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a b s t r a c t

Performance measures are used in various stages of the process aimed at solving a classifi-

cation problem. Unfortunately, most of these measures are in fact biased, meaning that they

strictly depend on the class ratio – i.e. on the imbalance between negative and positive sam-

ples. After pointing to the source of bias for the best known measures, novel unbiased mea-

sures are defined which are able to capture the concepts of discriminant and characteristic ca-

pability. The combined use of these measures can give important information to researchers

involved in machine learning or pattern recognition tasks, in particular for classifier perfor-

mance assessment and feature selection.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

How to assess the performance of a classifier and the importance of features are key issues in the process of classifier build-

ing and assessment. Although framed in the same process, in principle (and in practice) these research topics follow different

perspectives. For this reason, short summaries concerning the corresponding issues and proposals will be separately illustrated.

1.1. Assessing classifier performance

As for classifier performance assessment, there are a number of measures which are well known in the machine learning and

pattern recognition communities. Let us recall, in particular: accuracy (strictly related to the error rate), precision, sensitivity

(also called recall), specificity, F1 and Matthews Correlation Coefficient (MCC). These measures share a common source, as they

are all derived from confusion matrices (also called contingency tables). Other well known measures include Mean Square Error

[6], cross-entropy [20], and AUC (e.g., [17]). Relevant work devised to shed light on the characteristics of the above measures

include [34], [22], [39], and [24]. There are also many graphical representations and tools for model evaluation, such as ROC

curves, a 2D visual environment widely acknowledged as the default choice for assessing the intrinsic behavior of a classifier

(see, for instance, [5] and [13]), ROC isometrics [16], and cost curves [11]. More information on graphical methods for classifier

performance assessment can be found in [32].

A further category of measures is aimed at assessing to which extent the classifier at hand is “keen” to classify inputs as

belonging to the main or alternate category (the bias) and to which extent a classifier varies its performance depending on the

datasets used for testing (the variance). The interested reader can consult, for instance, the work of Domingos [10] for more
information on the issues related to bias and variance.
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Relevant issues arise also when tests occur in the presence of imbalance between negative and positive samples. In that

case, measuring the overall accuracy (or the overall error) gives poor information about the underlying process enforced by the

classifier at hand, any such measure being typically affected by the imbalance between data (the more the imbalance is, the less

significant the measure is). This fact may be further worsened by a lack of statistical significance of experimental results, which

may hold for minority test samples. While no practical solution exists which is able to contrast the latter issue, the former is

usually dealt with by adopting a combination of measures, usually a pair, devised to assess the performance beyond the fact

that test data are unbalanced.1 Precision and recall, on one hand, and specificity and sensitivity, on the other hand, are typical

examples of this strategy. Also ROC diagrams follow this approach, the default choice for their axes being false positive rate (i.e.,

1 − specificity) on the x axis and true positive rate (i.e., sensitivity) on the y axis. A further strategy for assessing classifiers, often

adopted in the presence of unbalanced data samples, consists of defining a single compound measure defined on top of other

ones. F1 and MCC are both examples of this strategy.

Unfortunately, regardless of the adopted strategy, most of the existing measures are in fact biased, meaning that they strictly

depend on the class ratio – i.e. on the imbalance between positive and negative samples. However, the adoption of biased mea-

sures can only be recommended when the statistics of input data is available. In the event one wants to assess the intrinsic

properties of a classifier, or other relevant aspects in the process of classifier building and assessment, the adoption of biased

measures may not be a reliable choice. For this reason, in the literature, some proposals have been made to introduce unbiased

measures – see in particular the work of Flach [16].

1.2. Ranking/selecting features

Several techniques have been devised to support the process of ranking/selecting features according to their importance.

Besides classical approaches, e.g., Fisher linear discriminant analysis [15] and Pearson correlation coefficient [14], a number of

proposals have been made over time. With the goal of providing a better understanding of the underlying mechanisms, let us

summarize the proposals according to two different perspectives.

Starting from the definition given in [4], Guyon and Elisseeff [21] divide feature selection methods in three broad groups:

filter, wrapper and embedded methods. The corresponding definitions concentrate on the dependence between the selection

method and the underlying learning algorithm L: (i) filters are used independently from L, (ii) embedded methods are used

inside L, and (iii) wrappers use L as a black box. Note that the ordering adopted while recalling these groups is not accidental.

In fact, filter methods are usually the fastest, as they consist of proper pre-processing activities, while wrapper methods are

expected to be the most expensive in terms of computing resources, as the learning algorithm is repeatedly called with the aim

of scoring (subsets of) features according to their predictive power. Embedded methods lay in between, being slower than filters

but faster than wrappers.

An alternative grouping strategy can be found in the work of Dash and Liu [8]. Borrowing relevant categories from [3] and [4],

the authors divide evaluation functions in five groups: distance, information-theoretic, dependence, consistency, and classifier

error rate. Also known as separability, divergence, or discrimination measures, distance measures (and their counterpart, i.e.,

similarity measures) suggest that a feature should be preferred to another when it induces a greater difference between class

conditional probabilities. Notable examples in this category are LDA [19] and ICA [26]. Similarity/dissimilarity measures can also

be used to encode the sample space with the aim of imposing some useful constraints therein. Recent work in this category

includes LFDA [37], sparse LDA [33] and CDA [30]. Information-theoretic measures, typically aimed at evaluating the entropy or

the mutual information of features, have been adopted in various feature ranking or feature subset assessment methods (see, for

instance, [2], [27], [12], [35] and [7]). Dependence/correlation measures quantify the ability to predict the value of one variable

from the value of another variable. They may be used to measure the dependence between/among input features (typically

feature pairs) and to identify whether a correlation exists between a feature/a set of features and the desired output. Beyond

the classical correlation measures (e.g., Pearson correlation coefficient or cosine similarity), more recent proposals in this field

include CCA (e.g., [23]) and dCOV/dCOR [38]. Consistency measures evaluate the distance of a feature subset from the consistent

state. As a subset of features may be more or less distant from the consistent state, a consistency based algorithm typically accepts

or rejects a feature subset depending on an inconsistency threshold – usually set by the user. Among other proposals made in this

field, let us recall [9], [40], [1] and [36]. Classifier error rate delegates to a classifier the assessment of feature subsets. Relevant

proposals that fall in this group are [25], [31] and [29].

