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In this paper we investigate the behavior and the existence of posi-
tive and non-radially symmetric solutions to nonlinear exponential
elliptic model problems defined on a solid torus T of R3, when
data are invariant under the group G = O (2)× I ⊂ O (3). The model
problems of interest are stated below:

�υ + γ = f (x)eυ, υ > 0 on T , υ|∂T = 0 (P1)

and

�υ + a + f eυ = 0, υ > 0 on T ,

∂υ

∂n
+ b + geυ = 0 on ∂T . (P2)

We prove that exist solutions which are G-invariant and these ex-
hibit no radial symmetries. In order to solve the above problems
we need to find the best constants in the Sobolev inequalities in
the exceptional case.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, significant progress has been made on the analysis of a number of important
features of nonlinear partial differential equations of elliptic and parabolic type. The study of these
equations has received considerable attention, because of their special mathematical interest and
because of practical applications of the torus in scientific research today. For example in Astronomy,
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investigators study the torus which is a significant topological feature surrounding many stars and
black holes [26]. In Physics the torus is being explored at the National Spherical Torus Experiment
(NSTX) at Princeton Plasma Physics Laboratory to test the fusion physics principles for the spherical
torus concept at the MA level [36]. In Biology some investigators interested in circular DNA molecules
detected in a large number of viruses, bacteria, and higher organisms. In this topologically very inter-
esting type of molecule, superhelical turns are formed as the Watson–Crick double helix winds in a
torus formation [25].

Let the solid torus be represented by the equation

T = {
(x, y, z) ∈ R3:

(√
x2 + y2 − l

)2 + z2 � r2, l > r > 0
}
,

and the subgroup G = O (2) × I of O (3). Note that the solid torus T ⊂ R3 is invariant under the
group G .

We consider the following nonlinear exponential elliptic boundary problems

�υ + γ = f (x)eυ, υ > 0 on T , υ|∂T = 0 (P1)

and

�υ + a + f eυ = 0, υ > 0 on T ,

∂υ

∂n
+ b + geυ = 0 on ∂T , (P2)

where �υ = −∇ i∇iυ is the Laplacian of υ , ∂
∂n is the outer unit normal derivative, f , g are two

smooth G-invariant functions and γ ,a,b ∈ R.
Clearly, a radially symmetric solution is a G-invariant solution, for any subgroup G of O (n). The

converse problem is considered in this paper, that is we prove that there exist positive solutions
which are G-invariant and non-radially symmetrical if G = O (2) × I .

Problems (P1) and (P2) own their origin to the “Nirenberg Problem” posed in 1969–1970 in the
following way:

Given a (positive) smooth function f on (S2, g0) (close to the constant function, if we want), is
it the scalar curvature of a metric g conformal to g0? (g0 is the standard metric whose sectional
curvature is 1) (see [3]).

Recall that, if we write g in the form g = eu g0, the problem is equivalent to solving the equation:

�u + 2 = f eu.

Nirenberg Problem has been studied extensively and is completely solved (see [2,8,45,37,19]). Further,
we refer the reader to [14,15,13,11,12,39–41,9,10,33,38,7,30,1,16,43], in which the authors study this
problem or its generalization.

Best constants in Sobolev inequalities are fundamental in the study of nonlinear PDEs on mani-
folds, because of their strong connection with the existence and the multiplicity of the solutions of
the corresponding problems (see for example [46,5,47,35,34,29,6,7,22–24] and the references therein).
It is also well known, that Sobolev embeddings can be improved in the presence of symmetries in the
sense that we obtain continuous embeddings in higher L p spaces, that it, allow us to solve equations
with higher critical exponents (see for example [42,28,20,21,35,27,6,7,30,31,22–24] and the references
therein). Especially, in our case we solve problems with the highest supercritical exponent (critical of
supercritical).

Let:

C∞
0,G = {

υ ∈ C∞
0 (T ): υ ◦ τ = υ, ∀τ ∈ G

}
,

C∞
G = {

υ ∈ C∞(T ): υ ◦ τ = υ, ∀τ ∈ G
}



A. Cotsiolis, N. Labropoulos / J. Differential Equations 251 (2011) 651–687 653
and

Lp
G = {

υ ∈ Lp(T ): υ ◦ τ = υ, ∀τ ∈ G
}

that is, the spaces of all G-invariant functions under the action of the group G = O (2) × I .
We define the Sobolev space H p

1,G(T ), p � 1 as the completion of C∞
G (T ) with respect to the norm

‖υ‖H p
1

= ‖∇υ‖p + ‖υ‖p

and H̊ p
1,G(T ) as the closure of C∞

0,G(T ) in H p
1,G(T ).

In [22] we proved that for any p ∈ [1,2) real, the embedding H p
1,G(T ) ↪→ Lq

G(T ) is compact for

1 � q <
2p

2−p , while the embedding H p
1,G(T ) ↪→ L

2p
2−p
G (T ) is only continuous. Also, in [23] we proved

that for any p ∈ [1,2) real, the embedding H p
1,G(T ) ↪→ Lq

G(∂T ) is compact for 1 � q <
p

2−p , while the

trace embedding H p
1,G(T ) ↪→ L

p
2−p
G (∂T ) is only continuous. Additionally, we observe that if 3

2 < p < 2

then q = 2p
2−p > 6 = 2·3

3−2 and q̃ >
p

2−p > 4 = 2(3−1)
3−2 , that is the exponents q and q̃ are supercritical.

In this paper, we study the exceptional case when p = n − k = 3 − 1 = 2. In this case H2
1,G(T ) �⊂

L∞
G (T ), however, when υ ∈ H2

1,G(T ) we have eυ ∈ L1
G(T ), eυ ∈ L1

G(∂T ) and the exponent p = 2 is the
critical of supercritical.

This paper is organized as follows: In Section 2, we recall some definitions and we present the two
lemmas on which are based the proofs of the theorems concerning the best constants. Proofs of these
lemmas are in Section 6. Section 3 is devoted in the presentation of results of the paper. In Section 4,
we determine the best constants μ and μ̃ of the inequalities:

∫
T

eυ dV � C exp

[
μ‖∇υ‖2

2 + 1

2π2r2l

∫
T

υ dV

]

and

∫
∂T

eυ dS � C exp

[
μ̃‖∇υ‖2

2 + 1

4π2rl

∫
∂T

υ dS

]
.

In Section 5, we use the above two inequalities, in order to solve the nonlinear exponential elliptic
problems (P1) and (P2). Concerning problem (P1), we prove the existence of solutions of the asso-
ciated variational problem. We study problem (P2) in the same way as the (P1), except its last part
(case 4 of Theorem 3.4), which is based upon the method of upper solutions and lower solutions.

2. Notations and preliminary results

For completeness we cite some background material and results from [23].
Let A = {(Ωi, ξi): i = 1,2} be an atlas on T defined by

Ω1 = {
(x, y, z) ∈ T : (x, y, z) /∈ H+

X Z

}
,

Ω2 = {
(x, y, z) ∈ T : (x, y, z) /∈ H−

X Z

}
where
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H+
X Z = {

(x, y, z) ∈ R3: x > 0, y = 0
}
,

H−
X Z = {

(x, y, z) ∈ R3: x < 0, y = 0
}

and ξi : Ωi → Ii × D , i = 1,2, with I1 = (0,2π), I2 = (−π,π),

D = {
(t, s) ∈ R2: t2 + s2 < 1

}
, ∂ D = {

(t, s) ∈ R2: t2 + s2 = 1
}
,

ξi(x, y, z) = (ωi, t, s), i = 1,2 with cosωi = x√
x2+y2

, sinωi = y√
x2+y2

, where

ω1 =

⎧⎪⎨
⎪⎩

arctan y
x , x �= 0,

π/2, x = 0, y > 0,

3π/2, x = 0, y < 0,

ω2 =

⎧⎪⎨
⎪⎩

arctan y
x , x �= 0,

π/2, x = 0, y > 0,

−π/2, x = 0, y < 0,

and

t =
√

x2 + y2 − l

r
, s = z

r
, 0 � t, s � 1.

The Euclidean metric g on (Ω, ξ) ∈ A can be expressed as

(√
g ◦ ξ−1)(ω, t, s) = r2(l + rt).

For any G-invariant υ we define the functions φ(t, s) = (υ ◦ ξ−1)(ω, t, s).
Then we have:

∫
T

eυ dV = 2πr2
∫
D

eφ(t,s)(l + rt)dt ds, (1)

‖∇υ‖2
L2(T )

= 2π

∫
D

∣∣∇φ(t, s)
∣∣2(l + rt)dt ds (2)

and

∫
∂T

eυ dS = 2πr

∫
∂ D

eφ(t,0)(l + rt)dt, (3)

where by φ we denote the extension of φ on ∂ D .
Consider a finite covering (T j) j=1,...,N , where

T j = {
(x, y, z) ∈ T :

(√
x2 + y2 − l j

)2 + (z − z j)
2 < δ2

j

}
is a tubular neighborhood (an open small solid torus) of the orbit O P j of P j under the action of the

group G . P j(x j, y j, z j) ∈ T and l j =
√

x2
j + y2

j is the horizontal distance of the orbit O P j from the axis

z′z and δ j = l jε j for any ε j > 0.
Then the following lemmas hold:
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Lemma 2.1.

