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A Fenchel-Rockafellar type duality theorem is obtained for a non-convex and 
non-differentiable maximization problem by embedding the original problem in a 
family of perturbed problems. The recent results of Ivan Singer are developed in 
this more general framework. A relationship is also established between the 
solutions and optimal values of the primal and dual problems using the theory of 
subdifferential calculus. 

1. INTRODUCTION 

In the case of convex minimization problems, Rockafellar [3,4] has 
shown that, by embedding the problem in a family of perturbed problems 
and using the theory of conjugate convex functions, a dual problem can be 
associated with the primal problem. The duality theory deals with the 
relationship between the primal and the dual problems. For complete details 
about Rockafellar’s duality theory, refer to [2, Chap. 31. 

For any optimization problem, convex or not, it is natural to ask whether 
there is a dual problem associated with it. In a recent paper by Ivan Singer 
[6], a notion of duality for non-convex optimization problems was discussed. 
That is, by generalizing the methods of his previous paper 171, he has 
obtained in [6] a Fenchel-Rockafellar type [5] duality theorem for 
maximization. Many such problems do in fact have applications in approx- 
imation theory. It is significant to note that the duality principle which is 
proved in [6] is not arrived at by embedding the original problem in a family 
of perturbed problems. 

The aim of the present paper is to introduce a duality theory for extremal 
problems when no assumptions like convexity and differentiability are made 
on the functional to be maximized. In Section 3, the dual problem will be 
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defined by embedding the original problem in a family of perturbed problems 
and calculating the Lagrangian functional corresponding to this embedding. 
Further we show how the Lagrangian can be used to define an extremal 
problem which is dual to the original problem. In Section 4, the entire 
duality theory of [6] is seen to be a special case of this perturbational 
duality principle. We shall also investigate the relationship between the 
solutions and the optimal values of the primal and the dual problems. 

2. PRELIMINARIES 

In this paper X and X* shall be a pair of real vector spaces in duality, 
with their respective weak topologies a(X,X*) and a(X*,X). Thus X and 
X* will be locally convex spaces. We denote by (., .) the canonical bilinear 
form of the dualities between the spaces X and X*. Thus, all statements 
concerning continuity, lower-semi-continuity, upper-semi-continuity, 
convergence, etc., will refer to continuity, lower-semi-continuity, upper-semi- 
continuity, convergence, etc., in these topologies. 

The functional J X+x= [-co, co] is said to be proper, if 
f(X)c [-co, +co] and f is not identically +co. 

The functional f: X + E is called convex if the inequality 

fox + (1 - t>.v> < u-(x) + (1 - t)f(.v) 
holds for every t E ]O, I] and for all x, JJ E X. 

The functional f: X -+ l? is called lower-semi-continuous if for each x E X 
and the sequence x,--$x, we have 

f\l inff(x,) >/f(x) 

and f is called upper-semi-continuous if 

n”:” suPf(x,) G/@). 

Consider any functional 8 X --$ R. The functional f *: X* -+ R defined by 

f*(x*) = sup{ (x, x*> -f(x): x E X), x* E x*, 

is called the conjugate function of J The conjugate of f *, that is, the 
functional f * *: X + E defined by 

f**(X)=sup((x,x*)-f*(x*):x* EX*}, x E x, (1) 

is called the biconjugate of $ Clearly, for any functional f: X + E, f * and 
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f * * are convex and lower-semi-continuous. In fact f* * is the largest convex 
and lower-semi-continuous function which is less than f. Hence in general, 
f**(x) <<f(x) for all x E X [ 1, p. 84, Proposition 1.81. 

PROPOSITION 1 11, p. 861. ~(x)=f**(x)foralZxEX, ifandonly iff is 
proper, lower-semi-continuous, and convex. 

An element x* E X* is said to be a subgradient of J X+ R at a point 
x0 E X if 

(X-Xo,X*)<f(X)-f(Xo) 

for every x E X. The set of all subgradients off at x0 is called the subdif- 
ferential off at x0 and is denoted by af (x0). 