It is worth pointing out that a bridge between the cited classifications of feature selection methods can be easily found.

Indeed, the first four types of evaluation measures are typically framed according to a filter perspective, due to their potential

independence from the classifier at hand. However, nothing prevents from devising heuristics embedded by a learning algorithm

that make use of any of those methods (e.g. the information gain heuristics adopted by decision trees). Classifier error rate

measures (the fifth group) coincide “de facto” with the wrappers category.
1 Note that getting information about the intrinsic performance of a classifier could be an issue also in presence of complete knowledge about the statistics of

data the classifier is expected to handle. In fact, high imbalance in a dataset may not allow to check whether the adopted classifier is in fact able to discriminate

or simply puts into practice a “dummy” strategy – recognizing all or the majority of samples as belonging to the most populated category.
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1.3. Aim of this proposal

In this paper a pair of unbiased measures is proposed, able to capture the concepts of discriminant and characteristic capability.

The former is expected to measure to which extent positive samples can be separated from the negative ones, whereas the latter

is expected to measure to which extent positive and negative samples can be grouped together. After giving pragmatic definitions

of these measures, their semantics is discussed for binary classifiers and binary features. An analysis focusing on the combined

use of the corresponding measures in form of 2D diagrams is also made.

The remainder of the paper is organized as follows: after introducing the concept of normalized confusion matrix (obtained

by applying Bayes decomposition to any given confusion matrix), in Section 2 a brief analysis of the best known measures is

performed, pointing out that most of them are in fact biased. Section 3 firstly revisits the cited work of Flach, concerning the

definition of unbiased measures and then a proposal for turning Matthews Correlation Coefficient (MCC hereinafter) into an un-

biased measure is made. Section 4 introduces novel measures devised to assess the discriminant and characteristic capability of

binary classifiers or binary features. An analysis concerning to which extent the behavior of a classifier/feature can be investi-

gated using the proposed measures in combination is also made therein. Section 5 reports experiments aimed at highlighting the

potential of 2D diagrams drawn using the proposed measures. Section 6 highlights the strengths and weaknesses of this paper

and Section 7 draws conclusions.

2. Analysis of the best known measures

As the concept of confusion matrix is central in this paper, limiting our attention to binary problems, let us preliminarily

illustrate the notation that has been adopted – also because it slightly differs from the most acknowledged one.

Let us assume that c and c denote the main and the alternate classes, respectively. Moreover, with � generic confusion matrix,

ξ ij, (i, j = 0, 1) denote the number of samples that have been correctly classified (i = j) or misclassified (i �= j). In particular, ξ 00,

ξ 01, ξ 10, and ξ 11 represent true negatives (TN), false positives (FP), false negatives (FN), and true positives (TP), respectively. As

a confusion matrix can also be used to evaluate the degree of agreement between a class and a binary feature, in this case the

index j would denote the presence (1) or absence (0) of the binary feature, with i still representing the class of the sample at

hand. In other words, ξ ij gives the number of samples that belong to the class with index i whose truth value for the feature

under analysis corresponds to index j.

Be �c(P, N) the confusion matrix of a test run in which a classifier ĉ, trained on a class c, is fed with P positive samples and

N negative samples (with a total of M samples). With X̂c and Xc random variables that account for the output of classifier and

oracle, the joint probability p(Xc, X̂c) is proportional, through M, to the expected value of �c(P, N). In symbols:

E[�c(P, N))] = M · p(Xc, X̂c) (1)

Note that Eq. (1) is a shorthand that summarizes all specific dependencies that hold between the observed number of occurrences

and the corresponding probability, with varying i and j. In fact, we assume that ξ ij reports the outcomes of an experiment

according to an underlying process that accounts also for the statistics of data (including the prior probability of main and

alternate class). According to this insight, we can write: ξ ij ≈ M · p(eij), where eij represents the event 〈Xc = i, X̂c = j〉. In other

words, ξ ij reports the number of times the event eij has been observed, given M samples.

Assuming statistical significance, the confusion matrix obtained from a single test (or, better, averaged over multiple tests in

which the values for P and N are left unchanged) gives us reliable information on the performance of the classifier at hand. In

symbols:

�c(P, N) ≈ M · p(Xc, X̂c) = M · p(Xc) · p(X̂c|Xc) (2)

In so doing, we assume that the transformation performed by the classifier can be isolated from the inputs it processes, at least

from a statistical perspective. Hence, the confusion matrix for a given set of inputs can be written as the product between a

term that accounts for the number of positive and negative instances, on one hand, and a term that represents the expected

recognition/error rate of the classifier, on the other hand. In symbols:

�c(P, N) = M ·
[

ω00 ω01

ω10 ω11

]
︸ ︷︷ ︸

�(c)≈p(Xc,X̂c)

= M ·
[

n 0
0 p

]
︸ ︷︷ ︸
O(c)≈p(Xc)

·
[

γ00 γ01

γ10 γ11

]
︸ ︷︷ ︸

�(c)≈p(X̂c|Xc)

(3)

where:

• �(c) is an estimate of the joint probability p(Xc, X̂c). In particular, ωi j ≈ p(ei j), i, j = 0, 1, denotes the joint occurrence of

correct classifications (i = j) or misclassifications (i �= j). According to the total probability law:
∑

i j ωi j = 1.

• O(c) represents the behavior of the oracle, under the hypothesis that the classifier has been tested with N and P samples,

so that p(c) ≈ N/M = n and p(c) ≈ P/M = p.

• �(c), called normalized confusion matrix hereinafter, is an estimate of the conditional probability p(X̂c|Xc). In particu-

lar, γi j ≈ p(X̂c = j | Xc = i) – with i, j = 0, 1 – denotes the percent of inputs that have been correctly classified (i = j)

or misclassified (i �= j) by X̂c. Note that γ , γ , γ , and γ are in fact the rate of true negatives (tn), false positives
00 01 10 11
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Table 1

Relevant quantities used to characterize, or derived from, confusion matrices (M

denotes the total number of samples).