1. For all ε > 0, there exists a constant Cε , such that for all υ ∈ H̊2
1,G(T j) the following inequality holds:

∫
T j

eυ dV � Cε exp

[
(1 + cε)

1

32π2l j
‖∇υ‖2

2

]
,

where c > 0.
2. For all ε > 0, there exist constants Cε and Dε , such that for all υ ∈ H̊2

1,G the following inequality holds:

∫
T

eυ dV � Cε exp

[(
1

32π2(l − r)
+ ε

)
‖∇υ‖2

2 + Dε‖υ‖2
2

]
.

In addition the constant 1
32π2(l−r)

is the best constant for the above inequality.

Lemma 2.2. Let T be the solid torus, 2π2r2l be the volume of T and 4π2rl be the volume of ∂T , then for all
ε > 0 there exists a constant Cε such that:

1. For all functions υ ∈ HG the following inequality holds:

∫
T

eυ dV � Cε exp

[
(μ + ε)‖∇υ‖2

2 + 1

2π2r2l

∫
T

υ dV

]
. (4)

2. For all functions υ ∈ HG the following inequality holds:

∫
∂T

eυ dS � Cε exp

[
(μ + ε)‖∇υ‖2

2 + 1

4π2rl

∫
∂T

υ dS

]
, (5)

where, for the first inequality, μ = 1
32π2(l−r)

if HG = H̊2
1,G and μ = 1

16π2(l−r)
if HG = H2

1,G .

For the second inequality μ > 1
8π2(l−r)

for all υ ∈ H2
1,G .

The constant μ is the best constant for the above inequalities.

3. Statement of results

3.1. Best constants on the solid torus

We have the following theorem:

Theorem 3.1. Let T be the solid torus, 2π2r2l be the volume of T and 4π2rl be the volume of ∂T , then there
exists a constant C such that:

1. For all functions υ ∈ HG the following inequality holds:

∫
T

eυ dV � C exp

[
μ‖∇υ‖2

2 + 1

2π2r2l

∫
T

υ dV

]
. (6)



656 A. Cotsiolis, N. Labropoulos / J. Differential Equations 251 (2011) 651–687
2. For all functions υ ∈ HG the following inequality holds:

∫
∂T

eυ dS � C exp

[
μ‖∇υ‖2

2 + 1

4π2rl

∫
∂T

υ dS

]
, (7)

where, for the first inequality, μ = 1
32π2(l−r)

if HG = H̊2
1,G and μ = 1

16π2(l−r)
if HG = H2

1,G .

For the second inequality μ > 1
8π2(l−r)

for all υ ∈ H2
1,G .

The constant μ is the best constant for the above inequalities.

Remark 3.1. In [32] Faget proved that for a compact 3-dimensional manifold without boundary the
first best constant for inequality (6) is μ3 = 2

81π and the map: H3
1 � υ → eυ ∈ L1 is compact. Clearly,

the best constant μ3 depends only on the dimension 3 of the manifold. For the solid torus, we prove
that the first best constant for the same inequality (6) is μ = 1

32π2(l−r)
and the map: H2

1,G � υ → eυ ∈
L1

G is compact. In this case, the best constant μ depends on the geometry of the solid torus.

Corollary 3.1. For all υ ∈ H̊2
1,G such that ‖∇υ‖2

2 � 2π(l + r) and for all α � 4π the following holds:

∫
T

eαυ2
dV � C2π2r2l (8)

where the constant C is independent of υ ∈ H̊2
1,G . The constant α � 4π is the best, in the sense that, if α > 4π

the integral in the inequality is finite but it can be made arbitrary large by an appropriate choice of υ .

Remark 3.2. Corollary 3.1 is a special case of the result of Moser [44].

3.2. Resolutions of the problems

For the problem

�υ + γ = f (x)eυ, υ > 0 on T , υ|∂T = 0, (P1)

we have the theorem:

Theorem 3.2. Consider a solid torus T and the function f continuous and G-invariant.
Then the problem (P1) accepts a solution that belongs to C∞

G , if one of the following holds:

(a) supT f < 0 if γ < 0.
(b)

∫
T f dV < 0 and supT f > 0 if γ = 0.

(c) supT f > 0 if 0 < γ <
8(l−r)

lr2 .

For the problem

�υ + a + f eυ = 0, υ > 0 on T ,

∂υ

∂n
+ b + geυ = 0 on ∂T , (P2)

we have the next theorem:
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Theorem 3.3. Consider a solid torus T and the smooth functions f , g G− invariant and not both identical 0.
If a,b ∈ R and R = 2π2r2la + 4π2rlb, the problem (P2) accepts a solution that belongs to C∞

G in each one of
the following cases:

1. If a = b = 0 the necessary and sufficient condition is f and g not both � 0 and that
∫

T f dV + ∫
∂T g dS >

0.
2. If a � 0 and b � 0, f , g not both � 0 everywhere and 0 < R < 4π2(l − r). Particularly, if g = 0 then we

can substitute the last condition with 0 < R < 8π2(l − r).
3. If R > 0 (respectively R < 0) it is necessary that f , g not both � 0 everywhere (respectively � 0). Then

there exists a solution of the problem in each one of the following cases:
(a) a < 0, b > 0, f < 0, g � 0 and b < l−r

lr if g �≡ 0 or b <
2(l−r)

lr if g ≡ 0.

(b) a > 0, b < 0, f � 0, g < 0 and a <
2(l−r)

lr2 .

(c) a > 0, b < 0, f � 0, g > 0 and a <
2(l−r)

lr2 if g �≡ 0 or a <
4(l−r)

lr2 if g ≡ 0.

(d) a < 0, b > 0, f > 0, g � 0 and b < l−r
lr .

4. If a � 0, b � 0, not both = 0, it is necessary
∫

T f dV + ∫
∂T g dS > 0. Then there exists a nonempty subset

S f ,g of R2− = {(a,b) �= (0,0): a � 0, b � 0} with the property that if (c,d) ∈ S f ,g then (c′,d′) ∈ S f ,g

for any c′ � c, d′ � d and such that the problem (P2) has a solution if and only if (a,b) ∈ S f ,g . S f ,g = R2−
if and only if the functions f , g are �≡ 0 and � 0. For all (a,b) ∈ R2− there exist functions f and g such
that

∫
T f dV + ∫

∂T g dS > 0 and (a,b) /∈ S f ,g .

4. Proofs of the theorem concerning the best constants

Proof of Theorem 3.1. 1. We give a proof by contradiction based on Lemma 2.2.
Assume that for any Cα , there exist υα ∈ H̊2

1,G with
∫

T υα dV = 0 such that

∫
T

eυα dV > Cα exp

(
μ

∫
T

|∇υα |2 dV

)
. (9)

Set φα(t, s) = (υα ◦ ξ−1)(ω, t, s). By (9) because of (1) and (2) we obtain sequentially

2πr2
∫
D

eφα (l + rt)dt ds > Cα exp

(
2πμ

∫
D

|∇φα |2(l + rt)dt ds

)
,

2πr2(l + r)

∫
D

eφα dt ds > Cα exp

(
2πμ(l − r)

∫
D

|∇φα |2 dt ds

)
,

and since μ = 1
32π2(l−r)

(see part 1 of Lemma 2.2) we have

∫
D

eφα dt ds >
Cα

2πr2(l + r)
exp

(
1

16π

∫
D

|∇φα |2 dt ds

)
.

The last inequality means that for any cα , there exists φα ∈ H̊2
1(D) with

∫
D φα dt ds = 0, such that

∫
D

eφα dt ds > cα exp

(
1

16π

∫
D

|∇φα |2 dt ds

)
,

which is a contradiction (see Theorem 1 in [17]).
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2. The proof of this part is similar to the proof of the first one. Let us sketch it. Assume that for
any C̃α , there exist υα ∈ H2

1,G with
∫
∂T υα dS = 0 such that

∫
∂T

eυα dS > C̃α exp

(
μ

∫
T

|∇υα |2 dV

)
(10)

and define the function φα as in the first part.
By (10) because of (2) and (3) we take the inequality

∫
∂ D

eφα dt > c̃α exp

(
μ

∫
D

|∇φα |2 dt ds

)
,

where c̃α = C̃α
2πr(l+r) .

The last inequality is false (see Theorem 3 in [18]) and the theorem is proved. �
Proof of Corollary 3.1. Given ε > 0, let (T j) j=1,...,N be a finite covering of T , where

T j = {
Q ∈ R3: d(Q , O P j ) < δ j, δ j = l jε j and ε j � ε

}
.

