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We derive the off-shell Noether current and potential in the context of Horndeski theory, which is the 
most general scalar–tensor theory with a Lagrangian containing derivatives up to second order while 
yielding at most to second-order equations of motion in four dimensions. Then the formulation of 
conserved charges is proposed on basis of the off-shell Noether potential and the surface term got from 
the variation of the Lagrangian. As an application, we calculate the conserved charges of black holes in a 
scalar–tensor theory with non-minimal coupling between derivatives of the scalar field and the Einstein 
tensor.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Horndeski gravity theory, first formulated by Horndeski back in 
1974 [1], is the most general scalar–tensor theory with a single 
scalar degree of freedom that possesses a Lagrangian containing 
higher than second order derivatives while yielding second-order 
equations of motion for the metric and the scalar field in four di-
mensions. In some cases, it recovers general relativity and a wide 
class of modified gravity models with a single scalar hair, such as 
Brans–Dicke theory, f(R) gravity, k-essence [25] and the covariant 
Galileon [26]. The Horndeski theory has received extensive atten-
tion since Deffayet et al. re-discovered independently it as the 
theory of generalized Galileon [2], which is equivalent to the orig-
inal Horndeski theory in spite of a different formulation [3]. Up 
to now this theory has been extended and developed to investi-
gate various aspects associated with gravitational theory, ranging 
from black hole physics to cosmology. In the context of solutions 
in the Horndeski theory, spherically symmetric solutions were in-
vestigated in [5–7] while rotating solutions were discussed in [21]. 
Owing to its complexity of the theory, it is difficult to find ex-
act solutions in the full theory. Consequently, a lot of attention 
was drawn to seeking solutions [8–22] in a particular case of the 
Horndeski theory, where the Lagrangian only involves non-minimal 
coupling between derivatives of the scalar field and the Einstein 
tensor [11,24]. To further interpret thermodynamic property of the 
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black hole solutions, it is of great necessity to find a proper formu-
lation of conserved charges in the full Horndeski theory, which is 
just our motivation in this work.

Recently, by making use of the Noether procedure, Kim, Kulka-
rni and Yi put forward a formulation of quasi-local conserved 
charges in covariant theories of pure gravity [27], which can be 
seen as an off-shell generalization of the conventional Abbott–
Deser–Tekin (ADT) formalism that is defined in terms of the 
Noether potential got through the linearized perturbation for the 
expression of the gravitational field equation in a fixed background 
metric satisfying the equation of motion in vacuum [39,40]. The 
main ideas of their method go as follows. Starting with the vari-
ation of the Lagrangian for the gravity system along the line of 
the covariant phase space approach [44,45], one reads off the ex-
pression for the equation of motion and surface term. Next, under 
the assumption that the variation is induced by a diffeomorphism 
symmetry generated by a smooth vector field, an off-shell Noether 
current and its corresponding potential with respect to the vector 
field are introduced in terms of the expression of the field equa-
tion and the surface term. Finally, by establishing the one-to-one 
relationship between the off-shell Noether potential and the ADT 
potential and following the method in [41–43] to incorporate a 
single parameter path in the space of solutions into the formal-
ism, one can propose a quasi-local formulation of the conserved 
charges in the theories of gravity.

Inspired with the generalized formalism for the quasi-local con-
served charges proposed in the work [27], the method therein has 
been generalized and developed to study conserved charges in var-
ious gravitational theories coupled with matter fields or not. In 
[28], Hyun, Jeong, Park and Yi developed the formalism in [27]
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2015.11.041
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:pengjjph@163.com
http://dx.doi.org/10.1016/j.physletb.2015.11.041
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.physletb.2015.11.041
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.11.041&domain=pdf


192 J.-J. Peng / Physics Letters B 752 (2016) 191–197
by considering all the effect from gravitational field and matter 
fields in covariant theories of gravity, and they further showed 
that conserved charges via the modified ADT formalism coincide 
with those by the covariant phase space approach [44,45]. In [29], 
by directly varying the Bianchi identity for the expression of the 
equation of motion, we presented an off-shell Noether current in 
a different, but equivalent formulation compared with the one 
in [27]. Then we employed the generalized formulation to cal-
culate the quasi-local conserved charges of black holes in four-
dimensional conformal Weyl gravity and in arbitrary dimensional 
Einstein–Gauss–Bonnet gravity. Conserved charges of black holes 
with a sole scalar hair were taken into account in [30–32]. Other 
applications and developments of the modified ADT formalism can 
be found in [33–38].

In this letter, we focus on providing a systematic approach to 
calculate the conserved charge in the full Horndeski gravity theory. 
To do this, we derive the off-shell Noether currents and potentials 
of this theory and follow the works [27,28] to propose a formu-
lation of the conserved charge through building the one-to-one 
correspondence between the off-shell Noether potential and the 
ADT potential. Then the generalized formalism is extended to a 
special scalar–tensor theory with non-minimal coupling to grav-
ity [11,24], which has attracted much attention in the context of 
black hole physics. As concrete examples, we explicitly compute 
the mass and angular momentum of the three-dimensional rotat-
ing black hole with a sole scalar degree of freedom in [19] and 
the mass of the four-dimensional (charged) spherically symmetric 
black holes in [13,17].