Literal Denotes Relevant formulas

N, P Number of neg and pos samples N + P = M

N̂, P̂ Number of samples classified as neg and pos N̂ + P̂ = M

TN, FP Number of true neg and false pos TN + FP = N

FN, TP Number of false neg and true pos FN + TP = P

n, p Percent of neg and pos samples n + p = 1

n̂, p̂ Percent of samples classified as neg and pos n̂ + p̂ = 1

tn, fp True neg rate and false pos rate tn + f p = 1

fn, tp False neg rate and true pos rate f n + t p = 1

σ Imbalance between neg and pos samples σ = N/P = n/p

a Accuracy a = (TN + TP)/M

ρ ,ρ Specificity and sensitivity (recall)1 ρ = TN/N ≡ tn

ρ = TP/P ≡ t p

π,π Negative predictive value and precision π = TN/N̂

π = TP/P̂

1 For the sake of readability, the notations adopted for specificity and negative

predictive value are similar to the ones used for their positive-side counterparts

(i.e., sensitivity and precision, respectively), the only exception being a bar over

the symbol.

̂

(fp), false negatives (fn), and true positives (tp), respectively. Let us point out in advance that γ00 ≡ tn ≡ ρ (specificity)

and γ 11 ≡ tp ≡ ρ (sensitivity). According to the total probability law (applied to a space of conditional probabilities):

γ00 + γ01 = γ10 + γ11 = 1.

The separation between inputs and the intrinsic behavior of a classifier reported in Eq. (3) suggests an interpretation that

recalls the concept of transfer function, where a set of inputs is applied to ĉ. In fact, Eq. (3) highlights the separation of the optimal

behavior of a classifier from the deterioration introduced by its actual filtering capabilities. In particular, O ≈ p(Xc) represents

the optimal behavior obtainable when ĉ acts as an oracle, whereas � ≈ p(X̂c |Xc) represents the expected deterioration caused by

the actual characteristics of the classifier. Hence, under the assumption of statistical significance of experimental results, any

confusion matrix can be divided in terms of optimal behavior and expected deterioration using the Bayes theorem. As already

pointed out, a different interpretation holds for confusion matrix subscripts when they are used to investigate binary features.

In this case i still denotes the actual class, whereas j denotes the truth value of the binary feature (with 0 and 1 made equivalent

to false and true, respectively). However, as a binary feature can always be thought of as a very simple classifier whose output

reflects the truth value of the feature in the given samples (also called single feature classifier), all definitions and comments

concerning classifiers can be applied to binary features as well.

Before examining the best known measures deemed useful for pattern recognition and machine learning according to the

above perspective, let us take a look at the list of relevant symbols used throughout the paper, reported in Table 1. All definitions

given therein are quite standard; nevertheless, some specific aspects deserve a comment. Table 1 points out that n + p = 1 and

n + p̂ = 1. The former equation is easy to verify, as n and p basically represent prior probabilities, which require the total amount

of outcomes be equal to 1 according to the total probability law. As for the latter, let us recall that n̂ and p̂ account for the

percent of samples acknowledged as belonging to the alternate and main class, respectively. In formulas: n̂ = n · tn + p · f n and

p̂ = n · f p + p · t p. Hence:

n̂ + p̂ = n · tn + p · f n + n · f p + p · t p (4)

= n · (tn + f p) + p · (t p + f n) ≡ n + p = 1 (5)

Recall that tn + f p = f n + t p = 1, as the normalized confusion matrix � represents a conditional probability space, in which the

total probability law applies to rows. Recall also that: tn ≡ γ 00, fp ≡ γ 01, fn ≡ γ 10, and tp ≡ γ 11.

As for the imbalance between prior probabilities (i.e., the class ratio, defined as σ = N/P = n/p), it can be used to denote n

and p. In fact, n and p are not independent (as n + p = 1) and can be represented in term of class ratio as follows:

n + p = 1 ⇒ p ·
(

n

p
+ 1

)
= 1 ⇒ σ + 1 = 1

p

Hence:

p = 1

σ + 1
and n = 1 − p = σ

σ + 1

After pointing to the peculiarities of the lexicon, the classical definitions for accuracy (a), precision (π ), and recall (ρ) can now

be given in terms of false positives rate (fp), true positives rate (tp) and class ratio (σ ) as follows:

a = trace(�)

|�| = ω00 + ω11

1
= σ · (1 − γ01) + γ11

σ + 1
= σ · (1 − f p) + t p

σ + 1
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π = ω11

ω11 + ω01

=
(

1 + σ · γ01

γ11

)−1

=
(

1 + σ · f p

t p

)−1

ρ = ω11

ω11 + ω10

= γ11 = t p (6)

Eq. (6) highlights the dependence of accuracy and precision from the class ratio, only recall being unbiased. Note that the expres-

sion concerning accuracy has been obtained taking into account that p + n = 1 implies p = 1/(σ + 1) and n = σ/(σ + 1).

As for the most popular compound measures, i.e. F1 and MCC, they are both biased. The dependence of F1 from the class ratio

is evident, being defined also in terms of precision. The membership of MCC in the group of biased measures is unclear if one

starts from the usual definition, reported below for the sake of completeness:

MCC = TN · TP − FP · FN√
P · N · P̂ · N̂

(7)

However, with (tn · t p − f p · f n)
de f= �, we can write:

MCC = N · P · �√
P · N · P̂ · N̂

=
√

N · P

P̂ · N̂
· � =

√
π

ρ
· π

ρ
· � (8)

where π and π denote precision and negative predictive value, while ρ and ρ sensitivity (i.e. recall) and specificity. Note that �

is in fact the determinant of the normalized confusion matrix �, as tn · t p − f p · f n ≡ γ00 · γ11 − γ01 · γ10. Eq. (8) clearly highlghts

that also MCC is biased, as it is defined in terms of precision and negative predictive value.

3. Turning biased measures into unbiased ones

As pointed out, when the goal is to asssess the intrinsic properties of a classifier or a feature, biased measures do not appear to

be a proper choice, leaving room for alternative definitions aimed at dealing with the imbalance between negative and positive

samples. In this section, some proposals made in this direction are briefly recalled. Moreover, a proposal on how to reformulate

MCC as unbiased measure is also made.