For T we build a G-invariant partition of unity (h j) j=1,...,N relative to the T j ’s. If we denote Φ =
υ ◦ ξ−1

j , Φ ∈ H̊2
1(D), for all υ ∈ H̊2

1,G , following the same argument as in Lemma 2.1 we obtain

∫
T

eαυ2
dV =

∫
T

(
N∑

j=1

h j

)
eαυ2

dV

=
N∑

j=1

∫
T j

h je
αυ2

dV

=
N∑

j=1

∫
I×D

(
h j ◦ ξ−1

j

)
eαυ2◦ξ−1

j
(√

g ◦ ξ−1
j

)
dωdt ds

= 2π

N∑
j=1

∫
D

(
h j ◦ ξ−1

j

)
eαυ2◦ξ−1

j δ2
j (l j + δ jt)dt ds

= 1

π

N∑
j=1

∫
D

(
h j ◦ ξ−1

j

)
eαΦ2

2π2δ2
j l j(1 + ε jt)dt ds

� (1 + ε)
1

π

N∑
j=1

∫
D

(
h j ◦ ξ−1

j

)
eαΦ2

Vol(T j)dt ds

� (1 + ε)
1

π
Vol(T )

N∑
j=1

∫ (
h j ◦ ξ−1

j

)
eαΦ2

dt ds
D
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= (1 + ε)2πr2l

∫
D

N∑
j=1

(
h j ◦ ξ−1

j

)
eαΦ2

dt ds

= (1 + ε)2πr2l

∫
D

eαΦ2
dt ds

or

∫
T

eαυ2
dV �(1 + ε)2πr2l

∫
D

eαΦ2
dt ds. (11)

Because of ‖∇υ‖2
2 � 2π(l + r) and (2) we obtain ‖∇Φ‖2 � 1 and according to Theorem 2.47 of [3]

for all Φ ∈ H̊2
1(D) with ‖∇Φ‖2 � 1 and for any α � 4π the following inequality holds

∫
D

eαΦ2
dt ds � Cπ, (12)

where the constant C is the same for all open and bounded subsets of R2.
Thus, from inequalities (11) and (12) we obtain

∫
T

eαυ2
dV �(1 + ε)C2π2r2l. (13)

Suppose now that inequality (13) does not hold for ε = 0. That is, there exists υ ∈ H̊2
1,G with ‖∇υ‖2

2 �
2π(l + r) and θ > 0 such that the following inequality holds

∫
T

eαυ2
dV � (1 + θ)C2π2r2l. (14)

By (14), and because of (11) we obtain

(1 + ε)2πr2l

∫
D

eαΦ2
dt ds �(1 + θ)C2π2r2l. (15)

Since (15) holds for any ε > 0 we can choose ε such that ε < θ and (15) yields

2πr2l

∫
D

eαΦ2
dt ds � 1 + θ

1 + ε
C2π2r2l

or

∫
D

eαΦ2
dt ds >Cπ. (16)
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But according to Theorem 2.47 of [3] for all Φ ∈ H̊2
1(D) the following

∫
D

eαΦ2
dt ds �Cπ

holds. Thus (16) is false and the corollary is proved. �
5. Proofs of the theorems concerning the problems

Proof of Theorem 3.2. We see that if f is a constant the problem can be solved immediately. If f = 0
and γ = 0, solutions are all the constants. If γ f > 0 the constant ln(γ / f ) is the solution.

Consider the functional

I(υ) =
∫
T

|∇υ|2 dV + 2γ

∫
T

υ dV ,

the set

A =
{
υ ∈ H2

1,G :
∫
T

f eυ dV = γ Vol(T )

}

and denote

ν = inf
υ∈A

I(υ).

If γ > 0, in order A �= ∅, it is necessary f to be somewhere positive, if γ < 0 it’s necessary f to be
somewhere negative, and if γ = 0 it is necessary f to change sign. In the following we accept that f
satisfies the above necessary condition and it is not a constant.

(a) γ < 0 and f negative everywhere.
Combining Jensen’s inequality:

1

Vol(T )

∫
T

υ dV � ln

(
1

Vol(T )

∫
T

eυ dV

)

along with the following inequality:

1

Vol(T )

∫
T

eυ dV � 1

Vol(T ) sup f

∫
T

f (x)eυ dV = γ

sup f

we obtain ∫
T

υ dV � Vol(T ) ln

(
γ

sup f

)
(17)

and thus

I(υ) � 2γ Vol(T ) ln

(
γ

sup f

)
.

From the last inequality we conclude that ν is finite.
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Let {υi} ∈ A be a minimizing sequence of I , that is I(υi) → ν . If we take I(υi) � 1 + ν we obtain

∫
T

|∇υi |2 dV + 2γ

∫
T

υi dV � 1 + ν

thus

1 + ν − 2γ

∫
T

υi dV �
∫
T

|∇υi |2 dV � 0

and

∫
T

υi dV � 1 + ν

2γ
. (18)

By (17) and (18) we obtain |∫T υi dV | < C , where C is a constant.
In addition, we have

∫
T

|∇υi |2 dV � 1 + ν − 2γ

∫
T

υi dV � 1 + ν − 2γ C .

Thus {υi} is bounded in H2
1,G(T ) and there exists a subsequence of υi , denoted again by υi and a

function ῡ such that:

(a) {υi} ⇀ ῡ on H2
1,G(T ) (by Banach’s theorem),

(b) {υi} → ῡ on L2
G(T ) (by Kondrakov’s theorem),

(c) {υi} → ῡ a.e. (by Proposition 3.43 of [3]) and
(d) {eυi } → eῡ on L1

G(T ) (by Theorem 3.1).

From (c) arises that ῡ is G-invariant and so ῡ ∈ A, thus I(ῡ) � ν .
From (d) we conclude that

‖ῡ‖H2
1
� lim

i→∞
inf ‖υi‖H2

1
= ν

and by definition of ν we obtain I(ῡ) = ν .
Using the variation method we can prove that ῡ is a week solution of the corresponding Euler

equation and, by the regularization Theorem of [48] and Theorem 3.54 of [3], we conclude that
ῡ ∈ C∞

G .
(b) γ = 0 and f changes sign.
In this case we need the extra condition

∫
T f (x)dV < 0, because if we multiply the equation of

the problem by e−υ and integrate we obtain

∫
T

f (x)dV = γ

∫
T

e−υ dV −
∫
T

e−υ |∇υ|2 dV ,

the second part of this equality is negative.
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Since γ = 0,

I(υ) =
∫
T

|∇υ|2 dV

and considering
∫

T υ dV = 0, if we define the set

Ã =
{
υ ∈ H2

1,G :
∫
T

υ dV = 0,

∫
T

f eυ dV = 0

}

we will have

ν = inf
υ∈ Ã

I(υ) � 0.

In the following we work in the same way as in (a).
Thus, there exists a minimizing subsequence of υi , denoted again by υi that’s converge on a func-

tion ῡ ∈ Ã.
If κ and λ are the Lagrange multipliers, the Euler equation is

�ῡ + κ = λ f (x)eῡ .

Intergrading by parts, because of
∫

T f eῡ dV = 0, we obtain κ = 0 and for the function ῡ holds

�ῡ = λ f (x)eῡ . (19)

By Eq. (19) we obtain that ῡ is not constant, because of
∫

T f (x)dV < 0, and so λ �= 0. In addition,
multiplying the same equation by e−ῡ and integrating by parts we obtain λ

∫
T f (x)eῡ dV < 0 and

then λ > 0.
Finally, is easy to check that the solution of the equation is ῡ − ln λ.
(c) γ > 0 and f somewhere positive.
Consider the same variation problem as in case (a) and suppose that f is somewhere positive,

which is the necessary condition to be A �= ∅, since supT f > 0. We have

γ Vol(V ) =
∫
T

f eυ dV � sup f

∫
T

eυ dV . (20)

In addition by Theorem 3.1 we have

∫
T

eυ dV � C exp

{
(μ + ε)

∫
T

|∇υ|2 dV + 1

Vol(V )

∫
T

υ dV

}
. (21)

From (20) and (21) we obtain



A. Cotsiolis, N. Labropoulos / J. Differential Equations 251 (2011) 651–687 663
γ Vol(V ) � C sup f exp

{
(μ + ε)

∫
T

|∇υ|2 dV + 1

Vol(T )

∫
T

υ dV

}
,

γ Vol(V )

C sup f
� exp

{
(μ + ε)

∫
T

|∇υ|2 dV + 1

Vol(T )

∫
T

υ dV

}
,

ln

(
γ Vol(T )

C sup f

)
� (μ + ε)

∫
T

|∇υ|2 dV + 1

Vol(T )

∫
T

υ dV ,

2γ Vol(T ) ln

(
γ Vol(T )

C sup f

)
� 2γ Vol(T )(μ + ε)

∫
T

|∇υ|2 dV + 2γ

∫
T

υ dV ,

2γ Vol(T ) ln

(
γ Vol(T )

C sup f

)
� 2γ Vol(T )(μ + ε)

∫
T

|∇υ|2 dV + I(υ) −
∫
T

|∇υ|2 dV ,

I(υ) � 2γ Vol(T ) ln

(
γ Vol(T )

C sup f

)
+ [

1 − 2γ Vol(T )(μ + ε)
] ∫

T

|∇υ|2 dV

or

I(υ) �
[
1 − 2γ Vol(T )(μ + ε)

]∫
T

|∇υ|2 dV + C ′, (22)

where μ = 1
32π2(l−r)

and C ′ = 2γ Vol(T ) ln(
γ Vol(T )

C sup f ).

So, for γ <
8(l−r)

lr2 , we have that I(υ) is bounded bellow.

Thus if υi ∈ A is a minimizing sequence of I , by Eq. (22) we obtain that ‖∇υi‖2
2 � C1, and by

Eqs. (20) and (21) that
∫

T υi dV � C2, where C1 and C2 are constants. Since ν = infυ∈A I(υ) and
limi→∞ I(υi) = ν we may assume that I(υi) < ν + 1 and so

∫
T υi dV � C3, where C3 is a constant.

