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Abstract

Escherichia coli is a common cause of infections in all populations and countries of the world, causing an enormous burden of disease. In

this issue of Clinical Microbiology and Infection, Al-Hasan et al. describe seasonal peaks in the incidence of E. coli bloodstream infection

(BSI) during the summer for a population of 125 000 in Minnesota, USA. We discuss the probability that similar seasonal peaks in the

incidence of E. coli BSI occur in other populations and geographical regions. Second, we discuss possible underlying explanations for

these findings in terms of seasonal changes in human behaviour and the effect of temperature on the ability of E. coli to survive in the

environment. Finally, we discuss some of the possible implications of E. coli BSI being a seasonal illness. More specifically, we discuss

how better understanding the reasons for seasonality may potentially help us to better understand the dominant routes by which

human populations are exposed to clonal groups of E. coli associated with urinary tract infection.

Escherichia coli is a common cause of infections in all popula-

tions and countries of the world. In fact, it is the most com-

mon cause of community-onset bloodstream infection (BSI)

in persons 65 years of age or older, accounting for 150 BSIs/

100 000 persons/year in the USA [1]. Although E. coli infec-

tions are commonly encountered in all areas of healthcare,

there is much about their epidemiology that remains poorly

understood. For example, the precise reservoirs for strains

of E. coli associated with BSI and urinary tract infections

(UTI) are not known, and the dominant routes by which

humans are exposed to these strains are not well under-

stood [2].

In light of the preceding gaps in our understanding,

reports suggesting that the incidence rate of BSI as a result

of E. coli follows a seasonal epidemic pattern are intriguing

and deserve our attention. In this issue of Clinical Microbiology

and Infection, Al-Hasan et al. report that the incidence rate of

E. coli BSI increased by 35% per month during the 4 summer

months in Olmsted County, Minnesota, compared with the

other 8 months of the year [3]. More specifically, Al-Hasan

et al. estimated that a 7% increase in the average monthly

incidence of E. coli BSI occurred for every 10� Fahrenheit

increase in average monthly temperature. Even though these

observations were made by studying people in one county

with a population of c. 125 000, Al-Hasan et al. conclusions

are supported by similar findings made by authors of other

recent studies. For example, Perencevich et al. noted that

the incidence of E. coli isolation from an array of clinical

specimens (including blood) collected in a large urban

hospital in Baltimore increased by 12% during the summer

[4]. Similar seasonal increases in the incidence of infection

have also been described for other species of Enterobacteria-

ceae. For example, E. cloacae infections increase by over 40%

during the summer months [4] and Anderson et al. showed

that increasing environmental temperature was indepen-

dently associated with an increased incidence of K. pneumo-

niae BSI [5].

Other species of Gram-negative bacteria also cause seasonal

infections. During the warm wet season in tropical climates,

melioidosis and community-acquired infections as a result of

Acinetobacter species increase [6,7]. In temperate climates, an

association has also been described between temperature and

the incidence of infection caused by Pseudomonas aeruginosa

and Acinetobacter baumanii [4]. Finally, significant increases

in the rates of Acinetobacter bloodstream infection (67%) and

pneumonia (47%) occur during the summer [8].

The preceding seasonal fluctuations in the incidence of

disease as a result of various species of Gram-negative bacte-

ria in different populations and geographical regions suggest

that the seasonality of E. coli BSI reported by Al-Hasan et al.

is more than just a localized phenomenon. However, the

underlying reasons for this phenomenon remain enigmatic.

For Gram-negative bacterial species that are acquired pre-

dominantly from the environment such as Acinetobacter spp,

P. aeruginosa and B. pseudomallei, a positive correlation

between environmental temperature and the incidence of

disease is plausible, because temperature is likely to have a

direct effect on the survival and multiplication of these
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bacteria in the environment. Increased density of these bac-

teria in the environment is likely to increase the probability

that humans will be exposed to these organisms and sub-

sequently become infected. However, for Gram-negative

bacteria that are human commensal species such as E. coli,

potential mechanisms by which environmental temperature

might affect the incidence of infection are less obvious.

Although it is well known that E. coli readily survives and

multiplies in the environment, the extent to which extraintes-

tinal E. coli infections such as BSI are acquired as a result of

exposure to strains in the environment is uncertain [2].

What is known is that different strains of E. coli vary

widely in their propensity to cause disease. Pathogenic

strains of E. coli that cause diarrhoea (such as enterotoxigen-

ic E. coli and enterohemorrhagic E. coli) seldom cause asymp-

tomatic colonization whereas strains of E. coli that cause

extraintestinal infections colonize the intestinal tract prior to

causing disease [9]. Furthermore, not all colonizing strains of

E. coli have the same propensity to cause extraintestinal

infections. The majority of extraintestinal E. coli infections

are caused by strains that carry more virulence genes than

typical strains of E. coli that colonize the intestinal tract [10].

These ‘extraintestinal pathogenic E. coli’ strains (ExPEC) [11]

are also the predominant colonizing strain in the intestinal

tract of up to 20% of healthy people [12].