In [16], Flach gave definitions of some unbiased measures starting from classical ones. It is worth noting that the formulas

of accuracy, precision and recall proposed therein can also be obtained by simply substituting in Eq. (6) the joint probability

� with the normalized confusion matrix �. Hence, we can write (the subscript u is used to distinguish unbiased from biased

measures):

au = trace(�)

|�| = γ00 + γ11

2
= 1 − f p + t p

2

πu = γ11

γ01 + γ11

=
(

1 + f p

t p

)−1

ρu = γ11

γ11 + γ10

= t p ≡ ρ (9)

Of course, also F1 and MCC can be reformulated accordingly, being compound measures defined in terms of other well-known

measures. In particular, unbiased versions of F1 and MCC can be obtained by simply substituting π and π with their unbiased

counterparts. As for F1, this substitution strategy has already been proposed by Flach, whereas the unbiased version of MCC

proposed in this paper is:

MCCu =
√

πu

ρu
· πu

ρu

· � (10)

4. Definition of measures able to account for discriminant and characteristic capability

To my knowledge, no satisfactory definitions have been given so far able to account for the need of capturing the potential of

a model according to its discriminant and characteristic capability. With the goal of filling this gap, let us spend few words on

the expected behavior of any such measures.

4.1. Preliminary analysis and corresponding constraints

Without loss of generality, let us assume the measures be defined in [−1,+1]. As for the discriminant capability, we expect

its value be close to +1 when a classifier or feature partitions a given set of samples in strong accordance with the corresponding

class labels. Conversely, the measure is expected to be close to −1 when the partitioning occurs in strong discordance with the

class label. As for the characteristic capability, we expect its value be close to +1 when a classifier or feature tend to cluster

most of the samples as if they were in fact belonging to the main class. Conversely, the measure is expected to be close to −1
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Table 2

Expected behavior of measures aimed at measuring discriminant and char-

acteristic capability.

Notation Intended to measure Domain Expected behavior

δ Discriminant capability [−1,+1] δ ≈ ±1 ⇔ ϕ ≈ 0

ϕ Characteristic capability [−1,+1] ϕ ≈ ±1 ⇔ δ ≈ 0

Fig. 1. Relevant cases for δ and ϕ.
when most of the samples are clustered as belonging to the alternate class.2 An immediate consequence of the desired behavior

is that the above properties are not independent. In other words, regardless of their definition, the measures devised to assess

discriminant and characteristic capabilities of a classifier or feature (say δ and ϕ, hereinafter) are expected to show an orthogonal

behavior. In particular, when the absolute value of one measure is about 1 the other should be close to 0 and vice versa (see also

Table 2, which summarizes domains and expected behavior of δ and ϕ).

Let us now characterize δ and ϕ with more details, focusing on classifiers only (similar considerations can also be made for

features):

• fp ≈ 0 and tp ≈ 1 – In this case we expect δ ≈ +1 and ϕ ≈ 0, meaning that the classifier is able to partition the given

samples almost in complete accordance with the class labels.

• fp ≈ 1 and tp ≈ 1 – In this case we expect δ ≈ 0 and ϕ ≈ +1, meaning that almost all samples are in fact recognized as

belonging to the main class label.

• fp ≈ 0 and tp ≈ 0 – In this case we expect δ ≈ 0 and ϕ ≈ −1, meaning that almost all samples are in fact recognized as

belonging to the alternate class label.

• fp ≈ 1 and tp ≈ 0 – In this case we expect δ ≈ −1 and ϕ ≈ 0, meaning that the classifier partitions the domain space almost

in complete discordance with the class labels (however, this ability can still be used for classification purposes by simply

turning the classifier output into its opposite).

To better understand the concepts above, the reader may also refer to Fig. 1, which graphically illustrates the dependence of

δ and ϕ from the corresponding confusion matrix, with varying tp and fp (light gray denotes few hits and dark gray many hits).

The determinant of the normalized confusion matrix is the starting point for giving proper definitions of δ and ϕ which are

able to satisfy the constraints and boundary conditions discussed above. It can be rewritten as follows:

� = γ00 · γ11 − γ01 · γ10

= tn · t p − f p · f n = tn · t p − (1 − tn) · (1 − t p)

= tn · t p − 1 + tn + t p − tn · t p = t p + tn − 1

= t p − f p ≡ ρ + ρ − 1 (11)

When � = 0, the classifier under assessment has no discriminant capability whereas � = +1 and � = −1 correspond to the

highest discriminant capability, from the positive and negative side, respectively. It is clear that the simplest definition of δ is

to make it coincident with �, as the latter has all the desired properties required by the discriminant capability measure. Fig. 2

reports the isometric curves drawn for different values of δ with varying tp ad fp.
2 It is worth noting that the definition of characteristic capability proposed in this paper is in partial disagreement with the classical concept of “characteristic

property” acknowledged by most of the machine learning and pattern recognition researchers. The classical definition focuses only on samples that belong to

the main class, whereas the conceptualization adopted in this paper applies to all samples. The motivation of this choice should become clearer later on.
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Fig. 2. Isometric plotting of the discriminant capability δ with varying false and true positive rate.

Fig. 3. Isometric plotting of the characteristic capability ϕ with varying false and true positive rates.
As for ϕ, considering the definition of δ and the constraints that must apply to a measure intended to assess the characteristic

capability, the following definition appears appropriate, being dual with respect to δ also from a syntactic point of view:

ϕ = t p + f p − 1 = ρ − ρ (12)

As expected, the isometric curves of ϕ, reported in Fig. 3, are orthogonal with respect to the ones drawn for δ. This is a clear

indicator that the two measures can be taken in combination for investigating properties of classifiers or features. The run of a

classifier over a specific test set, different runs of a classifier over multiple test sets, and the statistics about the presence/absence

of a feature on a specific dataset are all examples of potential use cases. However, while reporting information about classifier

or feature properties in ϕ − δ diagrams, one should be aware that the ϕ − δ space is constrained by a rhomboidal shape, whose

borders are identified by the equation |ϕ| + |δ| = 1. This shape depends on the constraints that apply to δ, ϕ, tp, and fp. In

particular, as δ = t p − f p and ϕ = t p + f p − 1, the following relations hold:

δ = −ϕ + (2 · t p − 1) = +ϕ + (2 · f p + 1) (13)

Considering fp and tp as parameters, we can easily draw the corresponding isometric curves in the ϕ − δ space. Fig. 4 shows their

behavior for t p = {0, 0.5, 1} and for f p = {0, 0.5, 1}. As the definitions of δ and ϕ are given as linear transformations over tp and

fp, it is not surprising that the isometric curves of fp and tp drawn in the ϕ − δ space are again straight lines.