Thus {υi} is bounded in H2
1,G(T ) and then the rest of the proof is the same as in case (a). �

Proof of Theorem 3.3. Following [19], let υ ∈ C∞
G (T ) be a solution of (P2). We observe that integra-

tion by parts yields

∫
T

(
�υ + a + f eυ

)
dV = 0,

−
∫
∂T

∂υ

∂n
dS +

∫
T

(
a + f eυ

)
dV = 0,

∫
∂T

(
b + geυ

)
dS +

∫
T

(
a + f eυ

)
dV = 0,

a

∫
T

dV + b

∫
∂T

dS +
∫
T

f eυ dV +
∫
∂T

geυ dS = 0,

a Vol(T ) + b Vol(∂T ) +
∫

f eυ dV +
∫

geυ dS = 0
T ∂T
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namely

K (υ) = a Vol(T ) + b Vol(∂T ) +
∫
T

f eυ dV +
∫
∂T

geυ dS = 0. (23)

Multiplying by e−υ and integrating by parts also implies∫
T

(
e−υ�υ + ae−υ + f

)
dV = 0,

−
∫
∂T

e−υ ∂υ

∂n
dS +

∫
T

(
ae−υ + f

)
dV −

∫
T

e−υ |∇υ|2 dV = 0,

∫
∂T

(
e−υb + g

)
dS +

∫
T

(
ae−υ + f

)
dV −

∫
T

e−υ |∇υ|2 dV = 0

namely

a

∫
T

e−υ dV +b

∫
∂T

e−υ dS +
∫
T

f dV +
∫
∂T

g dS −
∫
T

e−υ |∇υ|2 dV = 0. (24)

Moreover, if υ ∈ H2
1,G(T ), according to [3,49,18] and because of Theorem 3.1, for any q � 1, υ ∈ Lq

G(T ),

υ ∈ Lq
G(∂T ) and eυ ∈ Lq

G(T ).
Set

I(υ) = 1

2

∫
T

|∇υ|2 dV + a

∫
T

υ dV +b

∫
∂T

υ dS

and

A = {
υ ∈ H2

1,G : K (υ) = 0
}
.

Our aim is the minimization of I(υ) on A.

1. Case a = b = 0,
∫

T f dV + ∫
∂T g dS > 0 and f and g not both � 0.

Since f and g are not both identically 0, the solutions of equation (P2) are not constant functions.
Hence if υ is a solution we have ∫

T

e−υ |∇υ|2 dV > 0 (25)

and then by (24) and (25) yields ∫
T

f dV +
∫
∂T

g dS > 0.

Since a = b = 0 and K (υ) = ∫
T f eυ dV + ∫

∂T geυ dS in order A = {υ ∈ H2
1(T ): K (υ) = 0} �= ∅ it’s

necessary f and g not to be both � 0.
Inversely, if f and g are not both � 0, we will prove that A �= ∅.
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Because of

∫
T

f dV +
∫
∂T

g dS > 0,

we have

{
f (T ) ∪ g(∂T )

}∩ (0,+∞) �= ∅ and
{

f (T ) ∪ g(∂T )
}∩ (−∞,0) �= ∅.

Define a C∞ function η : [0,+∞) → [0,1] such that η = 1 in [0,1/2], η = 0 in [1,+∞) and examine
the following two cases:

(i) f changes sign on T .
There are two tori T1 and T2 contained in T such that f > 0 on T1 and f < 0 on T2. Let the

points Pi , i = 1,2, belong to the central orbits O Pi , i = 1,2 of Ti , i = 1,2, respectively and let

T1 = {
(x, y, z) ∈ T :

(√
x2 + y2 − lP1

)2 + (z − zP1)
2 < δ2}

and

T2 = {
(x, y, z) ∈ T :

(√
x2 + y2 − lP2

)2 + (z − zP2)
2 < δ2},

where lP i =
√

x2
Pi

+ y2
Pi

, i = 1,2, the horizontal distance of the orbit O Pi , i = 1,2 from the axis z′z.

Set

α =
∫

T \(T1∪T2)

f dV +
∫
∂T

g dS,

and suppose that α � 0. Then

α0 = α +
∫
T1

f dV > 0.

Consider the continuous function

σ(t) =
∫
T2

f (P )exp

[
tη

(
d(P , O P2)

δ

)]
dV , t ∈ R,

where d is the Euclidean distance in R3.
Since limt→+∞ σ(t) = −∞ and limt→−∞ σ(t) = 0, there exists t0 ∈ R such that σ(t0) = −α0.
Hence if we define the function υ ∈ C∞

G (T ) as

υ(P ) =
{

t0η(d(P , O P2)/δ), P ∈ T2,

0, P /∈ T2,

by definition of σ we obtain
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σ(t0) =
∫
T2

f (P )eυ(P ) dV

and then

∫
T

f (P )eυ(P ) dV = −α0.

From the last equality we have

∫
T2

f eυ dV + α +
∫
T1

f dV = 0,

∫
T2

f eυ dV +
∫

T \(T1∪T2)

f dV +
∫
∂T

g dS +
∫
T1

f dV = 0,

∫
T2

f eυ dV +
∫

T \T2

f dV −
∫
T1

f dV +
∫
∂T

g dS +
∫
T1

f dV = 0,

∫
T2

f eυ dV +
∫

T \T2

f dV +
∫
∂T

g dS = 0

and from this by definition of υ we obtain

∫
T2

f eυ dV +
∫

T \T2

f eυ dV +
∫
∂T

geυ dS = 0,

∫
T

f eυ dV +
∫
∂T

geυ dS = 0.

This means that υ ∈ A and hence A �= ∅.
(ii) f does not change sign on T .
If f ≡ 0 and g changes sing, following arguments of the previous case, we construct a function

υ ∈ C∞
G (T ) such that

∫
∂T geυ dS = 0, hence K (υ) = 0 and A �= ∅.

If f �≡ 0, let us suppose that f � 0 and K (υ) = 0. Then there exist P1 ∈ T and P2 ∈ ∂T such that
f (P1) > 0 and g(P2) < 0.

Consider the tori

T1 = {
(x, y, z) ∈ T :

(√
x2 + y2 − lP1

)2 + (z − zP1)
2 < δ2}

and

T2 = {
(x, y, z) ∈ T :

(√
x2 + y2 − lP2

)2 + (z − zP2)
2 < δ2},

where δ is small enough, such that T 1 ∩ T 2 = ∅, f > 0 a.e. in T1 and g < 0 a.e. in T2 ∩ ∂T .
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Set

β =
∫

T \T1

f dV +
∫

∂T \T2

g dS +
∫

∂T ∩T2

g(P )exp

[
tη

(
2d(P , O P2)

δ

)]
dS

and choose t large enough such that β < 0.
Denote

T2(δ/2) =
{
(x, y, z) ∈ T :

(√
x2 + y2 − lP2

)2 + (z − zP2)
2 <

(
δ

2

)2}

and define a function ϑ ∈ C∞(T ), 0 � ϑ(P ) � 1 such that ϑ = 1 in a neighborhood of ∂T ∩ T2(δ/2) ,
ϑ = 0 out of T2 and its support K to have small enough measure such that the following holds:

γ =
∫
K

f (P )exp

[
tϑ(P )η

(
2d(P , O P2)

δ

)]
dV −

∫
K

f (P )dV < −β.

Consider now the continuous function

σ̂ (t) =
∫
T1

f (P )exp

[
tη

(
d(P , O P1)

δ

)]
dV , t ∈ R.

Since f � 0, f �≡ 0, limt→−∞ σ̂ (t) = 0 and limt→+∞ σ̂ (t) = +∞ there exists t′ ∈ R such that σ̂ (t′) =
−(β + γ ), that is

∫
T1

f (P )exp

[
t′η

(
d(P , O P2)

δ

)]
dV = −(β + γ ) > 0. (26)

Define now the function υ ∈ C∞(T ) by

υ(P ) =

⎧⎪⎨
⎪⎩

t′η(d(P , O P1)/δ), P ∈ T1,

tϑ(P )η(2d(P , O P2)/δ), P ∈ T2,

0, P /∈ T1 ∪ T2.

We have

β =
∫

T \T1

f dV +
∫

∂T \T2

g dS +
∫

∂T ∩T2

geυ dS

=
∫

T \T1

f dV +
∫

∂T \T2

geυ dS +
∫

∂T ∩T2

geυ dS

=
∫

T \T1

f dV +
∫
∂T

geυ dS (27)

and
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γ =
∫
T2

f (P )exp

[
tϑ(P )η

(
2d(P , O P2)

δ

)]
dV

−
∫

T2\K

f (P )exp

[
tϑ(P )η

(
2d(P , O P2)

δ

)]
dV −

∫
K

f (P )dV

=
∫
T2

f eυ dV −
∫

T2\K

f dV −
∫
K

f dV . (28)

By (26)–(28) we now obtain∫
T \T1

f dV −
∫

T2\K

f dV −
∫
K

f dV +
∫
T1

f eυ dV +
∫
T2

f eυ dV +
∫
∂T

geυ dS = 0,

∫
T \T1

f dV −
∫
T2

f dV +
∫
T1

f eυ dV +
∫
T2

f eυ dV +
∫
∂T

geυ dS = 0,

∫
T \(T1∪T2)

f dV +
∫

T1∪T

f eυ dV +
∫
∂T

geυ dS = 0,

∫
T \(T1∪T2)

f eυ dV +
∫

T1∪T2

f eυ dV +
∫
∂T

geυ dS = 0,

∫
T

f eυ dV +
∫
∂T

geυ dS = 0.