PROPOSITION 2 [ 1, p. 9 11. Let f: X + R be any functional and let 
f *: X* --+ E be its conjugate. Then x* E 8f (x) if and only if 

f(x)+f*(x*)=(X,X*). 

3. THE DUALITY THEORY 

Let X and X* be a pair of real vector spaces in duality and let 
(+,.):XxX*+R denote the corresponding bilinear form which is 
compatible with the topologies on X and X*. Let J: X + E be any functional. 
Then by primal problem (P) we shall mean the problem 

(P) sup J(x) 
XEX 

and we shall call an element X of X a solution of (P) if 

-m < sup J(x)=J(f) < +co. 
XEX 

Now let Y and Y* be another pair of real vector spaces in duality, and 
without any ambiguity we shall use (s, .) to denote the bilinear form which 
is compatible with the topologies on Y and Y*. Thus, the spaces Y and Y* 
are locally convex spaces. 

Let 4: X x Y + R be a map satisfying 

q@, 0) = J(x) 

for all x E X. For each x E X, let 4, : Y + f? be defined by 

Q,(P) = 4(x, P). 

(2) 

(3) 
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Then the Lagrangian functional 9 is defined on X x Y* by 

WYP”) = ;f; W?P) - (PTP*)l 

= -sup iCAP*> - &,P)I 
PEY 

Now for each p* E Y*, let 

L(P*) = sup qx,p*). 
XEX 

Then the problem 

(p*) ,sw* UP*) 

is termed the dual problem of (P). 
We prove the following theorems between 

problems (P) and (P*). 

THEOREM 1. suPxExJ(x) > suPp’EY*UP*). 

Proof. 

sup J(x) = sup $6(x, 0) 
XEX XEX 

= sup 4,(O)? 
XEX 

> sup 4: *(o), 
XEX 

= 2; 1 ,;w* [(O,P”) - cYP”)lL 

= sup {sup -#,*(P*)l 
P’EY’ XEX 

= sup {sup qx,p*)}, 
p’EY* XEX 

= SUP L(P*), 
P’EY’ 

Hence the theorem. 
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(4) 

(5) 

the primal and the dual 

by (2) and (31, 

since 4,(O) > 4,* *CO), 

by (11, 

by (41, 

by (5). 

THEOREM 2. Zf fj, : Y -+ ZT is such that g,(O) = $,* * (0) for every x E X, 
then 

sup J(x)= sup qp*>. 
XCX P’EY^ 



270 P. KANNIAPAN 

Proof: Since Q,(O) = q5* “(O), the theorem follows from the proof of 
Theorem 1. 

Remark. If 8$,(O) is non-empty, then also q5JO) = #,**(O) (see [ 2, 
p. 21 I). Hence, Theorem 2 follows, if we assume that 4, is subdifferentiable 
at the origin. 

By Proposition 1, Theorem 2 also follows by assuming 4, is proper, lower- 
semi-continuous, and convex. 

The following theorem establishes a relationship between the solutions and 
a relationship between the optimal values of the problems (P) and (P*). 

THEOREM 3. If X E X solves (P) and p* E &j,(O), then p* solves the 
problem (P*). Furthermore, we have the following extremality conditions 

J(X) - L(p*) = 0 

J(X) + gyp*) = 0. 

ProoJ Since X E X is a solution of (P), we have 

J(X) = sup J(x) = a E R. 
XEX 

Since p* E ~94~0) we have 

for all p E Y. 

Hence 

$(x,P) = UP) > GO) + (P>P*)? for allp E Y, 

= a + (P,P”), by (2) and (3). 

that is, q@,p) - (p, fl*) > Q, for all p E Y. Therefore, inf,,,,{q@, p) - 
- -* (p,p*)} > a. That is ip(x,p ) > a. Hence, L(p*) = SUP,,~ p(x,p*) > a. 