4.2. Semantics of the ϕ − δ space for classifiers

The discriminant capability of binary classifiers is strictly related to the unbiased accuracy, which in turn can be given in terms

of unbiased error (say eu). The following equivalences make explicit the relation between au, eu and δ:

au = tn + t p = 1 + δ = 1 − 1 − δ = 1 − f p + f n = 1 − eu (14)

2 2 2 2
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Fig. 4. Shape of the ϕ − δ space: the diamond centered in (0,0) delimits the area of admissible value pairs.
It is worth pointing out that the actual discriminant capability of a classifier is not a redefinition of accuracy (or error), as a

classifier may still have high discriminant capability also in the presence of high unbiased error. Indeed, as already pointed out, a

low-performance classifier can be easily transformed into a high-performance one by simply turning its output into its opposite.

Thanks to the “turning-into-opposite” trick, the actual discriminant capability of a classifier could in fact be made coincident

with the absolute value of δ. However, for reasons related to the informative content of ϕ − δ diagrams, we still take apart the

discriminant capability observed from the positive side from the one observed on the negative side.

As for the characteristic capability, let us preliminarily note that, in presence of statistical significance, the expected values of

oracle (Xc) and classifier (X̂c) can be written as follows:

E[Xc] ≈ 1

M
· (P − N) = (p − n)

E[X̂c] ≈ 1

M
·
(
P̂ − N̂

)
= (p − n) + 2 · n · f p − 2 · p · f n (15)

Hence, the difference in terms of expected values between oracle and classifier is:

E[Xc − X̂c] = E[Xc] − E[X̂c] ≈ −2 · n · f p + 2 · p · f n (16)

It is easy to show that Eq. (16) actually represents an estimate of the bias of a classifier, measured over the confusion matrix

that describes the outcomes of the experiments performed with the given test set(s). Let us verify it, starting from the classical

definition given in Friedman [18]:

bias f̂ (X) = f (X) − E[ f̂ (X)] (17)

where f(X) corresponds to the output of an oracle over a set X of samples and E[ f̂ (X)] to the expected value over X of the

corresponding classifier. Assuming, without loss of generality, that the output label of a binary classifier is in {−1,+1}, it is easy

to show that – in presence of statistical significance – the following relations hold:

f (X) = 1

|X | ·
∑
s∈X

h(s) = p − n

E[ f̂ (X)] = 1

|X | ·
∑
s∈X

ĥ(s) = (p − n) + 2 · n · f p − 2 · p · f n (18)

where:

• h(s) and ĥ(s) denote the output of the oracle and the output of the classifier at hand on a sample s;

• n and p denote, as usual, the percent of negative and positive samples – respectively.3
3 For the sake of simplicity, here we assume a deterministic behavior for the classifier at hand. In so doing, the expected value over f̂ (X) can be disregarded.

However it is easy to verify that, in presence of statistical significance, the formulation of bias in terms of false and true positive rates still holds, regardless of the

hypothesis made about the behavior of the classifier (i.e., deterministic or nondeterministic).
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To show how the results reported in Eq. (18) can be obtained, let us assume (i) that X+ and X− denote the subset of samples

that belong to main and alternate class, respectively, and that (ii) X̂+ and X̂− denote the subset of samples that have been classified

as belonging to main and alternate class, respectively. Hence, we can write:

f (X) = 1

|X | ·
∑
s∈X

h(s)

= 1

|X | ·
(∑

s∈X−
( − 1) +

∑
s∈X+

( + 1)

)
= − N

M
+ P

M
= −n + p

E[ f̂ (X)] = 1

|X | ·
∑
s∈X

ĥ(s)

= 1

|X | ·
(∑

s∈X̂−

(−1) +
∑
s∈X̂+

(+1)

)
= −TN + FN

M
+ TP + FP

M

= −N · tn + P · f n

M
+ P · t p + N · f p

M

= −(n · tn + p · f n) + (p · t p + n · f p)

= −n · tn − p · f n + p · t p + n · f p

= −n · (1 − f p) − p · f n + p · (1 − f n) + n · f p

= (p − n) + 2 · n · f p − 2 · p · f n (19)

In conditions of perfect balancing (i.e., when n = p = 1/2), Eq. (17) can be rewritten as:

bias f̂ (X) = 1 − t p − f p ≡ −ϕ (20)

It is worth noting that the trailing minus sign that occurs in Eq. (20) depends only on the classical definitions of bias, which

typically measure to which extent the oracle differs from the classifier at hand on the given data or data distribution. This is

definitely a minor point when the bias is used to calculate mean squared errors, as it appears squared in the corresponding

formulas. However, in the event one is interested at identifying to which extent the classifier at hand differs from the oracle, a

better formulation for the bias would be something like E[ f̂ (X)] − f (X), making the ϕ axis in fact coincident with the (unbiased)

bias. In particular, when the performance of a classifier measured over a test set X lies on the positive semiplane of ϕ, one can

argue that the classifier has a positive bias towards the main class (+1) and vice versa (as usual, the strength of the assumption

depends on to which extent the test is statistically significant).

Summarizing, when framed in a classifier-oriented view, a ϕ − δ diagram is in fact a bias-error (or accuracy-error) diagram, as

ϕ represents the unbiased bias, whereas δ is linearly related to the unbiased accuracy (or, equivalently, to the unbiased error).

