas5)

form the first composite site (Figure 3B). The analogous elements

of Pf Cmr4 would be in place to form the same thumb-palm

clamps provided its b-hairpin thumb is ordered upon assembly

(Figures 2A and 3A). Similarly, Pf Cmr3 and Cmr4a would form

the first thumb-palm clamp (Figures 2A and 3B).
Cell Re
Guided by the predicted RNA-binding elements of Cmr4, we

built a Cmr4-bound nucleic acid model from the guide:target

heteroduplex bound to Cascade (Mulepati et al., 2014). We

assumed that the heteroduplex segment (five base pairs plus

two unpaired bases) associated with Cas7.6 of Cascade binds

similarly to Cmr4a, which allowed us to generate three additional

heteroduplex segments bound to Cmr4b, Cmr4c, and Cmr4d by

applying the same symmetry relating the four Cmr4 proteins to

the heteroduplex segments (Figure 3C). With minor adjustments,

the four heteroduplex segments can be connected into intact

strands that represent a model of crRNA:single-stranded DNA

boundwith theCmr complex (Figure 3C). The junction of two het-

eroduplex segments coincides with the observed a1 hook and

the projected path of the b-hairpin thumb of Cmr4 (Figure 3C,

inset). At the analogous locations in Cascade, an Asp-Arg/Lys-

Trp triad is observed that bridges two consecutive Cas7 subunits

and the small subunit (or Cas8; Zhao et al., 2014). Equivalent res-

idues that are capable of participating in a triad bridge are also

found at this location in Cmr4 (Asp26 and Trp226), although

Trp226 is disordered and the accurate orientation of Cmr5 could
ports 9, 1610–1617, December 11, 2014 ª2014 The Authors 1613



not be determined. When the Cmr4-nucleic acid model is fit into

the EMmap for the full-length Cmr complex bound with the 45 nt

crRNA and target RNA, the crRNA model is partially contained

within the density, whereas the target RNA model is largely

outside the density (Figure S3). Our Cmr complex preparations

clearly show the presence of the RNAs (Figures S1A and S1B),

suggesting the possibility that the path of the Cmr crRNA devi-

ates from that bound to Cascade, the crRNA dissociates during

EM preparation, or the crRNA is only weakly bound to the com-

plex. The striking homology between the central backbone of the

Cmr complex and that of Cascade strongly argues that the nu-

cleic acid duplex bound to the Cmr complex also likely remains

flat and stretched (Mulepati et al., 2014). Furthermore, the Cmr

guide:target duplex is likely also unwound at six base pair inter-

vals in accord with the analogous b-hairpin thumbs near the a1

hooks of the Cmr4 subunits (Figure 3C, inset).

Mutations in Cmr4 Abolish Target RNA Cleavage

Previous structural and crosslinking data point to Cmr4 as the

most likely catalytic subunit of the Cmr complex. Our model (Fig-

ure 3C), based on the structural analogy with Cascade and

biochemical evidence including protein-crRNA UV-crosslinking

data (Spilman et al., 2013), indicates that the four self-oligomer-

izedCmr4subunitsof thehelical backboneof the intactCmrcom-

plex can make direct contact with portions of the crRNA guide

element, which base pairs with regions of the target RNA where

four cleavages occur at regular 6 nt intervals. We assayed the ef-

fects of several mutations of Cmr4 on both target RNA cleavage

activity (Figures 4A, 4C, and 4D) and crRNA-binding/Cmr com-

plex formation (Figures4Band4E). TheconservedCmr4 residues

targeted for alanine substitutionmutagenesis included a histidine

residue (H15) thatwas earlier predicted to be a key active site res-

idue (Makarova et al., 2011b) as well as several other conserved

residues (R31, D26, E32, T35, K46, R50, D86A, R112, R209,

E227/E228, and K276) with potential to perform acid/base catal-

ysis typical for facilitating cleavage of phosphodiester bonds (see

Cmr4 sequence alignment; Figure S4). Most of the tested Cmr4

mutants did not result in any discernible effects on target RNA

cleavage or crRNA binding (Figures 4A and 4B). (However, note

a weak but consistent effect on both of these activities for double

mutationCmr4E227A,E228Aof theb-hairpin thumb). In contrast,

cleavage was abolished by mutation of both K46A of the a1

helix (Figure 4A) and D26A (or D26N) of the potential triad bridge

region of Cmr4 (Figures 4C and 4D).