The outline of this letter goes as follows. In section 2, we de-
rive the off-shell Noether currents and potentials of the Horndeski 
theory and then present the formulation of conserved charge in 
this theory. In section 3, as an application in a particular case of 
the Horndeski theory, the off-shell Noether potential of the scalar–
tensor theory with a single scalar field non-minimally coupled to 
the metric is derived. By using the formulation defined in terms 
of the potential and the surface term, we compute the mass and 
angular momentum of three-dimensional rotating black holes and 
the mass of four-dimensional charged spherically symmetric black 
holes in the special theory. The last section is our conclusions.

2. Off-shell Noether currents and the formulation of conserved 
charges

In this section, we derive the off-shell Noether currents and 
their corresponding potentials in the framework of the Horndeski 
theory along the line of the works [27,28]. By building the relation-
ship between the off-shell Noether potential and the ADT potential 
[39,40], we further give the formulation of the conserved charge in 
the Horndeski gravity theory.

As a starting point, we consider the Lagrangian for the Horn-
deski theory that takes the form

L =
3∑

i=0

L(i) , (1)

where the components L(i) are given by [1–3]

L(0) = √−gG(0)(φ, X) ,

L(1) = √−gG(1)(φ, X)(∇μ∇μφ) ,

L(2) = √−g
[
2G(2)

,X (φ, X)δ
[μ1
ν1 δ

μ2]
ν2 (∇μ1∇ν1φ)(∇μ2∇ν2φ)

+ RG(2)(φ, X)
]
,

L(3) = √−g
[
6G(3)

,X (φ, X)δ
[μ1
ν1 δ

μ2
ν2 δ

μ3]
ν3 (∇μ1∇ν1φ)(∇μ2∇ν2φ)

× (∇μ3∇ν3φ) − 6Gμν(∇μ∇νφ)G(3)(φ, X)
]
. (2)
In the above equation, the scalar curvature R is defined as the 
trace of the Ricci tensor Rμν , Gμν denotes the Einstein tensor, 
X = −1/2∇μφ∇μφ, G(i)

,X (φ, X) = ∂G(i)(φ, X)/∂ X , and G(i)(φ, X)

are arbitrary functions of the scalar field φ and its kinetic term X . 
The components L(2,3) contain terms involving non-minimal cou-
plings to gravity, which result in the elimination of higher deriva-
tives that might appear in the equations of motion. Consequently, 
in spite of the Lagrangian containing higher-order derivative terms, 
the field equations are of second-order [4]. The Horndeski grav-
ity theory is a general scalar–tensor theory. It includes general 
relativity and all popular modified gravity theories with a sin-
gle scalar field as special cases, for instance, the Lagrangian (1)
reduces to the conventional Einstein–Hilbert Lagrangian when 
G(2) = 1/2 with G(0,1,3) = 0, and in the work [21], it has been 
shown that the Horndeski theory recovers several well-known 
modified gravity models, such as Brans–Dicke theory, f(R) grav-
ity, k-essence [25], the covariant Galileon [26] and the theory of 
Einstein-dilaton-Gauss–Bonnet gravity, with proper choice of the 
four free functions G(i) .

The variation of the Lagrangian (1) is read off as

δL =
3∑

i=0

δL(i) = √−g
[
Tμνδgμν + E(φ)δφ + ∇μ�μ(δg, δφ)

]
,

Tμν =
3∑

i=0

T (i)
μν , E(φ) =

3∑
i=0

E(i)
(φ) ,

�μ(δg, δφ) =
3∑

i=0

�
μ
(i)(δg, δφ) , (3)

where and in what follows, the quantity with the index “(i)” is the 
one corresponding to the Lagrangian L(i) . In Eq. (3), the expressions 
of the field equation T (0)

μν , T (1)
μν , E (0)

(φ) and E (1)
(φ) are given by

T (0)
μν = −1

2

(
G(0)gμν + G(0)

,X �μν

)
,

T (1)
μν = 1

2
gμν∇σ G(1)∇σ φ − ∇(μG(1)∇ν)φ − 1

2
G(1)

,X �φ�μν ,

E(0)
(φ) = ∇μ

(
G(0)

,X ∇μφ
) + G(0)

,φ ,

E(1)
(φ)

= ∇μ

(
G(1)

,X �φ∇μφ
) + G(1)

,φ �φ + �G(1) . (4)

Here and in the remainder of this work, the symmetric tensor �μν

is defined through �μν = (∇μφ)(∇νφ). The surface terms �μ
(0)

(δφ)

and �μ
(1)(δg, δφ) have the forms

�
μ
(0) = −G(0)

,X ∇μφδφ ,

�
μ
(1) = 1

2
G(1)

(
h∇μφ − 2hμν∇νφ + 2∇μδφ

) − δφG(1)
,X (�φ)∇μφ

− δφ∇μG(1) , (5)

where and in what follows

hμν = δgμν , hμν = gμρ gνσ hρσ = −δgμν , h = gρσ δgρσ .