Fig. 6 points out this aspect, under the assumption that the generic point P0 reports the performance of a classifier, measured

on a given test set, in terms of ϕ and δ. As a consequence, classifiers with ϕ ≈ 0 and δ ≈ 1 are expected to show very good

performance, with loose dependencies on the actual imbalance of data. Conversely, classifiers with |ϕ| ≈ 1 are expected to show

very bad performance.4 To better illustrate these concepts, let us refer to Fig. 5, which points out that the diamond corners are in

fact well known kinds of classifiers. In particular, the upper corner (characterized by ρ = ρ = 1) denotes a classifier that is always

correct (i.e., an oracle). Conversely, the lower corner (characterized by ρ = ρ = 0) denotes a classifier that is always wrong (let us

call it anti-oracle). As for the left and the right corners, they both denote dummy classifiers. In particular, the one on the left side

always takes pessimistic decisions (considering any sample as belonging to the alternate class), whereas the one on the right side

always takes optimistic decisions (considering any sample as belonging to the main class). It is clear that the above behaviors

refer to ideal cases. However, they are approximately conserved in proximity of the corners (the closer the better).

As final remarks, let us point out that the ϕ axis (defined by the equation δ = 0) can also be characterized as the locus of points

for which the mutual information between classifier and oracle is minimum (i.e., they are points of maximum entropy), whereas

the δ axis (defined by the equation ϕ = 0) denotes the locus of points called breakeven points. As for the former property, the

starting point for analyzing it is the definition of mutual information I(X̂c; Xc) between the random variables associated to the

classifier (i.e., X̂c) and to the oracle (i.e., Xc). In symbols:

I(X̂c; Xc) = H(Xc) − H(Xc|X̂c) (21)
4 A notable exception occurs when the imbalance is in favor of the bias. For instance, a classifier operating on a test set with σ � 1 would have a good

performance in the event it associates the alternate class to each submitted sample. However, this would only depend on the imbalance of data, rather than on

the intrinsic behavior of the classifier.
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Fig. 5. Relevant points in the ϕ − δ space, when framed in a classifier-oriented view.

Fig. 6. A point in the ϕ − δ space, framed within a classifier-oriented view.
Applied to this specific setting, this information-theoretic measure actually gives the information gain obtained by applying the

classifier at hand to the given problem. Of course, one should expect the information gain to be maximum in correspondence of

oracle and anti-oracle, whereas a null information gain is expected for dummy classifiers (no matter whether a pessimistic or an

optimistic strategy is enforced). Also the origin of axes (on which ρ = ρ = 1/2) is expected to carry a null information gain, as

in that point the classifier basically takes random guesses. In fact, the whole ϕ axis is characterized by a null information gain.

Fig. 7 graphically illustrates this aspect, highlighting that all points for which the information gain is minimum (i.e., the entropy

is maximum) lay in fact on the ϕ axis. In particular, the left hand side of the figure shows the whole 3D plot of I(X̂c; Xc), whereas

the right hand side highlights its minima.

As for breakeven points, let us recall that they are characterized by the fact that π ≡ ρ . When σ = 1, precision is defined as:

π = TP

P̂
= TP

TP + FP
≡ t p

t p + σ · f p
= t p

t p + f p
(22)

Enforcing the constraint that identifies a breakeven point, we can write:

ρ = π ⇒ t p + f p = 1 ⇒ ρ + (1 − ρ) = 1 ⇒ ρ − ρ = 0 ⇒ ϕ = 0 (23)

where the equation ϕ = 0 of course identifies the δ axis.
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Fig. 7. The mutual information (i.e., the information gain) evaluated over the whole ϕ − δ space is reported on the left, whereas the locus of points for which the

information gain is minimum is reported on the right (a 25 × 25 grid has been used in both cases).

Fig. 8. Relevant points in the ϕ − δ space, when framed in a feature-oriented view.
4.3. Semantics of the ϕ − δ space for features

As for binary features, δ measures to which extent a feature is able to partition the given samples in accordance (δ ≈ +1) or

in discordance (δ ≈ −1) with the main class. In the former case the feature is covariant with the main class, whereas in the latter

it is covariant with the alternate class (hence, it is contravariant with the main class). In either case, any such feature would have

high discriminant capability, the importance of the feature being mainly related to a high absolute value of δ. However, as already

pointed out for classifiers, instead of considering the absolute value of δ as a measure of discriminant capability, we take apart

the value observed on the positive side from the one observed on the negative side for reasons related to the informative content

of ϕ − δ diagrams. As for ϕ, it measures to which extent the feature at hand is pervasive for the given dataset. A high positive

value of ϕ indicates that the feature is mainly true along positive and negative samples, whereas a high negative value indicates

that the feature is mainly false in the dataset – in both cases, regardless of the class label of samples. Fig. 8 graphically illustrates

the semantics of a ϕ − δ diagram, when framed in a feature-oriented view. In particular, the upper corner (characterized by

ρ = ρ = 1) denotes a perfect agreement between the feature and the main class. Conversely, the lower corner (characterized by

ρ = ρ = 0) denotes a complete agreement between the feature and the alternate class. As for left and right corners, they point

to the case in which the feature is always false (left corner) or true (right corner).

The borders that delimits the ϕ − δ space deserve a final remark, as they may carry important information. For example, let

us concentrate on the point, in a ϕ − δ diagram, for which the feature at hand (say f) is in complete agreement with the main
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Fig. 9. Semantics of borders in the ϕ − δ space (feature-oriented view).
category. By definition, this point, coincident with the upper corner of a ϕ − δ diagram, has the highest discriminant capability

and a null characteristic capability. Hence, as at the upper corner of the diamond both specificity and sensitivity reach their

maximum value, we can state that f implies c and vice versa (in symbols: f ⇔ c). If we move our point down along the left

border, one of the implications becomes progressively weaker, while the other remains unaltered. In particular, as any point

located in the upper-left border has ρ = 1 with varying ρ (see also Fig. 4), the implication c → f becomes progressively weaker,

whereas the implication f → c maintains its strength.5Fig. 9 reports all implications that lay aside borders and includes, for the

sake of readability, also the content of the corresponding normalized confusion matrices (for the sake of simplicity, f and f are

used to denote the truth values of the feature at hand). In particular, looking at the upper left border, one may notice that the

corresponding normalized confusion matrix is characterized by ρ = 1 (i.e., tn = 1 and f p = 0). This means that no false positives

exist for f according to the statistics evaluated on training data. Hence, having to classify a sample for which f is true, one can

assert that the sample belongs to the main class, as no false positives have been observed on training data. Similar considerations

can be made on the remaining borders.