The effect of the Cmr4 K46A mutation on target RNA cleavage

was accompanied by a loss of crRNA association/Cmr complex

formation, indicating that K46 plays a critical role in crRNA inter-

action (Figure 4B). In contrast, the Cmr4 D26A (and D26N) muta-

tion resulted in a specific loss of all four target RNA cleavages

(Figures 4C and 4D) without any detectable loss of crRNA asso-

ciation/Cmr complex assembly (Figure 4E) or target RNA associ-

ation (Figure 4F). (Note that a low level of spurious cleavage near

target RNA site 2was reproducibly observed [Figures 4C and 4D;

data not shown].) Our findings indicate that Cmr4 D26 is directly

important for target RNA cleavage, consistent with a similar

finding by Benda et al. (2014). The close proximity of D26 to

the a1 hook and its potential relationship with the Cascade

Asp-Arg/Lys-Trp triad suggest that this region is the center of

target RNA cleavage.
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DISCUSSION

Combined EM, crystallographic, and mutagenesis analysis pro-

duced a detailed model for assembly and function of the Cmr

complex. Furthermore, comparison of the structures of analo-

gous subunits in the type I-E Cascade complex revealed analo-

gous nucleic-acid-binding methods. The structure of the crRNA-

target RNA duplex bound to the Cmr complex likely deviates

from the standard A form and contains regularly disrupted

base pairs. The discontinuous crRNA-target RNA-binding model

with 6 bp segments may underlie the multiple cleavages cata-

lyzed by the Cmr complex at 6 nt intervals (Hale et al., 2014;

Staals et al., 2013; Figure 1B).

The potential coincidence of Cmr4-associated a1 hooks with

junctions of the guide:target model and the predicted Asp(26)-

Arg/Lys-Trp triad suggests their involvement in RNA binding

and possibly in catalysis. Our mutagenesis data support this

hypothesis and indicate that Cmr4 (a Cas7 superfamily mem-

ber) is the primary source of the nuclease activity of the Cmr

complex. It remains to be determined, though, why alteration

of the D26 residue of Cmr4 subunit leads to loss of target

RNA cleavages. The D26 residue may function as part of a spe-

cific set of Cmr4 active site residues yet to be defined that

facilitates target RNA cleavage through general acid-base

chemistry or via coordination with a catalytic divalent metal

ion. Alternatively, target RNA cleavage may occur by an auto-

catalytic mechanism (Ferré-D’Amaré and Scott, 2010; Lilley,

2011), facilitated by a specific target RNA interaction involving

Cmr4 D26. The active site residues may distort target nucleo-

tides, which favors in-line attack by a nucleophilic 20-OH. A

lack of crRNA-target RNA pairing in the vicinity of the predicted

target RNA cleavage site, as is observed in type I-E effector

complexes (Mulepati et al., 2014; Wiedenheft et al., 2011b)

may precede or accompany the postulated Cmr4-target base

interaction.

The crystal structure of Cmr4 expands the repertoire of struc-

tures of Cas7 proteins (this study and Benda et al. 2014). Unlike

the related Cas6 family of RAMP proteins, all Cas7 structures

reveal a single ferredoxin-like fold interrupted by large insertions

or extensions (Figure S5). Cmr4 represents the first type III-B

Cas7 structure (Cmr1 is more similar to Cas6 family proteins),

and its structure reveals several differences from type III-A

(Csm3 and Csa2) and type I-E (Cas7/Cse4/CasC) Cas7 proteins,

primarily in the location and structures of the insertion elements.

The two conserved regions among Cas7 proteins, the a1 helix

and the b-hairpin thumb, cofunction in crRNA binding and target

positioning. Our finding that a Cmr4 K46A mutation within the

conserved 44SLKG47 motif of the Cas7 superfamily of proteins

(see Figure S4) abolished crRNA interaction is consistent with

the close association of a1 with the crRNA and the reported

importance in crRNA binding in other type I and III crRNPs

(Hrle et al., 2013; Lintner et al., 2011; Figure 3).
EXPERIMENTAL PROCEDURES

Protein Purification and Cmr Complex Reconstitution

The Cmr proteins other than Cmr2 were purified as previously described

(Spilman et al., 2013). The full-length Cmr2 was purified using a similar
hors



Figure 4. Effects of Cmr4 Mutations on

Cleavage Activity and Complex Formation

(A) Target RNA cleavage by Cmr complexes with

mutant Cmr4 subunits. Cmr complexes with

indicated mutants, wild-type, or without Cmr4 (�)

were incubated with radiolabeled target RNA, and

products were analyzed by denaturing gel elec-

trophoresis. Target RNA alone (RNA) is also

shown. Radiolabeled Decade marker RNAs were

used for size determination (M). Positions of the

four 50-labeled target RNA cleavage products are

indicated (arrowheads). wt, wild-type.