From Theorem 1, a > L(p*). Hence by Theorem 2 and the remark, we have 

L(p*) = a = J(X) = sup J(x) = sup L(p*). 
XEX p*EY* 

(6) 

This implies that p* solves (P*). By (6), we have 

J(2) - L(p*) = 0 

and from p* E +,(O) and by Proposition 2, we have 

J(X) + qq(jJ”) = 0. 

Hence the theorem. 
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THEOREM 4. Assume that {x, ) is a_ maximizing sequence of problem (P) 
such that x,-+x0 and #(.,p*): X+ R is upper-semi-continuous for every 
p* E Y*. Then x0 is an optimal solution of problem (P). 

Proof. By the definition of upper-semi-continuity, we have 

ii; SUP o(x,,P*) < fN%,P*) 

for every p* E Y*. In particular, we have 

That is, lim,,, sup J(x,) < J(x,), which implies a < J(x,), where a is the 
optimal value of (P). Hence a = J(x,). Hence the theorem. 

Now, we have the following application of Theorem 3. 

THEOREM 5. We assume that 3$,(O) is non-empty, for every x E X and 
that p* E Y*, {x,} is a sequence in X satisfying 

(7) 

Then p” is a solution of the dual problem (P*) tf and only if (x,} is a 
maximizing sequence for problem (P) and J(x,) - 9(x, ,p*) converges to 
zero. 

Proof Suppose that p* is an optimal solution of problem (P*). Let 
L(P*) = a. Then by (7), for any v > 0, there exists an N such that 

a - rl< Wx,,p*) < a. 

That is, 

a-v<- SUP {(P,P*)-4(x,,p*)J<a 
PGY 

for all n > N. Considering the left hand side inequality, we have 

sup i(P,P*) - &x,,P*)~ < -a + rl 
PEY 

or all n > N. Hence -4(x,, 0) < -a + q, for all n > N. That is 

JW > a - rl (8) 

for all n > N. 

409/97,fbl8 
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Since @,(O) is non-empty for all x E X, we have by Theorem 2 and the 
remark, 

which implies 

sup J(x) = sup IQ*) = L(p”) = a, 
XEX q’EY* 

(9) 

for all n. By (8) and (9), we have 

for all n > N. Hence Ix,,} is a maximizing sequence for problem (P). That is, 
J(x,) converges to a. By hypothesis, 9(x,, ,p*) converges to a. Hence 
J(x,) - 9(x”, p*) converges to zero. 

Conversely, suppose {x,} is a maximizing sequence of (I’) and 
J(x,) - LF(x,,p*) converges to zero. By hypothesis, 9(x,,p*) converges to 
L(p*). Hence J(x,) converges to L(p*j. That is, 

sup J(x) = L(p*). 
XEX 

Further by Theorem 2, we have 

sup J(x) = sup L(q*) = L(p*). 
XEX 9'GY' 

Hence p* is a solution of problem (P*). 

THEOREM 6. Assume that Cp, is subdlflerentiable at the origin for every 
x E X and that {x,} is a maximizing sequence for (P). If p,* E a#,n(0), then 
( p,*} is a maximizing sequence for (P*). 

ProoJ: Suppose that supXEx J(x) = a E R. Since (x,) is a maximizing 
sequence for (P), we have 

lim J(x,) = lim (6(x,, 0) = sup J(x) = a. 
“+CC n-rm XEX 

Hence, given any v > 0, there exists an N such that 

for all n > N. Since p,* E a#,n(0), we have 

~(X,,P)~~(Xn,O)+(P~Pn*), for everyp E Y, 

Z a - rl + (P,Pn*), for every p E Y. 



FENCHEL-ROCKAFELLAR TYPE DUALITY 273 

Hence, ~~P,,~{(P,P,?> - 4(x,, , P)} < --a + 11. Then, we have by (4) 
;P(x,, p,*) > a - q. Hence L(pz) = supXEX P(x,p,*) > a - I?. By Theorem 2, 
a > L(p,*). Therefore, (p,*} is a maximizing sequence for (I’*). 

If sup,,,J(x) = co, then the proof is immediate from the above argument. 