The expressions of the field equations and surface terms associated 
with the Lagrangian components L(2,3) are much more involved, so 
we present them in the Appendix A. We have proved that all the 
expressions for the equations of motion satisfy

2∇μT (i)
μν + E(i) ∇νφ = 0 , (6)
(φ)
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which result from the constraint that the Horndeski theory has to 
reserve diffeomorphism symmetry and directly lead to that

2∇μTμν + E(φ)∇νφ = 0 . (7)

In the absence of the scalar field, Eq. (7) reduces to the usual 
Bianchi identity ∇μGμν = 0 in general relativity. In this sense, 
Eq. (7) can be treated as a generalized Bianchi identity for the 
Horndeski theory.

Let us now consider the variation induced by a diffeomorphism 
generated by a smooth vector field ζμ . In other words, the vari-
ation of the field gμν and φ in Eq. (3) is replaced by their Lie 
derivative with respect to the vector ζμ. With help of Eqs. (6) and 
(7), we obtain an off-shell Noether current Jμ , which is read off as

Jμ = L√−g
ζμ + 2T μνζν − �μ(Lζ g,Lζ φ) =

3∑
i=0

Jμ
(i) ,

Jμ
(i) = L(i)√−g

ζμ + 2T μν
(i) ζν − �

μ
(i)(Lζ g,Lζ φ) . (8)

The off-shell Noether potential K μν , defined through Jμ = ∇ν K μν , 
takes the form

K μν =
3∑

i=0

K μν
(i) , (9)

where the off-shell Noether potentials K μν
(i) , which are associated 

with the Noether currents Jμ
(i) through the relations Jμ

(i) = ∇ν K μν
(i) , 

are presented by

K μν
(0) = 0 ,

K μν
(1) = 2G(1)ζ [μ∇ν]φ ,

K μν
(2) = 4G(2)

,X

(�φζ [μ∇ν]φ − ζσ �σ [μ∇ν]φ
)

+ 4ζ [μ∇ν]G(2) + 2G(2)∇[μζν] , (10)

and

K μν
(3) = 6G(3)

,X

[
(�φ)2ζ [μ∇ν]φ − �αβ�αβζ [μ∇ν]φ

− 2�φζσ �σ [μ∇ν]φ + 2ζσ �σρ�ρ[μ∇ν]φ
]

− 6
[
2ζ [μ∇σ

(
�ν]σ G(3)

) − 2ζσ ∇[μ(
�ν]σ G(3)

)
− 2ζ [μ∇ν](G(3)�φ

) + 2G(3)ζσ Gσ [μ∇ν]φ
− 2G(3)(∇σ ζ [μ)�ν]σ − G(3)�φ∇[μζν]] . (11)

In Eq. (11) and what follows, for brevity, the symmetric tensor �μν

is defined as �μν = ∇μ∇νφ.
Comparing the off-shell Noether potentials K μν

(i) and K μν with 
the on-shell ones got through Wald’s covariant phase space ap-
proach [44,45], one can find that they are equivalent although the 
Noether currents are different in both the cases.

Next, assume that the smooth vector field ζμ respects the sym-
metry of spacetime, achieved by a Killing vector ξμ . We follow [28]
to introduce the off-shell ADT current JμADT associated with such a 
Killing vector by

JμADT = δT μνξν + 1

2
gρσ δgρσ T μνξν + T μνδgνσ ξσ

+ 1

2
ξμ

(
E(φ)δφ + Tρσ δgρσ

)
= ∇ν Q μν

ADT , (12)

where Q μν
ADT is just the off-shell ADT potential corresponding to 

the ADT current. In terms of the variation of the Lagrangian (1)
and the definition of the off-shell Noether current Jμ , the ADT 
potential which is in one-to-one correspondence with the off-shell 
Noether potential can be presented by

Q μν
ADT = 1

2

1√−g
δ
(√−g K μν(ξ)

) − ξ [μ�ν](δg, δφ) =
3∑

i=0

Q μν
(i) ,

Q μν
(i) = 1

2

1√−g
δ
(√−g K μν

(i) (ξ)
) − ξ [μ�

ν]
(i)(δg, δφ) . (13)

In Eq. (13), the Killing vector ξμ is treated as a fixed background, 
namely, δξμ = 0, and the quantities Q μν

(i) denote the contributions 
from the Lagrangian L(i) respectively. For the variation of the off-
shell Noether potentials K μν

(i) , see the equations (B.1) and (B.4) in 
the Appendix B.

Finally, by following the approach in [41–43] to incorporate a 
single parameter path characterized by a parameter s (s ∈ [0, 1]) 
in the space of solutions, we define the covariant formulation of 
conserved charges associated with the Noether potential Q μν

ADT in 
Eq. (13) by [27,28]

Q = 1

8π

1∫

0

ds

∫
d�μν Q μν

ADT(g, φ; s) , (14)

where d�μν = 1
2

1
(D−2)!εμνμ1μ2···μ(D−2)

dxμ1 ∧ · · · ∧ dxμ(D−2) with 
ε012···(D−1) = √−g and D is the dimension of spacetime. Eq. (14)
can be a proposal of the formalism for the conserved charge, de-
fined in the interior region or at the asymptotical infinity, for the 
most general Horndeski theory with the Lagrangian (1) whenever 
its integration is well-defined.