Hence υ ∈ A and A �= ∅.
We observe that if K (υ) = 0 then K (υ + c) = 0 for any constant c. So we can suppose that∫

T υ dV = 0 for any υ ∈ A.
Set

μ = inf
υ∈A

{∫
T

|∇υ|2 dV :
∫
T

υ dV = 0

}
� 0.

Let {υi} be a minimizing sequence. Since supi(‖∇υi‖2) < +∞, this is bounded in H2
1,G(T ). Thus there

exists a subsequence {υi} and a function υ ∈ H2
1,G(T ) such that:

(a) {υi} ⇀ υ on H2
1,G(T ) (by Banach’s theorem),

(b) {υi} → υ on Lq
G(T ), q � 1 (by Kondrakov’s theorem),

(c) {υi} → υ a.e. (by Proposition 3.43 of [3]),
(d) {eυi } → eυ (by Theorem 3.1) and
(e) {υi} → υ a.e., on ∂T and {eυi } → eυ on Lq

G(∂T ),

where by υi and υ we denote the trace of υi and υ on ∂T , respectively (by Theorem 4 of [18]).
The latter implies

lim
i→∞

∫
υi dV =

∫
υ dV
T T
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and

lim
i→∞

(∫
T

f eυi dV +
∫
∂T

geυi dS

)
=
∫
T

f eυ dV +
∫
∂T

geυ dS = 0.

From the last two equalities along with (c) arises that υ ∈ A and
∫

T υ dV = 0, hence, by definition
of μ, ‖∇υ‖2

2 � μ.
From (b) and using Theorem 3.17 of [3] we obtain

‖∇υ‖2
2 � lim

i→∞
inf ‖∇υi‖2

2 = μ.

Thus, by definition of μ, ‖∇υ‖2
2 = μ and the inf‖∇υi‖2

2 is attained, where υi ∈ A and
∫

T υi dV =0.
If κ and λ are the Lagrange multipliers, the Euler equation is

∫
T

∇ iυ∇ih dV + κ

(∫
T

f eυh dV +
∫
∂T

geυh dS

)
+ λ

∫
T

h dV = 0, (29)

for all h ∈ H2
1(T ).

Since K (υ) = 0, for h = 1 arises λ = 0, and for h = υ , κ �= 0. (If κ = 0, ‖∇υ‖2 = 0 and since∫
T υ dV = 0, υ = 0 a.e. thus K (υ) > 0, which is false.)

According to Theorem 1 of [18] the solution υ ∈ H2
1,G of (29) is C∞ and if satisfies:

�υ + κ f eυ = 0 in T ,

∂υ

∂n
+ κ geυ = 0 on ∂T

⎫⎬
⎭ . (30)

Setting h = e−υ in (29) we find

κ =
(∫

T

f dV +
∫
∂T

g dS

)−1 ∫
T

|∇υ|2e−υ dV > 0 (31)

and then υ − lnκ is a solution of (P2).

2. Case a � 0, b � 0, not both ≡ 0 and

f −1((−∞,0)) �= ∅ or g−1((−∞,0)) �= ∅.

In this case we have

R = a Vol(T ) + b Vol(∂T ) > 0

and by (23)

∫
T

f eυ dV +
∫
∂T

geυ dS < 0.

Then, if f , g are not both � 0, A �= ∅.
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By Theorem 3.1 arises that, for all ε > 0, there exists a constant Cε such that

∫
T

eυ dV � Cε exp

[
(1 + ε)

1

16π2(l − r)
‖∇υ‖2

2 + 1

Vol(T )

∫
T

υ dV

]
(32)

and

∫
∂T

eυ dS � Cε exp

[
(1 + ε)

1

8π2(l − r)
‖∇υ‖2

2 + 1

Vol(∂T )

∫
∂T

υ dS

]
, (33)

for all υ ∈ H2
1,G .

From the definitions of K (υ) and R and by (23) we obtain

R =
∣∣∣∣
∫
T

f eυ dV +
∫
∂T

geυ dS

∣∣∣∣� (
max

T
| f |

)∫
T

eυ dV +
(

max
∂T

|g|
)∫
∂T

eυ dS

and using (32), (33) we obtain

R �
(

max
T

| f |
)

Cε exp

[
(1 + ε)

1

16π2(l − r)
‖∇υ‖2

2 + 1

Vol(T )

∫
T

υ dV

]

+
(

max
∂T

|g|
)

Cε exp

[
(1 + ε)

1

8π2(l − r)
‖∇υ‖2

2 + 1

Vol(∂T )

∫
∂T

υ dS

]

�
(

max
T

| f |
)

Cε exp

[
(1 + ε)

1

8π2(l − r)
‖∇υ‖2

2 + 1

Vol(T )

∫
T

υ dV

]

+
(

max
∂T

|g|
)

Cε exp

[
(1 + ε)

1

8π2(l − r)
‖∇υ‖2

2 + 1

Vol(∂T )

∫
∂T

υ dS

]
.

The last inequality gives

inf
υ∈A

{∫
T

υ dV +(1 + ε)
1

8π2(l − r)
Vol(T )‖∇υ‖2

2

}
= cT (ε) > −∞ (34)

and

inf
υ∈A

{∫
∂T

υ dS+(1 + ε)
1

8π2(l − r)
Vol(∂T )‖∇υ‖2

2

}
= c∂T (ε) > −∞. (35)

By (34), (35) we obtain
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I(υ) = 1

2

∫
T

|∇υ|2 dV + a

∫
T

υ dV +b

∫
∂T

υ dS

�
[

1

2
− (1 + ε)

1

8π2(l − r)

(
a Vol(T ) + b Vol(∂T )

)]‖∇υ‖2
2 + acT (ε) + bc∂T (ε)

=
[

1

2
− (1 + ε)

1

8π2(l − r)
R

]
‖∇υ‖2

2 + acT (ε) + bc∂T (ε). (36)

If we assume R < 4π2(l − r) and if we choose ε > 0 such that c = 1
2 − (1 + ε) 1

8π2(l−r)
R > 0, by (36)

we conclude that μ = infυ∈A I(υ) > −∞.
Let {υi}i∈N,υi ∈ A be a minimizing sequence of I(υ) such that

μ � I(υi) � μ + 1 (37)

for any i ∈ N (36) and (37) yield

0 � ‖∇υi‖2
2 � I(υi) − acT (ε) − bc∂T (ε)

c
� μ + 1 − acT (ε) − bc∂T (ε)

c
< +∞.

By (34), (35) and (36) we also obtain

∫
T

υi dV � cT (ε) − (1 + ε)
1

8π2(l − r)
Vol(T )(μ + 1) = CT (38)

and ∫
∂T

υi dS � c∂T (ε) − (1 + ε)
1

8π2(l − r)
Vol(∂T )(μ + 1) = C∂T . (39)

By the definition of I(υ) and because of (37) yields

a

∫
T

υi dV +b

∫
∂T

υi dS � I(υi) � μ + 1.

The last relation, because of (38), (39) gives us

∫
T

υi dV � μ + 1

a
− C∂T if a �= 0 (40)

and ∫
∂T

υi dS � μ + 1

b
− CT if b �= 0. (41)

By (37), (38), (40) and (41) we have

∣∣∣∣
∫

υi dV

∣∣∣∣� C1 (42)
T
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and

∣∣∣∣
∫
∂T

υi dS

∣∣∣∣� C2. (43)

Since the inequality

∫
T

φ2 dV � C

(∫
T

|∇φ|2 dV +
∣∣∣∣ 1

Vol(T )

∫
T

φ dV

∣∣∣∣
2)

(44)

holds for any φ ∈ H2
1,G(T ), taking into account that (37) and (38) also hold, it follows that {υi}i∈N ,

υi ∈ A is bounded in L2
G(T ). Moreover, since (38) holds we conclude that supi∈N(‖υi‖H2

1,G
) < ∞.

Hence, as in the previous case there exists υ ∈ A such that I(υ) = μ.
Recall that, if ν is the Lagrange multiplier, the Euler equation is

∫
T

∇ iυ∇ih dV + a

∫
T

h dV + b

∫
∂T

h dS = ν

(∫
T

f eυ dV +
∫
∂T

geυ dS

)
, (45)

for all h ∈ H2
1(T ).

For h = 1 since K (υ) = 0 we find

ν = −(
a Vol(T ) + b Vol(∂T )

)(∫
T

f eυ dV +
∫
∂T

geυ dS

)−1

= 1.

Using the same arguments as in case 1, we prove that υ ∈ C∞
G (T ) and that is a solution of (P2).

If g ≡ 0 we have

R =
∣∣∣∣
∫
T

f eυ dV

∣∣∣∣� (
max

T
| f |

)∫
T

eυ dV

�
(

max
T

| f |
)

Cε exp

[
(1 + ε)

1

16π2(l − r)
‖∇υ‖2

2 + 1

Vol(T )

∫
T

υ dV

]
.