As a consequence, the borders of a ϕ − δ diagram may give information about the (optional) presence of strict implications

between feature values and main or alternate class. In particular, the diamond borders allow to assert the following implications:

f → c (upper-left), f → c (upper-right), f → c (lower-left), f → c (lower-right). In all these cases, we can state that f is supporting

the classification.

5. Experiments

Some experiments have been performed with the aim of assessing the potential of ϕ − δ diagrams. The underlying scenario is

text categorization, with source documents taken from Reuters Corpus Vol. 1 [28] and from DMOZ (The Open Directory Project).6

In these scenarios, we expect terms important for categorization to appear at the upper or lower corner of the ϕ − δ diamond, in

correspondence with high values of |δ|. Moreover, terms that occur barely on documents are expected to appear at the left hand

corner (high negative values of ϕ), whereas the so-called stop words are expected to appear at the right hand corner (high values

of ϕ). It is worth recalling that, during experiments, particular emphasis has been given to the identification of discriminant

terms and stop words.

As for classifiers’ performance, we expect that categories with a ϕ − δ “signature” in which several terms (at least one) have

medium to high values for |δ| are easy to classify. The (unbiased) bias of the learned classifiers and their stability (i.e., their

variance) are expected to depend also on the signature.

5.1. Experiments with datasets extracted from the Reuters Corpus Vol. 1

Categories C21 (production/services), C31 (markets/marketing), E11 (economic performance), and M11 (equity markets) have

been selected from the Reuters Corpus. The corresponding alternate categories have been derived considering siblings (e.g., the

alternate category for C21 is the union of C22, C23 and C24). Note that, in accordance with the Zipf’s law [41], most of the terms
5 Let us note, however, that this assumption becomes weaker while approaching the left corner side. In this case, the feature is so pervasively false on the given

dataset that the implication f → c may not get enough support from training data.
6 http://www.dmoz.org.

http://www.dmoz.org
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Fig. 10. Diagrams reporting the position of terms within ϕ − δ diagrams (i.e., the signatures) of Reuters categories C21, C31, E11 and M11.

Fig. 11. Performance, in terms of ϕ − δ diagrams, of 30 naive Bayes classifiers trained on Reuters categories C21 and E11.
are located at the left hand corner of the constraining diamond. Fig. 10 plots the signatures obtained for the cited categories.

Looking at the drawings, it appears that C21 is expected to be the most difficult category to predict, as no terms with a significant

value of |δ| exist for it. On the contrary, samples of E11 appear to be relatively easy to classify, as several terms exist with |δ| ≥
0.5 and also considering that many supporting terms (in particular, located at the left-upper corner) can help the classification

process.

This conjecture is confirmed after training 30 naive Bayes classifiers using only terms t whose characteristic capability satisfies

the constraint |ϕ(t)| < 0.7. For each class, train and test samples have been randomly extracted (with hold out strategy) at each

run. Training data and test data have been kept balanced for the sake of simplicity. Fig. 11 reports the signatures of classifiers

trained (a) on category C21 and its siblings and (b) on category E11 and its siblings. The figure clearly points out that, as expected,
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Fig. 12. Active areas (in gray) from which terms can be selected according to a constraint that enforces a trade-off between the need for selecting high values of

|δ| and the need to identify supporting terms.

Table 3

Summary of experimental results concerning Reuters (the standard deviation gives

information about the variance of results).

#Terms ϕM δm Cat Acc (%) Spec Sens Bias S.dev.

20,000 1.0 0.0 C21 73.6 0.716 0.756 0.040 0.151

E11 80.5 0.818 0.793 −0.025 0.106

2000 0.9 0.1 C21 75.5 0.782 0.729 −0.053 0.012

E11 81.5 0.834 0.796 −0.082 0.156

500 0.8 0.2 C21 72.6 0.762 0.691 −0.071 0.104

E11 75.3 0.776 0.731 −0.044 0.100

100 0.7 0.4 C21 69.7 0.718 0.677 −0.041 0.107

E11 71.2 0.741 0.684 −0.057 0.090
the average (unbiased) accuracy obtained on E11 is higher than the one obtained on C21. Besides, ϕ − δ diagrams point out that

also variance and bias of classifiers trained for category C21 are apparently worse than those measured on classifiers trained for

category E11.

To investigate to which extent ϕ − δ measures can support feature selection, the Reuters vocabulary to be used for training

and testing categories C21 and E11 has been progressively reduced. The full dictionary consists of about 20, 000 terms. In the

first experiment it has been reduced of one order of magnitude, while in the second and the third experiments the set of terms

has been reduced to about 500 and 100. At each trial, a preliminary selection has been performed according to the following

criteria:|ϕ| < ϕM and |ϕ| + |δ|/δm ≥ 1, where ϕM and δm denote the maximum admissible value of ϕ and the minimum admissible

value for δ, respectively.7 It is worth pointing out that, among many other selection strategies that could be adopted, the above

choice tries to find a trade-off between the need for selecting high values of |δ| and the need for identifying supporting terms

which lay at (or in proximity of) the borders. Fig. 12 highlights (in gray) the constrained areas used for selecting about 100 terms.

A further selection has been performed with the goal of limiting the number of terms to the amount decided for each experiment

(namely, about 2000, 500, and 100). In this case, words have been ordered and selected according to their discriminant capability

(i.e., |δ|), in descending order –until the wanted number was reached.

Table 3 clearly shows that the average (unbiased) accuracy obtained while training classifiers with about 2000 terms is actu-

ally better than the one obtained with the full set of terms, whereas it slopes gently with the number of selected terms on the

subsequent experiments.