3. Conserved charges in a scalar–tensor theory with 
non-minimal derivative coupling

As an application of the off-shell Noether current and the for-
mulation of the conserved charge, in the present section, we give 
a derivation of the formulation of the conserved charge in the con-
text of a scalar–tensor theory with the prescription of non-minimal 
coupling between derivatives of a scalar field and the Einstein ten-
sor, and then explicitly compute the mass and angular momentum 
of (rotating) black holes in such a theory. We start with the La-
grangian [11,24]

L(s) = √−g[λ(R − 2�) − η∇μφ∇μφ + βGμν∇μφ∇νφ] , (15)

where (λ, �, η, β) are constants. In fact, the Lagrangian (15) can 
be seen as a subclass of the Lagrangian (1) for the full Horndeski 
theory in addition to a total divergence term, by setting

G(0) = −2λ� + 2ηX , G(1) = 0 , G(2) = λ , G(3) = β

6
φ ,

(16)

or [11]

G(0) = −2λ� + 2ηX , G(2) = λ + β X , G(1) = G(3) = 0 . (17)

As a consequence, we only need to substitute the above G(i) into 
the expressions for the equations of motion, surface terms and off-
shell Noether potentials associated to the most general Lagrangian 
(1) to get the corresponding quantities for the Lagrangian (15). The 
expressions of the field equations are read off as

T (s)
μν = λGμν − η�μν + gμν(λ� − ηX)

+ β [
4Rσ

(μ�ν)σ − 2∇σ ∇(μ�ν)σ + ��μν

2
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+ gμν(∇ρ∇σ �ρσ − Rρσ �ρσ + 2�X)

+ 2XGμν − 2∇μ∇ν X − R�μν

]
,

E(s)
(φ) = 2∇μ

[
(ηgμν − βGμν)∇νφ

]
. (18)

The surface term �μ
(s)(δg, δφ) for the Lagrangian (15) has the form

�
μ
(s) = −2η∇μφδφ + 2λgρ[μ∇σ ]hρσ

+ β

2

[
2�σρ∇σ hρμ − 2hρσ ∇ρ�σμ − �ρσ ∇μhρσ

+ hρσ ∇μ�ρσ − �μν∇νh + h∇ν�μν − 2hρμ∇ρ X

+ 4X gρ[μ∇σ ]hρσ + 2h∇μ X + 4δφGμν∇νφ
]
, (19)

while the off-shell Noether potentials are

K μν
(s) = 2λ∇[μζν]

+ 2β
(
2ζ [μ∇ν] X + X∇[μζν] + ζ [μ∇σ �ν]σ − ζσ ∇[μ�ν]σ

+ �σ [μ∇σ ζ ν]) . (20)

Note that K μν
(s) in the above equation is equivalent to the on-shell 

Noether potential obtained through Wald’s covariant phase space 
approach in [8], where the Noether potential was adopted to calcu-
late the mass of static black holes. For the variation of the Noether 
potential (20) see Eq. (B.8) in the Appendix B. Substituting the ex-
pressions for K μν

(s) and �μ
(s) into Eq. (14) in the condition that ζμ

is a Killing vector, one can further propose a formulation of the 
conserved charge in the scalar–tensor theory described by the La-
grangian (15).

Till now, it has been extensively studied to seek solutions of 
the Lagrangian (15), for instance, in the contexts of static solu-
tions with various asymptotical structures [8–18], rotating black 
holes in three dimensions [19,20], and slowly rotating black holes 
in four dimensions [21,22]. Thermodynamics of this theory was 
investigated in [23]. The formulation (14) provides another avenue 
to obtain conserved charges of these black holes. As an explicit 
example, we now pay attention to computing mass and angular 
momentum of the BTZ-type black hole with a single scalar degree 
of freedom in [19], where the authors only utilized the method 
of Euclidean action to calculate the mass of the black hole in the 
static case. The corresponding Lagrangian of the black hole solu-
tion is the one in Eq. (15) with λ = 1. The line element and the 
scalar field that is only dependent on the radial coordinate take 
the forms

ds2 = − f (r)dt2 + dr2

f (r)
+ r2

(
dϕ − a

2r2
dt

)2
,

(dφ

dr

)2 = −�2� + 1

β f (r)
, (21)

where

f (r) = r2

�2
− m + a2

4r2
, �2 = β

η
, (22)

and the constants (m, a) correspond to the mass and angular mo-
mentum respectively.