Hence, if R < 8π2(l − r), following the same process as above we prove that (P2) has a solution.

3. Suppose that R > 0 and a, b not both � 0 (the case R < 0 and a, b not both � 0 can be treated
in the same way).

By (23) it is necessary that f , g are not both � 0 everywhere. Then A �= ∅.
(a) a < 0, b > 0, f < 0, g � 0 and b Vol(∂T ) < 4π2(l − r) if g �≡ 0 or b Vol(∂T ) < 8π2(l − r) if g ≡ 0.
Since f ∈ C∞

G (T ) is negative everywhere and T is compact, there exists δ > 0 such that | f | � δ > 0.
If υ ∈ A we have

|R| =
∣∣∣∣
∫
T

f eυ dV +
∫
∂T

geυ dS

∣∣∣∣=
∫
T

| f |eυ dV +
∫
∂T

|g|eυ dS (46)
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and by elementary inequality ex � 1 + x, x ∈ R we obtain

|R| �
∫
T

| f |eυ dV � δ

∫
T

eυ dV � δ

∫
T

(1 + υ)dV = δ Vol(T ) + δ

∫
T

υ dV .

Since a < 0 we finally obtain

a

∫
T

υ dV � a

( |R|
δ

− Vol(T )

)
. (47)

By (33) implies that for any ε > 0 there exists a constant C̃ε such that

|R| � C̃ε exp

[
(1 + ε)

1

8π2(l − r)
‖∇υ‖2

2 + 1

Vol(∂T )

∫
∂T

υ dS

]
. (48)

By (48) we obtain

b

∫
∂T

υ dS � b Vol(∂T ) ln
|R|
C̃ε

− (1 + ε)
b Vol(∂T )

8π2(l − r)
‖∇υ‖2

2. (49)

By the definition of I(υ) and (47), (49) we obtain

I(υ) �
[

1

2
− (1 + ε)

b Vol(∂T )

8π2(l − r)

]
‖∇υ‖2

2 + b Vol(∂T ) ln
|R|
C̃ε

+ a

( |R|
δ

− Vol(T )

)
. (50)

If b Vol(∂T ) < 4π2(l − r), that is b < l−r
lr and ε is chosen small enough, (50) implies that I(υ) is

bounded bellow for all υ ∈ A and we can prove the existence of a solution of (P2) as in the previous
cases.

If g ≡ 0, it suffices to assume that b <
2(l−r)

lr and then by (48) we obtain

|R| =
∫
T

| f |eυ dV � C̃ε exp

[
(1 + ε)

1

16π2(l − r)
‖∇υ‖2

2 + 1

Vol(∂T )

∫
∂T

υ dS

]

and we continue as above.
(b) a > 0, b < 0, f � 0, g < 0 and a Vol(T ) < 4π2(l − r).
We work as in the previous case and, supposing that a <

2(l−r)
lr2 we conclude the existence of a

solution of (P2).
Cases (c) and (d) are similar to (b).

4. Case a � 0, b � 0, not both = 0.
By (24) it is necessary to assume that

∫
T f dV + ∫

∂T g dS > 0 and by (23) arises that f , g are not
both � 0 a.e.

The proof of this case is based upon the method of upper solutions and lower solutions and is the
same as the one in Theorem 2, case (iv) of [19].
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Let us sketch the proof: It suffices to find functions υ−,υ+ ∈ C∞
G (T ) such that υ+ � υ− which

satisfy the equations

�υ+ + a + f eυ+ � 0 in T ,

∂υ+
∂n

+ b + geυ+ � 0 on ∂T

⎫⎬
⎭ (51)

and

�υ− + a + f eυ− � 0 in T ,

∂υ−
∂n

+ b + geυ− � 0 on ∂T

⎫⎬
⎭ (52)

respectively.
We denote by P (a,b) the nonlinear problem (P2) and solve this case in four steps. More precisely,

we prove that:
1. For any u ∈ C0

G(T ), P (a,b) accepts a lower solution υ− such that υ− � u.
2. For any u ∈ C0

G(T ), P (a,b) accepts an upper solution υ+ such that υ+ � u.
3. Choosing f , g appropriately, the set S f ,g can be contained in R2− = {(a,b) �= (0,0): a � 0, b � 0}

strictly.
4. If f , g are �≡ 0 and nonnegative everywhere then S f ,g = R2− . �

6. Proofs of the lemmas

Proof of Lemma 2.1. 1. Let ε0 > 0 and (T j) j=1,...,N be a finite covering of T , where

T j = {
Q ∈ R3: d(Q , O P j ) < δ j, δ j = l jε j and ε j � ε0

}
.

Then for any υ ∈ C∞
0,G(T j) by (1) we obtain

∫
T j

eυ dV =
∫

I×D

eυ◦ξ−1
j
(√

g ◦ ξ−1
j

)
dωdt ds = 2π l jδ

2
j

∫
D

eφ

(
1 + δ j

l j
t

)
dt ds

� 2π l jδ
2
j (1 + ε0)

∫
D

eφ dt ds.

From this and by Theorem 1 of [17] we have

∫
T j

eυ dV � 2π l jδ
2
j C(1 + ε0) exp

(
μ2

∫
D

|∇φ|2 dt ds

)
,

where μ2 = 1
16π is the best constant of Sobolev inequality

∫
D

e f dV � C exp
[
μ2‖∇ f ‖2

2

]
,

with f ∈ H̊2
1(D).
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Moreover from (2) we obtain∫
T j

|∇υ|2 dV = 2π

∫
D

|∇φ|2(l j + δ jt)dt ds � 2π l j(1 − ε0)

∫
D

|∇φ|2 dt ds,

thus ∫
D

|∇φ|2 dt ds � 1

2π l j

1

1 − ε0

∫
T j

|∇υ|2 dV .

Finally, we have

∫
T j

eυ dV �Cε0 exp

[
(1 + cε0)

μ2

2π l j

∫
T j

|∇υ|2 dt ds

]
,

where Cε0 = 2π llδ2
j C(1 + ε0) and 1

1−ε0
= 1 + cε0, c > 0.

2. Let us choose δ > 0 such that the torus T is covered by N open subsets

T j,δ/2 = {
Q ∈ T : d(Q , O P j ) < δ/2

}
.

We consider the decreasing real valued C∞ function Ψ (r), which equals 1 for 0 � r � δ/2 and 0 for
r � δ and we note Ψ j(Q ) = Ψ (d(Q , O P j )).

The Ψ j ’s defined on T j = {Q ∈ T : d(Q , O P j ) < δ} are G-invariant, but they are not a partition of
unity.

Let υ ∈ C∞
0,G(T ). Then (υΨ j) ∈ C∞

0,G(T j) and from the first part of this lemma we obtain

∫
T j

eυΨ j dV �C exp

[
(1 + cε0)

μ2

2π l j

∥∥∇(υΨ j)
∥∥2

2

]
. (53)

Because of the following relation:

∥∥∇(υΨ j)
∥∥2

2 � ‖Ψ j∇υ‖2
2 + 2‖Ψ j∇υ‖‖υ∇Ψ j‖ + ‖υ∇Ψ j‖2

2

and since for all ε0 > 0 a constant Dε0 exists such that

‖Ψ j∇υ‖‖υ∇Ψ j‖ � ε0‖Ψ j∇υ‖2
2 + Dε0‖υ∇Ψ j‖2

2,

we obtain

∥∥∇(υΨ j)
∥∥2

2 � (1 + 2ε0)‖∇υ‖2
2 + D̃‖υ‖2

2,

where D̃ = (2Dε0 + 1)(supT |∇Ψ j |2).
From (53) because of the last inequality we have

∫
T j

eυΨ j dV �C exp

[
(1 + cε0)(1 + 2ε0)

μ2

2π l j
‖∇υ‖2

2 + D‖υ‖2
2

]
, (54)

where D = (1 + cε0)
μ2

2π l D̃ .

j
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Since inf l j = l − r given ε > 0 we can choose ε0 small enough such that from (54) we obtain

∫
T

eυ dV �
N∑

i=1

∫
T j,δ/2

eυ dV �
N∑

i=1

∫
T j,δ

eυΨ j dV

� C exp

[(
μ2

2π(l − r)
+ ε

)
‖∇υ‖2

2 + D‖υ‖2
2

]
,

and so we have the desired inequality.
Now we need to prove that the constant μ2

2π(l−r) is the best constant μ such that the inequality

∫
T

eυ dV � C exp
[
(μ + ε)‖∇υ‖2

2 + D‖υ‖2
2

]

holds for all υ ∈ H̊2
1,G .

For that purpose, for all ε, we need to find a sequence (υα) ∈ H̊2
1,G , such that for all �, E ∈ R the

following holds:

lim
α→0

‖∇υα‖2
2 + �‖υα‖2

2 + E

ln
∫

T eυα dV
� 2π(l − r)

μ2
+ ε. (55)

Let us consider the orbit O inf of minimum length 2π(l − r). For any ε0 > 0, let

T j0 = {
Q ∈ R3: d(Q , O inf ) < δ, δ = ε0(l − r)

}
,

where d(Q , O inf ) denotes the distance from Q to the orbit O inf .
It is easy to prove that

d(Q , O P ) = δdD
(
ξ j0(Q ), O

)= δ
√

t2 + s2, (56)

where dD denotes the distance in the disc D centered on O .
For all α > 0 define the functions (υα) by

υα(Q ) =
{

−2 ln(α + d2(Q , O inf )) + 2 ln(α + δ2), if Q ∈ T ∩ T j0 ,

0, if Q ∈ T \T j0 .