4. SPECIAL CASE 

In this section we shall consider problems (P) of the form 

V’> ;yg F(x)- G(x) 

where F is a proper, lower-semi-continuous and convex functional on X and 
G is an arbitrary functional on X. The purpose of this section is to show how 
the results in (61 are consequences of the duality theory of the last section of 
this paper. 

Let J(x) = F(x) - G(x) for all x E X. Define 4: X x X + R by 

4(x, P) = F(x +P> - G(x). 

Since F is a proper, lower-semi-continuous, and convex functional, we have 
d,* “(0) = d,(O) = 4(x, 0) = F(x) - G(x), for all x E X. This is so because, 
once x is fixed, 4, is a function of p alone, which is proper, lower-semi- 
continuous, and convex. Hence, the duality Theorem 2 holds in this case, 

sup F(x) - G(x) = sup L(p*). 
XEX p*EY* 

Let us now calculate I;@*) in this case. Consider, 

QVGP”) = - ;zxp ihAP*) - $GP)l 

= - yxp {(ZAP*) -KGP) + G(x)1 

= - sup {(x +p,p*) -F(x +P)\ -G(x) + CAP*) 
PEX 

zz- sup {(x +p,p*) -J’(x +P)/ - G(x) + &P*) 
xtpex 

since X is the whole space 

= -F*(p*) - G(x) + (x,p*). 
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Consequently, 

L(p*) = sup q&P*) 
PEX 

= w; (-F*(P*> - G(x) + &P*)J 

= SUP {(x,P*) - G(x)1 - F*(P*) 
PEX 

= G*(p*) -F*(p*). 

Thus, we have proved the following theorem. 

THEOREM 7. If F is a proper, lower-semi-continuous, and convex 
functional on X and G is an arbitrary functional on X, then 

sup F(x) - G(x) = sup G*(p*) - F*(p*). 
PEX P’EX’ 

(10) 

This is precisely the duality theorem of Fenchel-Rockafellar type for 
maximization proved by Ivan Singer in [6]. 

In this context, Theorem 3 takes the following form. 

THEOREM 3. If 2E X is an optimal solution of problem (P) and 
J?* E aF(f), then pi* is a solution of problem (P*). Furthermore, 

F(x) + F*(p*) = (X,p*) (11) 

G(f) + G*(p*) = (X,p*). (12) 

’ 
Note. Conditions (11) and (12) are called extremality conditions for 

problems (P) and (P*) expressed in terms of conjugate functions. 

5. APPLICATIONS 

(1) In the particular case when G = 6,, the indicator function of a 
bounded subset B of X (that is 6,(x) = 0 if x E B and 6,(x) = $00 if 
x E X\B), we get a formula for supremum of a proper, lower-semi- 
continuous, and convex functional F on a bounded subset, as an application 
of the result (10). That is, when G = 6,, then its conjugate function is just 
the support function of the set B. That is, 

G*(x*) = sup (x,x*). 
XEB 
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NOW, by taking G = 6, in (lo), we have 

wf: F(x) = ft,p, G*(P*) - J’*(P*) 

= ps!t* { :; (xTP*) - ;:,p [(P,P*> - m11 I 

= sup ‘ji$ [F(P)- (PYP*)l+ sup (x,P*)I* 
p’ EX’ XEB 

Hence. 

supW)= sup F(x)= SUP 0:; [~;(p>-(p3p")l+ 2: (XlP")J 
XEB p*ex* 

= sup {;$ [F(p) + (P,P*)l- zf, (&P*)l (13) 
p*ex- 

(see 161, for details). 

(2) When X is a normed linear space and F is a continuous convex 
functional on X defined by 

F(Y) = Ilx-~11, L’ E x, 

where x is any fixed element of X, we have from formula (13) the following 
new formula for the deviation [7], 

6(B,x)=supIlb-xl\ 
bEB 

of a bounded subset B from x: 

Wx) = sup 1 J$ [IIX -Yll - (Y,P*)l + y; (hP”)I. 
pf EX’ 
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