The mass M of the BTZ-type black hole (21) can be treated 
as a Noether charge with respect to time translational symme-
try reflected by the Killing vector ξμ

(t) = (−1, 0, 0). On the other 
hand, the perturbations of the fields are achieved by letting the 
parameters fluctuate as m → m + dm and a → a + da. Under such 
conditions, the (t, r) component of the ADT potential correspond-
ing to the Killing vector ξμ is read off as
(t)
Q tr
ADT = 1

2

1√−g
δ
(√−g K tr

(s)(ξ(t))
) − ξ

[t
(t)�

r]
(s)

= (1 − ��2)

4r
dm . (23)

Substituting Eq. (23) into the formulation (14), we have

M = 1

16
(1 − ��2)m . (24)

The angular momentum J of the black hole can be obtained in 
a similar manner as we perform to compute the mass when the 
Killing vector is chosen as ξμ

(ϕ) = δ
μ
ϕ . It is presented by

J = 1

16
(1 − ��2)a . (25)

Both the mass M and the angular momentum J satisfy the first 
law of thermodynamics. In particular, if �2 = −�−1, the scalar field 
φ vanishes. M and J reduce to the mass and angular momentum 
of the conventional BTZ black hole, respectively. In the work [19], 
the authors also constructed solutions of black holes with a pla-
nar horizon in arbitrary dimensions. Making use of the formulation 
(14) to compute the mass of these black holes, we get their mass 
that is consistent with the one derived via the method of Euclidean 
action.

Next, we calculate the mass of the four-dimensional charged 
spherically symmetric black hole with an asymptotically locally 
AdS structure in [17]. The Lagrangian associated with this black 
hole is L(s)(λ = 1, η → α/2, β → η/2) + Lem , where Lem =
−√−g Fμν F μν/4. The black hole solution is given by1

ds2 = −F (r)dt2 + G(r)dr2 + r2(dθ2 + sin2 θdϕ2) ,

A = At(r)dt ,(dφ

dr

)2

= − 1

32

α2[4(α + �η)r4 + ηq2][4(α − �η)r4 + 8ηr2 − ηq2]2

r6η(α − �η)2(αr2 + η)3 F (r)
.

(26)

In the above equation,

F (r) = r2

l2
+

√
ηα

α

[4η(α + �η) + α2q2]2

16η2(α − �η)2

arctan(
√

ηαr/η)

r

− m

r
+ 3α + �η

α − �η

+ α2q2

48η(α − �η)2

3(αq2 + 16η)r2 − q2η

r4
, l2 = 3η

α
,

G(r) = 1

16

α2[4(α − �η)r4 + 8ηr2 − ηq2]2

r4(α − �η)2(αr2 + η)2 F (r)
, (27)

and the t component of the U(1) gauge field

At(r) = q
√

ηα[4η(α + �η) + α2q2]
4η2(α − �η)

arctan
(√

ηα

η
r
)

+ α(8η + αq2)

4η(α − �η)

q

r
− α

12(α − �η)

q3

r3
. (28)

The constants (m, q) denote the mass and electric charge respec-
tively and the parameter � is assumed to satisfy that � < 0. When 
q = 0, the black hole (26) reduces to the neutral one in [13]. 

1 We have set κ = 1 in comparison with the solution in [17]. Therein the t com-
ponent of the gauge field A0(r) has several typos.
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To get the mass of the black hole, the infinitesimal variation of 
the fields is determined by letting the constants (m, q) change as 
m → m + dm and q → q + dq, and the Killing vector ξμ

(t) = −δ
μ
t . By 

using Eq. (13), one can get the ADT potential related to the gravita-
tional field and the scalar field. Besides, since the theory includes 
gauge field Aμ , one has to consider the contribution to the poten-
tial from the Lagrangian Lem , which is read off as [28]

Q μν
em = 1

4
ξσ Aσ

(
hF μν + 4hρ[μF ν]

ρ + 4gα[μgν]β∂αδAβ

)

+ 1

2
F μνξσ δAσ + ξ [μF ν]σ δAσ . (29)

Therefore, the ADT potential corresponding to the Lagrangian L(s) +
Lem is Q μν

ADT → Q μν
total = Q μν

ADT + Q μν
em . The (t, r) component is

√−g Q tr
total = 3 − �l2

6
sin θd(m) , (30)

whose integration yields the mass

M = 3 − �l2

12
m . (31)

When q = 0 and α = −η�, the black hole (26) reduces to the well-
known four-dimensional Schwarzschild-AdS black hole. In such a 
case, M = m/2 is just the mass of the Schwarzschild-AdS black 
hole. In the work [13], the authors also computed the mass of the 
neutral spherically symmetric black hole through the method of 
Euclidean action, which is different from the mass M here and 
does not recover the mass of the Schwarzschild-AdS black hole.

Finally, we have applied the method in the present work to 
calculate the conserved charges of Warped-AdS3 black holes with 
a scalar field in [20]. Unfortunately, both the mass and angu-
lar momentum are zero. This maybe arise from the fact that the 
formulation (14) for the conserved charge is covariant and the 
warped-AdS3 black hole is locally equivalent to the warped-AdS3
space, while the mass and angular momentum of the latter van-
ish. In order to get sensible results, we shall take into account this 
point in the future work.