Since υα depends only on the distance to O inf , υα ∈ H̊2
1,G(T j0 ).

Setting φα = υα ◦ ξ−1
j0

we obtain

∫
T

eυα dV =
∫

I×D

e
υα◦ξ−1

j0
(√

g ◦ ξ−1
j0

)
dωdt ds

=
∫

eφα δ2((l − r) + δt
)

dωdt ds
I×D
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= 2π(l − r)δ2
∫
D

eφα

(
1 + δ

l − r
t

)
dt ds

� 2π(l − r)δ2(1 − ε0)

∫
D

eφα dt ds. (57)

Hence, by definition of υα and because of (56) for all ξ j0 (Q ) = (t, s) ∈ D we obtain

φα

(
ξ j(Q )

)= ln

(
α + δ2

α + δ2(t2 + s2)

)2

,

thus

∫
D

eφα dt ds =
∫
D

(
α + δ2

α + δ2(t2 + s2)

)2

dt ds.

Changing variables in the latter equality we obtain

∫
D

eφα dt ds =
2π∫
0

1∫
0

(α + δ2)2r

(α + δ2r2)2
dr dθ

= (α + δ2)2π

δ2

1∫
0

(α + δ2r2)′

(α + δ2r2)2
dr

= (α + δ2)π

α
. (58)

By (57) and (58) we have

∫
T

eυα dV � (1 − ε0)2π(l − r)δ2 (α + δ2)π

α

� (1 − ε0)2π2(l − r)δ4 1

α

= Cε0

1

α
,

and then

ln
∫
T

eυα dV � ln Cε0 + ln
1

α
, (59)

where Cε0 = (1 − ε0)2π2(l − r)δ4.
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Moreover, because of (2) we have

‖∇υα‖2
2 = 2π

∫
D

∣∣∇φα(t, s)
∣∣2((l − r) + δt

)
dt ds

� (1 + ε0)2π(l − r)

∫
D

∣∣∇φα(t, s)
∣∣2 dt ds. (60)

Since

∣∣∇φα(t, s)
∣∣2 = ∣∣∇[−2 ln

(
α + δ2(t2 + s2))+ 2 ln

(
α + δ2)]∣∣2

= ∣∣−2∇[
ln
(
α + δ2(t2 + s2))]∣∣2

= 4

∣∣∣∣
(

2δ2t

α + δ2(t2 + s2)
,

2δ2s

α + δ2(t2 + s2)

)∣∣∣∣
2

= 16δ4(t2 + s2)

[α + δ2(t2 + s2)]2
,

we have

∫
D

∣∣∇φα(t, s)
∣∣2 dt ds =

∫
D

16δ4(t2 + s2)

[α + δ2(t2 + s2)]2
dt ds

= 2π

1∫
0

16δ4r2

(α + δ2r2)2
r dr.

Changing variables we obtain

∫
D

∣∣∇φα(t, s)
∣∣2 dt ds = 16π

δ2∫
0

τ

(α + τ )2
dτ

= 1

μ2

δ2∫
0

τ

(α + τ )2
dτ . (61)

We further define the function

h(α) = ln
1

α
−

δ2∫
0

τ

(α + τ )2
dτ , α > 0,

and changing the variable we obtain
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h(α) = ln
1

α
−

δ2∫
0

τ

α2(1 + τ
α )2

dτ

=
δ2/α∫
δ2

1

u
du −

δ2/α∫
0

u

(1 + u)2
du

=
δ2/α∫
δ2

(
1

u
− u

(1 + u)2

)
du −

δ2∫
0

u

(1 + u)2
du

=
δ2/α∫
δ2

[
1 − (

1 + u−1)−2]
u−1 du −

δ2∫
0

u

(1 + u)2
du

and because of

[
1 − (

1 + u−1)−2]
u−1 =

[
1 −

(
1 + 1

u

)−2]1

u
=
[

1 −
(

u

u + 1

)2]1

u

= 1

u + 1
· 2u + 1

u + 1
· 1

u
<

2

u + 1
· 1

u
<

2

u2

we finally obtain

lim
α→0

h(α) =
∞∫

δ2

[
1 − (

1 + u−1)−2]
u−1 du −

δ2∫
0

u

(1 + u)2
du

�
∞∫

δ2

2u−2 du −
δ2∫

0

u

(1 + u)2
du = C0.

Thus, for any α > 0 close to 0 the following holds:

δ2∫
0

τ

(α + τ )2
dτ = ln

1

α
+ C1. (62)

From (60)–(62) we obtain

‖∇υα‖2
2 � (1 + ε0)2π(l − r)

μ2
ln

1

α
+ C . (63)
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On the other hand we have

‖υα‖2
2 = 2πδ2

∫
D

|φα |2((l − r) + δt
)

dt ds

� (1 + ε0)2π(l − r)δ2
∫
D

|φα |2 dt ds

= C0

∫
D

∣∣∣∣2 ln

(
α + δ2

α + δ2(t2 + s2)

)∣∣∣∣
2

dt ds

= 4C0

∫
D

(
ln
(
α + δ2)− ln

(
α + δ2(t2 + s2)))2

dt ds

� 8πC0

∫
D

[
2 ln2(α + δ2)+ 2 ln2(α + δ2(t2 + s2))]dt ds

= 8πC0

( 1∫
0

2 ln2(α + δ2)r dr +
1∫

0

2 ln2(α + δ2r2)r dr

)

= 8πC0 ln2(α + δ2) 1∫
0

2r dr + 8πC0

δ2

1∫
0

ln2(α + δ2r2)2δ2r dr

= 8πC0 ln2(α + δ2)+ 8πC0

δ2

1∫
0

ln2(α + δ2r2)(α + δ2r2)′ dr

= C1 + C2

α+δ2∫
α

ln2 ζ dζ

= C1 + C2
[
ζ
(
ln2 ζ − 2 ln ζ + 2

)]α+δ2

α

= C1 + C2
[(

α + δ2)(ln2(α + δ2)− 2 ln
(
α + δ2)+ 2

)]− C2α
(
ln2 α − 2 lnα + 2

)
,

and since lim
α→0+ (α lnα) = lim

α→0+ (α ln2 α) = 0 we have

‖υα‖2
2 � C1 + C2C3 = C . (64)

Finally, from (59), (63) and (64) for any �, E ∈ R the following holds:

‖∇υα‖2
2 + �‖υα‖2

2 + E

ln
∫

T eυα dV
�

(1+ε0)2π(l−r)
μ2

ln 1
α + C

ln 1
α + ln Cε0

,

thus,

lim
α→0

‖∇υα‖2
2 + �‖υα‖2

2 + E

ln
∫

eυα dV
� (1 + ε0)

2π(l − r)

μ
. (65)
T 2
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For any ε > 0 consider ε0 > 0 such that (1 + ε0)
2π(l−r)

μ2
� 2π(l−r)

μ2
+ ε and so from (65) we obtain our

result. �
Proof of Lemma 2.2. Following arguments similar to those in [4] and [30] we prove the first and
second part of the lemma, respectively.

1. Our aim here is to find a constant Cε , such that for any ε > 0 and for all functions υ ∈ HG , with∫
T υ dV = 0 the following inequality holds

∫
T

eυ dV � Cε exp
[
(μ + ε)‖∇υ‖2

2

]
,

where μ = 1
16π L if HG = H̊2

1,G and μ = 1
8π L if HG = H2

1,G .
(i) Let υ ∈ C∞

0,G(T ) with
∫

T υ dV = 0 and υ̌ = sup(υ,0).

Then υ̌ ∈ H̊2
1,G(T ) and

∫
R3

υ̌ dx =1

2

∫
R3

υ dx,

∫
R3

|∇υ̌|dx �
∫
R3

|∇υ|dx.

For any t ∈ R, denote by mt(υ) the measure of the set

Ωt(υ) = {
x ∈ T : υ(x) � t

}
.

