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Abstract

Light-induced processes in biological molecules, which occur naturally in continuous incoherent light, are often
studied using pulsed coherent light sources. With a focus on timescales, the relationship between excitation due to
these two types of light sources is examined through a uniform minimal model of the photoisomerization of retinal in
rhodopsin, induced by either coherent laser light or low level incoherent light (e.g. moonlight). Realistic timescales
for both processes are obtained and a kinetic scheme involving rates for both coherent and incoherent light excitation
is introduced, placing all timescales into a uniform framework. The rate limiting step in the natural light-absorption
process is shown to be the low incoherent photon flux.
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1. Introduction

Developments in fast pulsed lasers have allowed for detailed time dependent studies of photobiological processes
such as laser induced cis/trans isomerization of retinal in rhodopsin , giving the first step in vision [1, 2, 3, 4, 5], or
electronic energy transfer in light harvesting proteins [6, 7, 8, 9]. Increasingly sophisticated coherent laser spectro-
scopies have been utilized to gain deeper insights [6, 7] into the processes. However, photoinduced processes such as
these occur in nature in the presence of weak incoherent light, rather than in the strong coherent light that emanates
from laser sources. For example, photoabsorption in rhodopsin initiates vertebrate visual transduction in dim light,
such as moonlight [10]. The processes induced by these two types of sources are qualitatively different [11, 12, 13].
Significantly, in isolated systems, pulsed coherent light induces time dependent molecular dynamics, whereas purely
incoherent light does not. Hence, it is important to establish the relationship between them.

Although this issue is of general interest to a wide variety of examples in light-induced dynamics, we address
it here for the case of the photoisomerization of retinal in rhodopsin induced by a single femtosecond laser or by
incoherent moonlight. The process itself is of particular biological interest due to the large quantum yield (∼ 65 %),
high speed (∼ 200 fs) of reaction, and importance in the function of living organisms [1, 2, 3, 14]. We emphasize that
qualitative features of the results are also relevant to studies of other photoexcited biological systems.

In the case of light absorption in rhodopsin, the primary interest of most laser excitation studies has been the
timescales over which the subsequent retinal photoisomerization occurs. For this reason we focus below on temporal
issues under both coherent and incoherent excitation. In doing so we have adopted a minimalist model of light
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induced biological isomerization, justified by the fact that our specific focus is to address effects due to coherent vs.
incoherent light. Specifically, below we provide a uniform minimal model for retinal photoisomerization induced
by either coherent or incoherent light. The model has: (a) a computed dynamics timescale for femtosecond laser
pulse excitation in agreement with experiment, (b) realistic dynamics for time scales on the order of milliseconds for
moonlight induced processes, and (c) a kinetic scheme involving rates of both incoherent and coherent excitation that
places all timescales within a unified framework. Specifically, in the natural visual process, the femtosecond coherent
timescales provide the initial rise of the cis/trans isomerization and the millisecond incoherent timescale gives the rate
of the process at longer times. The rate limiting process for human vision in moonlight is found to be low photon flux.

Qualitative remarks, of general interest, are provided at the end of the paper.

2. Theory

Our theoretical treatment of the photoisomerization is based on a one dimensional system with two electronic
states (see Fig. 1a) connecting the cis and trans configurations, coupled through a strength parameter η to a “bath”
that models the effects of the remaining degrees of freedom and of the external environment [15]. Isomerization
occurs via rotation about an angle α. The interaction potential between the system and the coherent external field E(t)
is treated by means of the dipole approximation. In the case of low level incoherent light, E(t) = 0 and a second bath
describing the incoherent light is included. That is, our Hamiltonian is

HT = HS − μE(t) + HIenv + Henv + HIrad + Hrad, (1)

where HS is system Hamiltonian, μ is transition dipole moment of the system, E(t) is electric field of the laser pulse,
Henv is the environment Hamiltonian, HIenv is the interaction Hamiltonian between the system and environment, Hrad
describes blackbody radiation, and HIrad is interaction Hamiltonian between the system and the radiation field.