(B and E) crRNP formation byCmr complexeswith

mutant Cmr4 subunits. 30 end-labeled 45 nt

crRNA binding by Cmr complexes with indicated

mutant Cmr4 subunits was analyzed by native gel

electrophoresis. The positions of the crRNA (RNA)

and crRNA-Cmr protein complex (RNP) are indi-

cated.

(C and D) Target RNA cleavage by Cmr com-

plexes with D26 mutant Cmr4 subunits. Com-

plexes containing the indicated Cmr4, formed

with (+) or without (�) 45 nt crRNA, were incu-

bated with 50 end-labeled (C) or 30 end-labeled (D)

target RNA. Positions of the four 50- and 30-labeled
target RNA wild-type Cmr cleavage products are

indicated (arrowheads). A spurious cleavage

product observed with the mutants is also indi-

cated (asterisk).

(F) Target RNA binding by Cmr complexes with

D26 mutant Cmr4 subunits. Complexes contain-

ing the indicated Cmr4, formed with (+) or without

(�) 45 nt crRNA, were incubated with 50 end-

labeled target RNA and analyzed by native gel

electrophoresis. The positions of the target RNA

(target), duplexed target RNA-crRNA (RNA

duplex), and Cmr RNP + target (RNP + target) are

indicated.
procedure with slight modifications. Detailed methods can be found in the

Supplemental Experimental Procedures. Briefly, Cmr4, Cmr5, and Cmr6

were purified as a ternary subcomplex and Cmr1 or Cmr3 were purified inde-

pendently using a Ni-nitrilotriacetic acid column followed by a size-exclusion
Cell Reports 9, 1610–1617, Dec
column. The full complex was assembled by in-

cubation with a crRNA and isolated by a size-

exclusion method.

Electron Microscopy Reconstruction

of the Cmr Complexes

Purified Cmr complexes were studied by negative

stain. Detailed methods of sample preparation

and data collection and analysis are included in

the Supplemental Experimental Procedures.

Briefly, the negative stained samples were pre-

pared using 2% (w/v) uranyl formate and data

collected with an FEI Titan Krios using the auto-

matic data acquisition software Leginon (Suloway

et al., 2005). Particles were picked by an auto-

mated difference-of-Gaussians picker using an

iterative method and were reconstructed using a

combination of projection matching (Ludtke

et al., 1999) and multivariate data analysis (Frank

et al., 1996). Resolutions for all reconstructions

were determined by Fourier shell correlation and
cross-validated by both independent refinement of half sets (Scheres, 2012)

and Fourier neighbor correlation as implemented in the program RMEASURE

(Sousa andGrigorieff, 2007; Supplemental Experimental Procedures). Long fil-

aments of the Cmr4–Cmr5 complex were prepared for cryoEM by heating a
ember 11, 2014 ª2014 The Authors 1615



sample of Cmr4–Cmr5 to 70�C for 15 min and cooling to room temperature

over 10 min. The helical reconstruction of Cmr4–Cmr5 was accomplished us-

ing the iterative helical reconstruction method (Egelman, 2010) combined with

EMAN and in-house software. The initial model for refinement was a filled

featureless cylinder with the same diameter as the filaments and the 24.7 Å

rise and 48.2� twist of the filament were from the previous Cmr4–Cmr5 struc-

ture in negative stain (Spilman et al., 2013).

Crystal Structure Determination of Cmr4

PfCmr4 was purified as described above and crystallized using a hanging drop

vapor diffusion method. Selenomethionine-substituted sample was used to

obtain single-wavelength diffraction data, which led to structure determination

and refinement at 2.8 Å. Diffraction data and refinement statistics are included

in Table S2.

Cmr4 Mutant Analysis: crRNA Binding, Target RNA Binding,

and Cleavage Assays

Cmr4 mutants were generated by site-directed mutagenesis, and the proteins

were purified as described above. To assemble Cmr4 mutant-containing Cmr

complexes, individually purified Cmr proteins lacking Cmr4 were incubated

with each Cmr4 mutant protein. For crRNA-binding assays, the Cmr protein

mixtures were incubated with g32P-ATP 50 end-labeled crRNA and then

resolved on a native gel. For target cleavage, the same complexes were first

assembled with a nonlabeled crRNA and subsequently with either the 50

(g32P-ATP) or 30 (32PCp) end-labeled target RNA. Cleavage products were

visualized on a denaturing gel. Detailed methods are included in the Supple-

mental Experimental Procedures.

ACCESSION NUMBERS

The negative-stained Cmr complex EM map was deposited in the EM data-

bank under the accession numbers EMD-6165 and EMD-6166 (sharpened).

The cryoEM structure of the Cmr4-5 filament was deposited under the acces-

sion number EMD-6167. The crystal structure of Cmr4 was deposited in the

Protein Data Bank (PDB) database under the accession number 4RDP.
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