A further investigation has been performed on stop words. Let us recall that the right hand side of each drawing is expected to

highlight stop words. This specific aspect is shown in Fig. 13, in which the documents belonging to category C21 and to its siblings

have been (a) left unchanged or (b) preprocessed with the goal of removing stop words. It is worth noting, though, that terms

at the right hand corner do not necessarily represent only typical stop words (i.e. common articles, nouns, conjunctions, verbs

and adverbs). Rather, also category-dependent stop words may be located in that area. In particular, limiting our attention to the

first 10 terms ranked according to their ϕ value, only classical stop words occur for categories C21 and C31, whereas category-

dependent stop words occur for categories E11 (i.e., “percent” and “year”) and M11 (i.e., “market”, “trade”, and “percent”).
7 The selection criteria have been intentionally left “loose” to permit the selection of a not negligible number of terms also for category C21, whose “signature”,

as already pointed out, is particularly poor of discriminant terms.
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Fig. 13. Two ϕ − δ diagrams for Reuters category C21, whose documents (a) have been left unchanged or (b) preprocessed with the goal of removing stop words.
5.2. Experiments with datasets extracted from DMOZ

Further experiments have been performed on datasets extracted from DMOZ. In particular, the following categories have been

taken into account:

• Filmmaking (from Top:Arts:Movies:Filmmaking),

• Arts (from Top:Arts),

• Composition (from Top:Arts:Music:Composition),

• Magic (from Top:Arts:Performing Arts:Magic).

As done for the Reuters’ datasets, also in this case alternate categories have been obtained selecting negative samples from the

siblings of the categories under analysis. Fig. 14 reports the signatures corresponding to Film Making, Arts, Composition and Magic,

whereas Fig. 15 reports the performance obtained with 30 decision trees. In this case, training data have been intentionally kept

unbalanced, with the goal of checking whether this choice would affect the bias of the classifiers. In particular, the ratio between

negative and positive samples has been set to 10. It is worth noting that the Zip’f law is experimentally verified also in this

case, as most of the terms occur at the left-hand side of the diagrams. In all cases, the signatures extracted from the categories

under analysis are clearly correlated with the performances of the corresponding classifiers (the more words are scattered in the

ϕ − δ space, the better). The figures point out that also the variance of classifiers is strongly correlated with the signatures of

the selected categories. In fact, Film Making and Arts appear dramatically worse than Composition and Magic – both in terms of

performance and of variance. As for the bias, it appears relatively immune from the quality of the signatures and from the ratio

between negative and positive samples.

6. Strengths and weaknesses of this proposal

Apart from the analysis of existing measures and the definition of an unbiased MCC, the paper has been mainly concerned

with the definition of two novel measures deemed useful in the task of developing and accessing machine learning and pattern

recognition algorithms and systems. All in all, there is no magic in the given definitions. In fact, the ϕ − δ space is basically

obtained by rotating the f p − t p space of π /4. Although this is not a dramatic change of perspective, it is clear that the ϕ − δ space

allows to analyze at a glance the most relevant properties of classifiers or features. In particular, the unbiased versions of accuracy

(δ value) and bias (ϕ value) of a classifier are immediately visible on the ϕ − δ space. Maximum entropy and breakeven points

are also clearly visible, as they correspond to the ϕ and to the δ axis, respectively. An estimate of the variance of a classifier can

be easily assessed by just reporting the results of several experiments in the ϕ − δ space (see, for instance, Figs. 11 and 15, which

clearly point out to which extent the performance of individual classifiers change along experiments). All the above measures are

completely independent from the imbalance of data by construction, as the ϕ − δ space is defined on top of unbiased measures

(i.e., ρ and ρ ). This aspect is very important for classifier assessment, making it easier to compare the performance obtained

on different test data, regardless of the imbalance between negative and positive samples. Summarizing, the ϕ − δ space for

classifiers can be actually thought of as a bias vs. accuracy (or error) space, whose primary uses can be: (i) assessing the accuracy

of a classifier over a single or multiple runs, looking at its δ axis; (ii) assessing the bias of a classifier over a single or multiple

runs, looking at the ϕ axis; (iii) assessing the variance of a classifier, looking at the scattering of multiple runs on the ϕ − δ space.

As for binary features, an insight about the potential of ϕ − δ diagrams in the task of assessing their importance has been given in

Section 5. In particular, let us recall that the most important features related to a given domain are expected to have high values

of |δ|, whereas not important ones are expected to have high values of |ϕ|. Also supporting features can be easily spotted, as they

typically lay down along the borders.
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Fig. 14. Diagrams reporting the position of terms within ϕ − δ diagrams (i.e., the signatures) of DMOZ categories Film Making, Arts, Composition and Magic

(ordered according to the expected difficulty).
It is worth mentioning that alternative definitions could also be given in the ϕ − δ space for further relevant properties

studied in other settings – e.g., performance or isometric curves in ROC diagrams, AUC, and Gini’s coefficient. Although these

aspects are beyond the scope of this paper, let us spend few words on ROC curves. It is easy to verify that when a classifier has a

null discriminant capability the corresponding ROC curve reported to a ϕ − δ diagram would be constrained to the ϕ axis (which

is also the locus of points with maximum entropy). On the other hand, the ROC curve of a classifier acting as an oracle would

coincide with the borders of the surrounding diamond for which δ ≥ 0.

7. Conclusions and future work

After discussing and analyzing some issues related to the best known measures used in pattern recognition and machine

learning, first the definition of an unbiased MCC has been given. Then, two novel measures have been proposed, i.e. δ and ϕ,

intended to assess discriminant and characteristic capabilities of binary classifiers and binary features. The proposed measures

are unbiased and are obtained as linear transformations of false and true positive rates. Moreover, the corresponding isometric

curves show that they are orthogonal. The applications of ϕ − δ diagrams to pattern recognition and machine learning prob-

lems are manifold, ranging from feature ranking and feature selection to classifier performance assessment. Some experiments

performed in text categorization settings confirm the usefulness of the proposal. As for future work, the properties of terms in

scenarios such as hierarchical text categorization and taxonomy building will be investigated using δ and ϕ diagrams. An exten-

sion of δ and ϕ to multilabel categorization problems with multivalued features is also under study, together with the possibility

of embedding the proposed measures in various algorithms, including those devised to deal with feature subset selection. A

generalization of the ϕ − δ diagrams able to visualize the actual behavior of a classifier/set of features in the presence of an

unbalanced data is under way.
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Fig. 15. Diagrams reporting the performance of classifiers with ϕ − δ diagrams of DMOZ categories Film Making, Arts, Composition and Magic (as expected, the

performance of classifiers follow the ordering of signatures).
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