4. Summary

We obtain the off-shell Noether current (8) and its correspond-
ing potential (9) in the context of the full Horndeski gravity theory 
described by the Lagrangian (1). To achieve this, we first derive the 
surface terms and equations of motion from the variation of the 
Lagrangian. By lifting the conventional ADT potential to the off-
shell level, we further give a proposal on the formulation (14) of 
the conserved charge in terms of the off-shell ADT potential, which 
is actually equivalent to the Noether potential via the covariant 
phase space approach. Our derivation provides a general and sys-
tematic method to compute the conserved charge in the Horndeski 
theory. Because of the generality of the Horndeski theory, it is fea-
sible to extend the formulation (14) to various well-known scalar–
tensor theories with a single scalar degree of freedom.

As an application of the general formalism, we derive the off-
shell Noether potential of a specific subclass of the full Horndeski 
gravity theory depicted by the Lagrangian (15), namely, the scalar–
tensor theory with non-minimal coupling between derivatives of 
a scalar field and the Einstein tensor. In terms of the off-shell 
Noether potential and the surface term of this special theory, we 
first explicitly compute both the mass and angular momentum of 
the BTZ-type black hole (21), as well as the mass of the four-
dimensional charged spherically symmetric black hole (26).
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Appendix A. The variation of the terms L(2,3)

In this appendix, we shall derive the expressions of the 
field equations and surface terms from the variation of the La-
grangian terms L(2) and L(3) . In what follows, note that we 
use the notations (�αβ)2 = (∇α∇βφ)(∇α∇βφ) and (�αβ)3 =
(∇α∇βφ)(∇α∇γ φ)(∇γ ∇βφ).

The variation of the Lagrangian terms L(2) and L(3) with respect 
to both the fields gμν and φ is presented as

δL( j) = √−g
[
T ( j)
μν δgμν + E( j)

(φ)δφ + ∇μ�
μ
( j)(δg, δφ)

]
, j = 2,3 .

(A.1)

For the Lagrangian L(2) , the expressions of the field equation T (2)
μν

and E (2)
(φ)

are given by

T (2)
μν = 1

2
gμνG(2)

,X (�φ)2 + gμν∇σ

(
G(2)

,X �φ
)∇σ φ

− 2∇(μ

(
G(2)

,X �φ
)∇ν)φ + G(2)Gμν

+ 1

2
G(2)

,X X

(
(�αβ)2 − (�φ)2)�μν + 2∇σ

(
G(2)

,X �σ(μ

)∇ν)φ

− 1

2
RG(2)

,X �μν + 1

2
gμνG(2)

,X (�αβ)2 − ∇σ

(
G(2)

,X �μν∇σ φ
)

− ∇μ∇ν G(2) + gμν�G(2) , (A.2)

E(2)
(φ) = 2�(

G(2)
,X �φ

) − ∇μ

[
G(2)

,X X

(
(�αβ)2 − (�φ)2)∇μφ

]
+ ∇μ

(
G(2)

,X R∇μφ
) − G(2)

,Xφ

(
(�αβ)2 − (�φ)2)

− 2∇μ∇ν

(
G(2)

,X �μν
) + G(2)

,φ R , (A.3)

and the surface term �μ
(2)(δg, δφ) takes the form

�
μ
(2) = G(2)

,X �φ(h∇μφ − 2hμν∇νφ) + 2G(2)
,X �φ∇μδφ

− 2∇μ
(
G(2)

,X �φ
)
δφ + G(2)

,X X

(
(�αβ)2 − (�φ)2)∇μφδφ

+ G(2)
,X (2�μρ∇σ φ − �ρσ ∇μφ)hρσ − 2G(2)

,X �μν∇νδφ

+ 2∇ν

(
G(2)

,X �μν
)
δφ − hμν∇ν G(2) + G(2)∇νhμν

+ h∇μG(2) − G(2)∇μh − G(2)
,X R∇μφδφ . (A.4)

For the Lagrangian L(3) , the expression for the equation of motion 
T (3)

μν is presented by

T (3)
μν = T (31)

μν + T (32)
μν , (A.5)

where

T (31)
μν = −1

2
G(3)

,X X

[
(�φ)3 − 3�φ(�αβ)2 + 2(�αβ)3]�μν

+ 3∇σ

(
G(3)

,X �μρ�ν
ρ∇σ φ

)

− 1

2
gμν

{
3∇σ

[
G(3)

,X

(
(�αβ)2 − (�φ)2)]∇σ φ

+ 2G(3)
,X

(
(�αβ)3 − (�φ)3)}

+ 3∇(μ

[
G(3)(

(�αβ)2 − (�φ)2)]∇ν)φ
,X
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+ 6∇σ
(
G(3)

,X �φ�σ(μ

)∇ν)φ − 3∇σ

(
G(3)

,X �φ�μν∇σ φ
)

− 6∇σ

(
G(3)

,X �σρ�ρ(μ

)∇ν)φ , (A.6)

and the component T (32)
μν , which is the contribution from the sec-

ond term −6
√−gG(3)Gμν�μν of L(3) in Eq. (2), is read off as

T (32)
μν =3G(3)