Eigenstates |i〉 of the system HS satisfy
HS |i〉 = λi |i〉 , (2)

and the density matrix accounted with evolution of the (system + bath) is denoted ρT. The system density matrix is
ρ = TrBρT, where TrB denotes a trace over the bath. The time propagation of the density matrix elements of the system
ρi j(t) = 〈i| ρ(t) | j〉 is assumed to be described by Redfield theory within a secular approximation [16, 17, 18, 19] as,

∂
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where the brackets 〈. . . 〉B represent a trace over degrees of freedom in B, where B is either the environment “env” or
the incoherent radiation field “rad”, and HIB(t) = eiHBt/�HIBe−iHBt/�.
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Figure 1: a) Potential energy surfaces for the two state model for cis to trans photoisomerization. The solid curve and dotted curve show diabatic
potentials Vg and Ve, respectively. The dashed curve shows a coupling potential between two diabatic electronic states. b) Time propagation of cis
and trans populations under a short intense pulse for different values of η. Pcis is the population in the range − π3 ≤ α ≤ π

3 on Vg, Ptrans is that in
the range −π ≤ α ≤ − 2π

3 on Ve, and Pe = 1 − Pcis − Ptrans. Note that in Panels b and c, the very short time dynamics, which includes the excitation
from the cis, is not evident due to the short time over which it occurs.
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The system Hamiltonian HS is given in terms of two diabatic electronic states by

HS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
T + Vg(α) Vge(α)

Veg(α) T + Ve(α)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (9)

where T = − �
2

2m
∂2

∂α2 is the kinetic energy, Vg(α) and Ve(α) are the potential energy surfaces in ground and excited
electronic state, and Vge(α) = Veg(α) is the coupling potential between ground and excited states (see Fig. 1a).

The molecular environment is described as a set of harmonic oscillators of frequencyω′n and the system–environment
coupling is HIenv = Q

∑
n �κn

(
b†n + bn

)
, where b†n and bn are the creation and annihilation operators pertaining to the

nth harmonic oscillator. The operator Q is a diagonal 2 × 2 matrix with cosα on the diagonal, and the coupling con-
stants κn and spectrum of the bath are chosen in accord with an Ohmic spectral density J(ω) = 2π

∑
n κ

2
nδ
(
ω − ω′n

)
=

ηωe−ω/ωc , where the strength of the system–environment coupling is determined by the dimensionless parameter η,
and ωc = 300 cm−1. After some algebra, we obtain first term of Eq. 7 as,
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where n̄(ω) =
{
exp(�ω/kbT ) − 1

}−1 is the Bose distribution at temperature T = 300 K , ω ji =
(
λ j − λi

)
/�, and λi is an

eigenenergy of HS.
As a typical situation of scotopic vision, we consider moonlight, which is well characterized as a blackbody source

at 4100 K [20]. This incoherent radiation field can also be described as a set of harmonic oscillators of frequency ω′′n
and the system–radiation field coupling is treated by means of dipole approximation as,

HIrad = μ
∑

k

i

√
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{
ak exp (ik · r) − ak
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}
, (11)

where k is a wave number vector, ε0 is the permittivity of vacuum, r is a position inside of a cavity, V is volume of the
cavity, and θ is an angle between the transition dipole moment vector and k [21]. By assuming the large cavity limit
the summation of k can be replaced with integrals, and second term of Eq. 7 is written as,
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A component of the imaginary part of Eq. 12 describes the Lamb shift. The integration with respect to k does not
converge, and this difficulty can be avoided by renormalization theory [22]. However, since the effect of Lamb shift
is generally less than 0.1 cm−1, the divergent term in Eq. 12 is neglected in this paper. The coefficient C in Eq. 12 is
introduced to adjust density of blackbody radiation to that of light incident on our retina. Specifically, by assuming that
one is looking at a surface lit by moonlight, with a color temperature of 4100 K and a luminance L Cd·m−2, the ratio of
the intensity of light falling on the retina over the light falling on the cornea as 0.5, the pupil area 3.8×10−5 m2, and the
distance from the lens to the retina of 0.0167 m, we obtain C = L/4.0 × 1010. Here, a conversion from luminous flux
in Cd·sr to radiant flux in W·m−1 was done by using the spectral luminous efficiency function for scotopic vision [23].