Given υ ∈ C∞
0,G(T ), mt(υ) is a decreasing function of t , not necessarily continuous. Let m > 0 depend-

ing on ε. Then, for a given υ ∈ C∞
0,G(T ) two different cases can occur: whether there exists s � 0 such

that ms(υ) � m or not.
(a) Suppose there exists s � 0 such that ms(υ) � m.
If we denote

S = sup
{

s ∈ R: ms(υ) � m
}
,

we will have S � 0, mS+1(υ) < m and mS/2(υ) � m.
According to Lemma 2.1 we have the following:

∫
T

eυ dV = eS+1
∫
T

eυ−(S+1) dV �eS+1
∫
T

e
ˇ̂

υ−(S+1) dV

� eS+1Cε/2 exp

[(
μ + ε

2

)
‖∇υ‖2

2 + Dε/2
∥∥ ˇ̂
υ − (S + 1)

∥∥2
2

]
. (66)

Since
∫

T υ dV = 0, and ‖υ̌‖1 = 1
2 ‖υ‖1 by Poincaré inequality there exists a constant C1 such that

‖υ̌‖1 = 1

2
‖υ‖1 � C1‖∇υ‖2, (67)

and since S + 1 > 0 we obtain

∥∥ ˇ̂
υ − (S + 1)

∥∥ � ‖ῡ‖1 � C1‖∇υ‖2. (68)
1
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From the last two inequalities, by Hölder’s inequality and the Sobolev continuous and compact em-
bedding of H̊2

1,G in L p
G(T ), we obtain

∥∥ ˇ̂
υ − (S + 1)

∥∥2
2 � m1/2

S+1(υ)
∥∥ ˇ̂
υ − (S + 1)

∥∥2
4

< m1/2
∥∥ ˇ̂
υ − (S + 1)

∥∥2
4

� m1/2C2‖∇υ‖2
2, (69)

where C2 is a constant independent of υ and μ.
By the definition of Ωt(υ) we have that

Ω0(υ) = {
x ∈ T : υ(x) � 0

}
and

ΩS/2(υ) = {
x ∈ T : υ(x) � S/2

}
.

Thus

‖υ̌‖1 =
∫

Ω0(υ)

υ dV �
∫

ΩS/2(υ)

υ dV �
∫

ΩS/2(υ)

S

2
dV = S

2
mS/2(υ). (70)

From (67) and (70), since mS/2(υ) � m, we obtain

S � 2

mS/2(υ)
‖υ̌‖1 � 2

m
C1‖∇υ‖2. (71)

The elementary inequality

x < Sx2 + 1

S
, x ∈ R, S > 0,

with x = ‖∇υ‖2 yields

‖∇υ‖2 < S‖∇υ‖2
2 + 1

S
, S > 0. (72)

From (71), and because of (72), we obtain

S � 2C1

m

(
S‖∇υ‖2

2 + 1

S

)
,

and with 2C1
m = m

S we obtain

S � m‖∇υ‖2
2 + 4C2

1m−3 = m‖∇υ‖2
2 + C3m−3. (73)
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Thus, from (66), and because of (69) and (73), we obtain

∫
T

eυ dV �Cε exp

[(
μ2

L
+ ε

2
+ Dε/2C2m1/2 + m

)
‖∇υ‖2

2

]
(74)

where Cε = Cε/2 exp(C3m−3 + 1).
(b) Suppose now that ms(υ) < m for any s � 0.
By Lemma 2.1 we have the following:

∫
T

eυ dV �
∫
T

eυ̌ dV � Cε/2 exp

[(
μ + ε

2

)
‖∇υ̌‖2

2 + Dε/2‖υ̌‖2
2

]

or

∫
T

eυ dV �Cε/2 exp

[(
μ + ε

2

)
‖∇υ‖2

2 + Dε/2‖υ‖2
2

]
. (75)

In this case, m0(υ) � m and so

‖υ̌‖2
2 � m1/2

0 (υ)‖υ̌‖2
4 < m1/2‖υ̌‖2

4 � m1/2C2‖∇υ‖2
2. (76)

From (75), and because of (76) we obtain

∫
T

eυ dV �Cε/2 exp

[(
μ + ε

2
+ Dε/2C2m1/2 + m

)
‖∇υ‖2

2

]
. (77)

In both cases we have to choose m > 0 such that

Dε/2C2m1/2 + m <
ε

2

and

Cε = Cε/2 exp

(
2C1

m2
+ 1

)

so, for all υ ∈ H̊2
1,G with

∫
T υ dV = 0 the following inequality holds

∫
T

eυ dV � Cε exp
[
(μ + ε)‖∇υ‖2

2

]
, (78)

where μ = 1
16π L .

(ii) Let now υ ∈ H2
1,G . Following the same steps as in the first part of Lemma 2.1 by Theorem 3

of [18], for all υ ∈ C∞
G (T ), we obtain

∫
T j

eυ dV �C exp

[
(1 + cε)

1

16π2l j

∫
T j

|∇υ|2 dV

]
. (79)
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Consequently, since C∞
G (T ) is dense in H2

1,G and (79) holds for any j = 1,2, . . . , N , by the second
part of Lemma 2.1, we conclude that, for all ε > 0, there are constants Cε and Dε such that for all
υ ∈ H2

1,G the following holds:

∫
T

eυ dV � Cε exp
[
(μ + ε)‖∇υ‖2

2 + Dε‖υ‖2
2

]
,

where μ = 1
8π L is the best constant for this inequality.

Following the same steps as in the first part of this lemma we derive that for any ε > 0 and for
all functions υ ∈ H2

1,G , with
∫

T υ dV = 0 the following inequality holds

∫
T

eυ dV � Cε exp
[
(μ + ε)‖∇υ‖2

2

]
, (80)

where μ = 1
8π L .

By parts (i) and (ii) of the lemma we conclude that, for all ε > 0, there exists constant Cε such
that for all υ ∈ H̊2

1,G or υ ∈ H2
1,G with

∫
T υ dV = 0, inequalities (78) and (80) hold respectively.

Finally, we observe that if υ̃ = υ − 1
2π2r2l

∫
T υ dV we have

∫
T

υ̃ dV =
∫
T

(
υ − 1

2π2r2l

∫
T

υ dV

)
dV

=
∫
T

υ dV − 1

2π2r2l

∫
T

υ dV

∫
T

dV

=
∫
T

υ dV − 1

Vol(T )
Vol(T )

∫
T

υ dV

= 0,

and so, rewriting (78) and (80) with υ̃ = υ − 1
2π2r2l

∫
T υ dV we obtain:

∫
T

e
υ− 1

2π2r2l

∫
T υ dV

dV � Cε exp

[
(μ + ε)

∥∥∥∥∇
(
υ − 1

2π2r2l

∫
T

υ dV

)∥∥∥∥
2

2

]
,

e
− 1

2π2r2l

∫
T υ dV

∫
T

eυ dV � Cε exp
[
(μ + ε)‖∇υ‖2

2

]

or

∫
T

eυ dV � Cε exp

[
(μ + ε)‖∇υ‖2

2 + 1

2π2r2l

∫
T

υ dV

]
,

and the first part of the lemma is proved.

2. Let υ ∈ C∞
G (T ), with

∫
∂T υ dS = 0, φ = υ ◦ ξ−1 and n the outward unit normal.
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By Stoke’s theorem we have

∫
∂T

eυ dS = 2πr2
∫
∂ D

eφ(l + rt)dσD

� 2πr2(l + r)

∫
∂ D

eφ dσD

= 2πr2(l + r)

∫
D

div
(
eφn

)
dt ds

= 2πr2(l + r)

∫
D

[
divn + n(φ)

]
eφ dt ds

� 2πr2(l + r)

[
C0

∫
D

eφ dt ds +
∫
D

|∇φ|eφ dt ds

]
, (81)

where C0 = supD(|divn|).
By (81), and because of Theorem 4 of [17] arises

∫
∂T

eυ dS � 2πr2(l + r)

[
C0C̃ exp

(
μ‖∇φ‖2

2

)+
∫
D

|∇φ|eφ dt ds

]
. (82)

By Hölder’s inequality and by Theorem 3 of [18] we obtain

∫
D

|∇φ|eφ dt ds � ‖∇φ‖2

(∫
D

e2φ dt ds

)1/2

� C̃‖∇φ‖2 exp
(
2μ̃‖∇φ‖2

2

)
, (83)

where μ̃ is a constant greatest than 1/8π .
From the elementary inequality t � C1 exp(ε0t2), t � 0, ε0 > 0 and C1 a constant with arbitrary

ε0 > 0 and t = ‖∇φ‖2 we obtain

‖∇φ‖2 � C1 exp
(
ε0‖∇φ‖2

2

)
. (84)

Combining inequalities (82)–(84) we obtain

∫
∂T

eυ dS � 2πr2(l + r)
[
C0C̃ exp

(
μ̃‖∇φ‖2

2

)+ C̃‖∇φ‖2 exp
(
2μ̃‖∇φ‖2

2

)]

� 2πr2(l + r)
[
C0C̃ exp

(
μ̃‖∇φ‖2

2

)+ C̃C1 exp
(
ε0‖∇φ‖2

2

)
exp

(
2μ̃‖∇φ‖2

2

)]
� 2πr2(l + r)C̃(C0 + C1)exp

[
(2μ̃ + ε0)‖∇φ‖2

2

]
.

Since

‖∇φ‖2
2 =

∫
|∇φ|2 dt ds � 1

L

∫
|∇υ|2 dV ,
D T
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the latter inequality becomes

∫
∂T

eυ dS � 2πr2(l + r)C̃(C0 + C1)exp

(
2μ̃ + ε0

L

∫
T

|∇υ|2 dV

)

� C exp

(
2μ̃ + ε0

L

∫
T

|∇υ|2 dV

)
.

Given ε > 0, we can choose ε0 > 0 such that

2μ̃ + ε0

L
<

2μ̃

L
+ ε = μ + ε,

and the last inequality yields

∫
∂T

eυ dS � C exp

(
(μ + ε)

∫
T

|∇υ|2 dV

)
. (85)

Rewriting (85) with υ̃ = υ − 1
4π2r2l

∫
∂T υ dS yields the second inequality of the lemma. �
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