,X Gρσ �ρσ �μν

+ 3G(3)
(

R�μν + Rμν�φ − 4Rρ(μ�ν)
ρ
) − 3�(

G(3)�μν

)
+ 3gμν

[�(
G(3)�φ

) − ∇ρ∇σ

(
G(3)�ρσ

) + G(3)Gρσ �ρσ
]

− 3∇μ∇ν

(
G(3)�φ

) + 6∇ρ∇(μ

(
�ν)ρG(3)

)
+ 3∇σ

[
G(3)(2Gσ (μ∇ν)φ − Gμν∇σ φ)

]
. (A.7)

The expression E (3)
(φ) of the equation of motion for the matter field 

φ is given by

E(3)
(φ) = ∇μ

[
G(3)

,X X

(
(�φ)3 − 3�φ(�αβ)2 + 2(�αβ)3)∇μφ

]
− 6G(3)

,φ Gρσ �ρσ − 6∇μ∇ν

(
G(3)

,X �φ�μν
)

+ 6∇μ∇ν
(
G(3)

,X �μσ �νσ

) − 6Gρσ ∇ρ∇σ G(3)

+ 3�[
G(3)

,X X (�φ)2] − 3�[
G(3)

,X (�αβ)2]
− 6∇μ

(
G(3)

,X Gρσ �ρσ ∇μφ
) + G(3)

,Xφ

(
(�φ)3

− 3�φ(�αβ)2 + 2(�αβ)3) . (A.8)

The surface term �
μ
(3)(δg, δφ) is also split in two components, 

namely,

�
μ
(3)(δg, δφ) = �

μ
(31)(δg, δφ) + �

μ
(32)(δg, δφ) , (A.9)

where the component �μ
(31) coming from the contribution of the 

variation of the first term in L(3) has the form

�
μ
(31) = −3

2
G(3)

,X (�αβ)2(h∇μφ − 2hμν∇νφ)

+ 3hρσ G(3)
,X �φ(2�σμ∇ρφ − �σρ∇μφ)

+ 3

2
G(3)

,X (�φ)2(h∇μφ + 2∇μδφ − 2hμν∇νφ)

− 3∇μ
[
G(3)

,X (�φ)2]δφ − 3G(3)
,X (�αβ)2∇μδφ

+ 3δφ∇μ
[
G(3)

,X (�αβ)2] − 6G(3)
,X �φ�μν∇νδφ

+ 6δφ∇ν

(
G(3)

,X �φ�μν
) + 6G(3)

,X �μσ �νσ ∇νδφ

− 6δφ∇ν
(
G(3)

,X �μσ �νσ

)
− G(3)

,X X

(
(�φ)3 − 3�φ(�αβ)2 + 2(�αβ)3)∇μφδφ

− 3G(3)
,X �ν

σ (2�σμ∇ρφ − �σρ∇μφ)hρν , (A.10)

and the component �μ
(32) , which is just the surface term from 

the variation of the second term −6
√−gG(3)Gμν�μν in L(3) , is 

presented by

�
μ
(32) = 6hρσ ∇σ

(
G(3)�μρ

) − 6G(3)�σρ∇σ hρμ

+ 3G(3)�ρσ ∇μhρσ − 3hρσ ∇μ
(
G(3)�ρσ

)
+ 3G(3)�μν∇νh − 3h∇ν

(
G(3)�μν

)
+ 3G(3)�φ∇ρhρμ − 3hρμ∇ρ

(
G(3)�φ

) − 3G(3)�φ∇μh

+ 3h∇μ
(
G(3)�φ

) + 6G(3)hρσ Gμρ∇σ φ

− 3G(3)hρσ Gρσ ∇μφ + 6δφGμν∇νG(3)

− 6G(3)Gμν∇νδφ + 6δφG(3)Gρσ �ρσ ∇μφ . (A.11)
,X
In the works [3,4,21], the equations of motion for the Horndeski 
theory were also presented but the surface terms were absent. To 
compare the field equations in this work with the ones in [4], one 
can find that all the equations of motion for the matter field φ
coincide with each other and the relationship between the expres-
sions of the equations of motion with respect to the gravitational 
field gμν is −2T (i)

μν = T (i)
μν , where T (i)

μν is the notation in [4].

Appendix B. The variation for the off-shell Noether potentials 
K μν

(i) and K μν
(s)

In the present appendix, we give a derivation of the variation 
for the off-shell Noether potentials K μν

(i) and K μν
(s) under the con-

dition that δζμ = 0. Varying the off-shell Noether potentials K μν
(1)

and K μν
(2)

in Eq. (10), we have

δK μν
(1) = 2δG(1)ζ [μ∇ν]φ + 2G(1)

(
ζ [μ∇ν]δφ − ζ [μhν]σ ∇σ φ

)
,

δK μν
(2) = 4δG(2)

,X

(�φζ [μ∇ν]φ − ζσ �σ [μ∇ν]φ
)

+ 4G(2)
,X

[
δ(�φ)ζ [μ∇ν]φ

+ �φ
(
ζ [μ∇ν]δφ − ζ [μhν]σ ∇σ φ

)
− hρσ ζρ�σ [μ∇ν]φ − ζσ δ(�σ [μ∇ν]φ)