From Eqs. 10 and 12, we obtain the transition probability in Eq. 3 as,
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, (13)

where Ai j and Bi j are Einstein A and B coefficient in between the ith and jth eigenstate of HS, and W(ω) is the Planck’s
energy density. The dephasing ratio γi j in Eq. 5 is evaluated by numerical integration of Eq. 10.
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Two comments are in order. First, a small amount of coherence is introduced into the moonlight case due to the
fact that the field is turned on at t = 0. Second, note that neither in the case of coherent nor in the case of incoherent
excitation is the return of the trans configuration to the cis included is these studies. This is justified by the fact that
within rhodopsin the trans retinal is known [24] to leave the protein pocket, and is only restored to the protein pocket
by other protein subunits over a long time (≈ 1 sec or so). Hence, these time scales are not expected to affect the
conclusions arising from these computations.

3. Results and Discussion

Figure 1b shows the time propagation of molecular populations under a typical laser pulse of time duration 5 fs,
amplitude 4 × 109 V/m, and a carrier frequency of 2 × 104 cm−1 that is resonant with the excitation to the electronic
excited state around the Franck–Condon region. The transition dipole moment, set at 10 Debye, corresponds to an
oscillator strength f ≈ 1. At time t = 0, the cis population Pcis(t = 0) is almost unity, and after t = 10 fs, probability is
created in the excited state. Each panel in the Fig. 1b shows the relaxation process with a different degree of system–
environment coupling: η = 12.5, 25 and 50. Evident is the fact that the trans yield is lower, and the isomerization is
faster, with increasing coupling η to the bath. We note that the time scale of the reaction in Fig. 1 is in accord with
that observed experimentally using coherent light excitation of rhodopsin, i.e. on the order of 200 fs [1, 2].

To assure that these results reflect laser coherence as opposed to laser intensity, the computation was repeated with
a significantly reduced laser intensity (a maximum of 5 ×107 V/m). Here the product population dynamics, confirmed
to be in the linear regime and shown in Fig 2, is seen to behave the same as that in Fig. 1. Hence, a comparison of
these results with the dynamics in the weak incoherent light, below, is justifiable.

By contrast to the results above, the time dependence of the molecular populations for the case of excitation by
incoherent light is shown in Fig. 3. Here we examine the problem in a context relevant to realistic biological systems.
As seen in Fig. 3, for all η the rate of increase of Ptrans is linear in time after a time that we denote as tc(η). Subsequent
to that time the slope of Ptrans vs. t is s = 9.4 × 10−8 s−1, corresponding to a cis/trans isomerization timescale of
almost one year. Note that the slope s is independent of the speed of photoisomerization observed under pulsed laser
conditions, as evidenced by the fact that it is independent of η. Rather, this rate of transformation is dictated by the
photon flux, which is the rate limiting reagent in the process. By contrast, the time tc, which corresponds well to the
time scale of photoisomerization under the laser pulse, relates directly to η as tcη ≈ 20 ps. For example, for the case
of η = 12.5, tc = 1.5 ps, in accord with Fig. 1b.

Figure 3b shows the time dependence of Ptrans as a function of the luminance L of the incoherent light source. The
slope s is seen to be proportional to the luminance L as s/L ≈ 3.1 × 10−6 Cd−1·m2·s−1.