Although ExPEC strains sporadically cause infections in

normal and abnormal hosts, there is evidence that endemic

and epidemic spread of single ExPEC clonal groups occurs

within larger human populations [13]. For example, single

ExPEC clonal groups have been recovered from localized

geographical clusters of UTI in community settings [14] as

well as from cases of community-acquired UTI in different

geographical regions [15]. Furthermore, humans are not the

only reservoir of ExPEC strains. ExPEC strains have been

recovered from environmental and animal sources such as

livestock, water and meat products [16]. For example, John-

son et al. recovered ExPEC strains from 46% of raw poultry

sampled in Minnesota [17]. In another study, an isolate of

E. coli from a cow was found to be closely related to an

ExPEC clonal group known to cause UTI in humans [18].

The preceding observations support the notion that envi-

ronmental sources such as water and products of the food

chain play an important role in the acquisition of ExPEC

strains. If indeed this is the case, then increases in the levels

of contamination with ExPEC strains in water and food dur-

ing warm summer conditions may lead to an increased inci-

dence of colonization with ExPEC strains and ultimately, to

seasonal increases in BSIs as a result of E. coli.

Nevertheless, although it is plausible that increased con-

tamination of food and water sources with ExPEC strains

during summer explains the seasonality of E. coli BSI, this

hypothesis may be overly simplistic. Correlations between

temperature and the incidence of disease may be con-

founded by a huge number of unmeasured variables. Further-

more, seasonal increases in exposure to E. coli are not the

only mechanism by which the incidence of BSI might

increase. Seasonal changes in vulnerability to disease within a

population are also possible. Such seasonal changes in vulner-

ability to disease might be as a result of seasonal changes in

immune function or seasonal changes in the expression of

virulence factors in colonizing E. coli. However, seasonal

changes in host immunity or the virulence phenotype for

E. coli have not been well defined nor have they been dem-

onstrated to occur.

Finally, summer peaks in the incidence of E. coli BSI may

be as a result of complex seasonal changes in human behav-

iour. Seasonal changes in behaviour could affect both the risk

of exposure to E. coli present in the environment as well as

the risk of exposure to E. coli carried by other humans.

Potentially relevant examples include seasonal changes in tra-

vel, sexual activity, water consumption, recreational water

exposure, or in dietary or food preparation practices.

These numerous confounding variables make evaluating

the relative importance of environmental variables such as

temperature on the seasonality of E. coli and other infections

a daunting and almost impossible task. In order to help

address these challenges, Naumova et al. have proposed a

standardized, systematic approach for describing and quanti-

fying seasonality [19]. This approach involves defining the

magnitude and timing of seasonal peaks. In subsequent analy-

ses, daily temperatures are used rather than average monthly

temperatures. By taking such an approach, seasonal peaks

will more likely be detected and more precisely defined.

Further studies that use such an approach are needed to

evaluate the seasonality of E. coli infections in different popula-

tions and geographical regions. Seasonality and the relationship

between the incidence of E. coli BSI and temperature should be

evaluated in tropical regions. Furthermore, the relationship

between the incidence of E. coli BSI and other environmental

variables such as humidity and precipitation should be examined

in both tropical and temperate regions.

Primary sites of infection leading to BSI should be differen-

tiated in future studies and the seasonality of infection at

each site should also be analysed separately. In the study by

Al-Hasan et al., most E. coli bloodstream infections were

secondary to UTI (80%) and over half the infections were

community acquired (59%). Therefore, the increase in E. coli

BSI during the summer may have been the result of a large

seasonal fluctuation in the incidence of primary infection of

the urinary tract.
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Future studies should also systematically collect isolates of

E. coli throughout the year. Isolates could then be assessed for

ExPEC status [11] and compared for genetic relatedness by

performing typing studies. Such collections of isolates could be

recovered from BSI or UTI throughout the year or alterna-

tively, colonizing isolates of E. coli could be recovered through-

out the year by systematically taking rectal swabs from

asymptomatic individuals. Isolates recovered during the sum-

mer could then be compared with isolates recovered during

the winter. If for example, ExPEC strains were found to colo-

nize significantly greater proportions of the same cohort of

asymptomatic individuals during the summer than during the

winter, then this would support the notion that increases in

exposure to ExPEC strains occurs during the summer. Fur-

thermore, if colonizing ExPEC strains were found to be identi-

cal to isolates from BSI, this would provide compelling

evidence that seasonal increases in rates of BSI are the result

of seasonal increases in exposure to ExPEC strains.

In summary, although BSI as a result of E. coli are respon-

sible for a huge burden of disease, many important gaps

remain in our understanding of the epidemiology of these

infections. The need to improve our understanding of these

infections is underscored by increasing antibiotic resistance

amongst E. coli worldwide [20]. Therefore the seasonality of

E. coli BSI described by Al-Hasan et al. is an intriguing and

potentially important finding that deserves to be explored

further in other populations and geographical settings. Future

studies that explore seasonality may help to shed light on

the dominant routes by which ExPEC clonal groups spread

in human populations. Although studies that attempt to unra-

vel the precise reasons behind the seasonality of E. coli infec-

tions will undoubtedly be difficult to design and perform, the

dividends of such studies may be potentially high. If seasonal

epidemics of E. coli BSI are found to occur as a result of sea-

sonal increases in contamination of specific food, water or

environmental sources with E. coli, then strategies could in

principle be designed to reduce such contamination and

thereby reduce the incidence of these important infections.
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