]
− 4ζ [μhν]σ ∇σ G(2) + 4ζ [μ∇ν]δG(2)

+ 2G(2)(ζσ ∇[μhν]σ − hσ [μ∇σ ζ ν])

+ 2δG(2)∇[μζν] , (B.1)

where

δX = 1

2
hρσ �ρσ − (∇σ φ)(∇σ δφ) ,

δ�μν = ∇μ∇νδφ − 1

2
(2∇(μhν)λ − ∇λhμν)∇λφ ,

δG(i) = G(i)
,φ δφ + G(i)

,XδX , δG(i)
,X = G(i)

,Xφδφ + G(i)
,X XδX ,

δ�μν = −2hσ (μ�ν)
σ + gμρ gνσ δ�ρσ ,

δ�φ = hρσ �ρσ + gρσ δ�ρσ , (B.2)

and

δ(�σ [μ∇ν]φ) = δ�σ [μ∇ν]φ − �σ [μhν]ρ∇ρφ + �σ [μ∇ν]δφ .

(B.3)

The perturbation of K μν
(3) in Eq. (11) takes the form

δK μν
(3) = δK μν

(31) + δK μν
(32) , (B.4)

where

δK μν
(31) = 6δG(3)

,X

[(
(�φ)2 − �αβ�αβ

)
ζ [μ∇ν]φ

+ 2�σ [μ∇ν]φ
(
ζρ�ρσ − �φζσ

)]
+ 6G(3)

,X

[
(2�φδ�φ − δ�αβ�αβ − �αβδ�αβ)ζ [μ∇ν]φ

+ (
(�φ)2 − �αβ�αβ

)(
ζ [μ∇ν]δφ − ζ [μhν]σ ∇σ φ

)
+ 2δ(�σ [μ∇ν]φ)

(
ζρ�ρσ − �φζσ

)
+ 2

(
ζρδ�ρσ − ζσ δ�φ − hσλζ

λ�φ
)
�σ [μ∇ν]φ

]
(B.5)

and
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δK μν
(32) = −6

[
2ζ [μδYσ

ν]σ − 2hρσ ζρ Y [μν]σ + 2ζσ hρ[μYρ
ν]σ

− 2ζσ gρ[μδYρ
ν]σ − 2hρσ ζ [μY ν]ρσ

+ 2gρσ ζ [μhν]λYλ
ρσ − 2gρσ ζ [μgν]λδYλ

ρσ

+ 2
(
G(3)hρσ ζρ + δG(3)ζσ

)
Gσ [μ∇ν]φ

+ 2G(3)ζσ
(
δGσ [μ∇ν]φ − Gσ [μhν]ρ∇ρφ + Gσ [μ∇ν]δφ

)
+ 2δG(3)�σ [μ∇σ ζ ν]

+ G(3)ζ ρ
(
�σ [μ∇σ hν]

ρ + �σ
[μ∇ρhν]σ − �σ [μ∇ν]hρσ

)
+ 2G(3)δ�σ [μ∇σ ζ ν] − δ

(
G(3)�φ

)∇[μζν]

− G(3)�φ
(
ζσ ∇[μhν]σ − hσ [μ∇σ ζ ν])] . (B.6)

In the above equation,

Yρ
μν = ∇ρ

(
G(3)�μν

)
,

δYρ
μν = ∇ρ

(
δG(3)�μν + G(3)δ�μν

)
+ G(3)gα(μ�ν)β(2∇(ρhβ)α − ∇αhρβ) ,

δGσμ = 1

2

[
2∇λ∇(σ hμ)λ − 4hλ

(σ Rμ)λ − �hσμ − ∇σ ∇μh

+ Rhσμ − gσμ(∇α∇βhαβ − hαβ Rαβ − �h)
]
. (B.7)

Besides, the variation of the total off-shell Noether potential K μν

can be expressed as δK μν = ∑i=3
i=1 δK μν

(i) .

Finally, the variation of the off-shell Noether potential K μν
(s) in 

Eq. (20) is given by

δK μν
(s) = 2(λ + β X)(ζσ ∇[μhν]σ − hσ [μ∇σ ζ ν]) + 2β(δX)∇[μζν]

+ β
[
4ζ [μ∇ν]δX − 4ζ [μhν]σ ∇σ X + 2ζ [μδ(∇σ �ν]σ )

− 2ζσ gρ[μδ(∇ρ�ν]σ ) − 2hρσ ζρ∇[μ�ν]σ

+ 2ζσ hρ[μ∇ρ�ν]σ + 2(δ�σ [μ)∇σ ζ ν] + ζρ�σ [μ∇σ hν]ρ

+ ζρ�σ
[μ∇ρhν]σ − ζρ�σ [μ∇ν]hρσ

]
, (B.8)

where

δ�μν = −2hσ (μ�ν)
σ + 2(∇(μφ)(∇ν)δφ) ,

δ(∇ρ�νσ ) = ∇ρδ�νσ + gα(ν�σ)β(2∇(ρhβ)α − ∇αhρβ) . (B.9)
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