Since the isomerization of only a few molecules are necessary to induce hyperpolarization in a rod cell [14, 10],
we compute P3, the probability that at least three from among all of the cis molecules in a rod cell are converted to
trans. The probability would then correspond to the rate of our initial visual process under moonlight conditions. The
probability P3(t) that at time t at least three from among N molecules are trans is given by 1 − p0 − p1 − p2, where

pn = Cn
N pn(1 − p)N−n (14)

is a probability that n from among N molecules are converted to trans. Here, p = Ptrans(t) is the probability that
a molecule is trans at time t, and Cn

N is the binomial coefficient. For the case of vision, we take the number of
rhodopsin molecules in a rod cell to be N = 4×109 [25], and assume that the time dependence of Ptrans maintains
a constant slope s until t = 25 msec. The resultant P3 values are shown in Fig. 4, where the time scale to obtain at
least three trans molecules is on the order of a few tens of milliseconds. This finding is consistent with experimental
time scales of 10 msec for dim flash response of a rod cell [10]. We note, as in the previous results, that the speed of
photoisomerization under pulsed laser conditions is seen to bear no relation to the far longer time scales associated
with the evolution of probability P3, since the photon flux is rate-determining in the latter case. Note further that the
times at which P3(t) reaches the value of 0.5, a measure of the biological response, is virtually a linear function of the
irradiance.

Thus far, molecular time evolution in incoherent light was considered using the Redfield approach. We also find
that the population transfer can be modeled analytically by solving the simple three state model with the four reaction
rates shown in Fig. 5. A comparison with the computed Fig. 3 gives excellent results. Here, states A, B, and C
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Figure 2: As in Fig. 1 but with significantly reduced laser intensity.
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represent cis, excited, and trans conformations of the molecule, respectively. The values of k2 and k4 correspond to
rates of population transfer from Pe to Pcis and Ptrans, which are mainly caused by the system–environment coupling.
Values obtained from the coherent pulse studies of Fig. 1 give k2 = k4 = 0.08η ps−1. The k1 and k3 represent rates
of population transfer from Pcis and Ptrans to Pe, caused by both system–environment coupling and photoabsorption.
The rates of system–environment coupling can be assigned using detailed balance, and the rates of photoabsorption
are given by the Einstein transition probability from the electronic ground state to the electronic excited state. In
the case of k1, the primary contribution is photoabsorption, giving k1 = BW = L × 5.6 × 10−6 Cd−1·m2·s−1, where
B is the Einstein B coefficient, and W is density of energy of the radiation field. The densities of the field used in
Fig. 5 correspond to the luminescence values used in Fig. 3 [26]. On the other hand, in the case of k3, the dominant
term is system–environment coupling, and we obtain k3 = k4 × 1.87 × 10−9. With the resultant k1, k3 << k2, k4,
the rate equations give the reaction rate for isomerization under incoherent light as k1/2 = BW/2. Further, these
equations establish the existence of a linear region for Ptrans vs. t with an η independent slope s = k1/2 after a time
tc = 3/(k2 + k4), relating the rate approach to both the computed coherent and incoherent results.

We note that the reaction rate obtained by the three state model is ≈10 % smaller than that given by the Redfield
equation. The difference mainly comes from the simplifying assumption that k2 = k4, and the evaluation of the rate
of photoabsorption at the torsional angle α set to zero. Nonetheless, all of the trends seen in the Redfield computed
results are also evident in the rate equation results.

4. Summary

We have presented a unified theoretical model of photoisomerization under both a coherent light source such as
a femtosecond laser pulse and an incoherent light source such as moonlight. The exact response observed reflects
the combined effect of the characteristics of the radiation field and the underlying dynamics. To consider the specific
case of retinal photoisomerization we introduced a minimal model of the isomerization process that gives the same
timescale as the femtosecond laser experiment. Using this model we showed that the time scale for photoisomerization
under coherent light corresponds to the initial rise time tc of the photoisomerization under incoherent light. The latter
arises due to the sudden turn-on of the incoherent light at t = 0.

Significantly, the overall timescale for the natural incoherent process, excitation under weak light conditions,
was shown to be determined by the low photon flux in the source, as opposed to a specific property associated with
molecular coherence. Further, we introduced a simple three state model that incorporates all of the relevant rates
obtained from both the femtosecond and millisecond time domains.

This approach provides a connection between the time domain of the femtosecond laser experiment on retinal in
rhodopsin and that of biologically relevant response time scales in human vision.
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